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1. Introduction 4nd summary. Let X(¢), ¢ = 0, be a Wiener process with un-
known mean u per unit time and unit variance per unit time. Thus, X(0) = 0
and for any &, > # = 0, X (%) — X(#) is normally distributed with mean
(t2 — t)p and variance &, — ¢ . Furthermore, for any sequence

O=tu<tp =ty <t =- - =tu < ta,

the random variables X (¢2) — X(¢1),j = 1, -+, k, are independent.

The process may be observed continuously beginning at ¢ = 0 and the problem
is to decide between the hypotheses that 4 < uoand u > o, where o is a given
number, which without loss of generality is taken as 0. Thus the hypotheses

are
Hy: p=<0
H: p>0.
It is assumed that the cost of observing the process for a time ¢ is bt, where

b > 0, and that Wi(u), the cost of accepting Hi(s = 0, 1) when u is the true
mean, is of the form

(1.1)

_fo foru <0

Wolu) = {c;[ forp >0

(1.2) n o <0
_Jeln orp =

Wiw) = {0 forp >0

wherec¢ > 0and 0 < r < 2. v

The main result of this paper is that under these conditions the minimax
decision procedure is a certain sequential probability ratio test (SPRT). The
reason for restricting r to the interval 0 < r < 2 will be brought out in the
derivation given in Section 3.

In Section 6, the analogous problem of testing the hypotheses (1.1) about the
mean of a normal distribution is considered. The minimax procedure found for
the Wiener process provides, in an obvious fashion, an approximation to the
minimax procedure for this problem. Approximations of this type have been
discussed in the literature. For » = 1, Moriguti [10] and Maurice [9] have found
the approximate minimax procedure in a certain class of symmetric SPRT’s.
The same procedure is mentioned by Johnson in the discussion following [8].
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Breakwell [2], [3], [4], has treated similar problems for the binomial and Poisson
distributions. The work to be presented here not only puts all of this on a rigorous
basis for the Wiener process but shows that, for the Wiener process, the minimax
SPRT is in fact minimax among all decision procedures.

Finally, it is shown in Section 6 that if the cost per observation is large, the
true minimax procedure for the normal decision problem is to take exactly one
observation and then accept one of the hypotheses.

2. Loss functions and symmetric SPRT’s. In this section I begin the discus-
sion of the decision problem for the Wiener process. For any decision procedure
8 let P;(u, 8) denote the probability of accepting H;, ¢ = 0, 1, when u is the
true mean and let T'(u, §) denote the expected total observation time when u is
the true mean. Then the loss function for the decision procedure § is

1
(2.1) L(p, 0) = ‘Z(:’ Wi(u)Pi(p, 8) + 0T (, 6),
and it follows from (1.2) that this can be written as
o _Jelul P, 8) + bT(p,6) foru =0
(22) L, 0) = {c u" Po(u, 8) + bT (u, 8) for u > 0.
The problem is to find a decision procedure 6*, if one exists, such that
(2.3) max, L(g, 6*) = min; max, L(u, §).

Of special importance is the class of symmetric SPRT’s. A decision procedure
belongs to this class if it satisfies the following conditions: (i) there exists a
positive constant & such that the process is observed as long as | X(¢)| < h/2;
(ii) if at some ¢, | X(¢)| = h/2, then observation stops and either H, or H, is
accepted, according as X(¢) < —h/2 or X(¢) = h/2.

The decision procedures 8, belonging to this class are conveniently indexed
by the positive constant A mentioned in the definition.

As is well-known [7],

Po(p, &) = 1/(e" + 1),
(24) ' Pl(p', Bh) =1- PO(I‘) 8h)3
T(u, &) = h(e™ — 1)/[2u(e" + 1)].

The singularity of T'(u, 8,) at 4 = 0 is removable and it is easily seen that
T(0,6:) = h*/4.
Substituting these expressions in (2.2) gives, for any h >0,
o’ bh(e" — 1)
(2.5) L(p, &) = {¢*+ 1 2u(* + 1)
L(— u,d,) for u < 0.

3. The minimax symmetric SPRT. In this section, values h = h* and p = p*

foru=0
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will be found such that
(31) L(l"*; Bh‘) = min, L(“*, Bh) = mMaxy, L(ﬂ;ﬁ’”)‘

Thus, &+ will be the minimax decision procedure in the class of all symmetric

SPRT’s.
It is convenient to make the following transformation of variables:

h =‘(b—-lc)(r+2)_ln’ u = (bc—l)(r+2)'l'lm’
£(m, 1) = ()P L(u(m), ).

Clearly, if values 5 = 2* and m = m* can be found such that

(3.2)

(3.3) £(m*, 4*) = min, £(m*, 1) = max, £(m, 1*),

then the corresponding values of h and p will satisfy (3.1).
Making the substitutions (3.2) in (2.5) gives, for any 9 > 0,

(™ — 1)

m
f =0
(3.4) elmm) =1 @ F1 T ImEm 1) orm =
£(—m, 1) form < 0.

The convenience of the substitutions (3.2) is seen in the elimination of the
constants b and ¢ from (3.4). Furthermore, the symmetry exhibited in (3.4)
makes it possible to restrict the search for values m* and »* that satisfy (3.3)
to the region m = 0. Finally, it should be remembered that £(m, ) is, for each
fixed 7 > 0, continuous at m = 0.

Now fix n > 0. An elementary computation yields, for m > 0,

a£(m, n)/om § 0o

(35) r(1+ €™ — mn =y sinh (mn)/((mm)™) = (1/(mn))] &

P(1+ 6™ = mn = o7 (((mn) /30 + ((ma) /B0 + - .

Denote the left-hand and right-hand sides of the final inequality in (3.5) by &
and ¥, respectively. Then ® is a strictly decreasing function of m and

(3.6) lim® = 2r, lim® = — oo,

m->0 m->o0
For0 <r <2 ¥isa strictly increasing function of m and

(3.7) lim¥ = 0, lim ¥ = o,
m->0 m->0
Hence, for each fixed n > 0, there exists a unique positive value of m at which

® = ¥ and this value yields max,, £(m, 7).
Now consider the case when r = 2. Again, ¥ is a strictly increasing function
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of m, but now

(3.8) limo‘I' = 7'/6, Iim¥ = .

A glance at (3.6) shows that if »* < 24 there will be a unique positive value

of m at which ® = ¥ and this value will again yield max., £(m, ). However,

if n* = 24, then max,, £(m, 1) occurs at m = 0. (It should be clear from (3.5)

and this discussion why the values r > 2 are excluded from consideration.)
Similarly, for fixed m > 0, an easy computation gives

a&(m, )/én ; 0 & [sinh (mn)/mn] + 1 '><“ m™*/y
(3.9)
& 2 + [(mn)*/31] + [(mn)*/51] + - < .

It is clear from the final inequality in (3.9) that there is a unique positive value
of 7 at which equality holds and this is the value that yields min, £(m, 7), for
each m > 0.

It follows from this discussion that if positive values m = m* and 4 = 2* can
be found that simultaneously satisfy the equations

r(1 4 &™) — my = (v'/m’) [sinh (my)/(mg) — 1]
(3.10) {[sinh (mn)/mn] + 1 = m™/g

and the added condition that when r = 2, 7* < 24, then the values m* and
n* will satisfy the minimax equation (3.3).
Setting m = v/7 in the second equation of (3.10) gives

(3.11) 7 = /(v + sinhv),
and making these substitutions in the first equation of (3.10) yields
(3.12) r(1 + ¢") = 2vsinh v/(v + sinh v).

A routine analysis shows that there is a unique positive value of v satisfying
(3.12) and, consequently, there exist unique values m* > 0 and #* > 0 satisfying
(3.10). It remains to show that when r = 2, 7** < 24. From (3.11), it follows
that it is sufficient to show that

(3.13) : 1/0°* + (sinh o/v*) > 2

for all ¥ > 0. An examination of the first few terms in the series expansion of
the left-hand side of (3.13) shows that this inequality holds.

Thus, the following result has been obtained. Let v* be the unique positive
solution of (3.12). Let

(3.14) 77" = ¥/ (v* + sinh v*), m* = v¥/n*.
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Then m* and #* satisfy (3.3) and, hence, the values
(3.15) = (07) TP, = (e e,
satisfy the minimax equation (3.1).
4. The minimax decision procedure. It will now be shown that the decision
procedure 8 derived in the preceding section as the minimax procedure in the

class of symmetric SPRT’s, is in fact minimax in the class of all decision pro-

cedures.

Consider the problem of finding the decision procedure that is Bayes against
the a prior{ distribution that places probability 3 at each of the two values
u = p*and u = —u* That is, it is desired to find the procedure & that minimizes

(4.1) p(8) = 3[L(w* ) + L(—n* 9)].

It is well-known [7] that a Bayes solution for this problem is either a procedure
that makes an outright decision without any observation of the process, or else
it is a procedure of the following form. The process is observed as long as

('\/2—1-rt) -16—2t‘1(x(t)—p* [}
( \/Z_rt) -1 e—zt-!(x(t)+n* )2

where B < 1 < A are constants, or equivalently, as long as
(4.3) In B/(2u*) < X(¢) < In A/(2up*).

Observation stops and the appropriate hypothesis is accepted as soon as either
inequality in (4.3) is broken.

In the problem being considered here, the Bayes procedure cannot be an out-
right decision. This follows from the fact that for any procedure & specifying an
outright decision, ‘

(44) p(80) = cu*/2 = lim 4. L(u*, 6) > L(u*, o) = p(dss).

Furthermore, it follows easily from the derivation given in [13] or [1] that, be-
cause of the symmetry of the a prior: distribution and the cost function, it must
be true that In A = —In B in the Bayes procedure (4.3). (Expressed in other
terms, if it is worthwhile to continue observation when the a posterior: probabil-
ity that u = u* is o then it must also be worthwhile to continue observation
when the a posteriori probability that p = —p* is «, and conversely.) Thus,
the Bayes procedure is a symmetric SPRT. It obviously must be 8+ , since for
any other symmetric SPRT, 45 ,

(4.5) p(0n) = L(u* &) > L(u*, 8re) = p(dne).

It may now be concluded that &+ is minimax among all decision procedures.
Indeed, for any decision procedure, 9,

(4.6) p(8) = 3[L(n* 8) + L(—u* 0)] 2 p(dne) = L(u* one).

(42) B < < A,
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Hence, either L(u*, §) = L(u* da+) or L(—p*, 8) = L(p*, o4+). Since L(u*, 8x+)
is the maximum value of L(u, 8s+), the conclusion follows.

In the preceding development, the fact that the minimax decision procedure
belongs to the class of symmetric SPRT’s is a consequence of the existence of a
pair, h* and p*, satisfying (3.1). When r > 2, it cannot be concluded that the
minimax procedure is a symmetric SPRT because the existence of such a pair

has not been established.

B. Tests of hypotheses about the mean of a normal distribution. In this sec-
tion I consider the analogous problem of testing hypotheses about the mean u
of a normal distribution with unit variance. Thus, suppose X;, Xz, --- is a
sequential sample of independent observations, each with this distribution.
Tt is desired to decide between the hypotheses (1.1) when the cost per observa-
tion is b and the cost of an incorrect decision is given by (1.2).

The similarities between the problem treated in the preceding sections and
the one now being considered are clear. The symmetric SPRT’s defined in Sec-
~ tion 2 have obvious counterparts here, with X(¢) replaced by D2, X;. The

expressions given in (2.4) are the usual approximations, [5], [7], [12], for the
OC and ASN functions of these tests (where 7'(u, 05) is now interpreted as the
expected number of observations). Finally, the optimal property of the SPRT
used in Section 4 is applicable to the problem now being considered [13].

It follows from these statements that the minimax procedure derived above
for the Wiener process can serve as an ‘“‘approximate” minimax procedure for
the problem now being considered. However, it will now be shown that for suf-
ficiently large values of b/c the actual minimax procedure is to take exactly
one observation and then accept one of the hypotheses. ,

A decision procedure is said to be a generalized SPRT if it is of the following
type: there are given two sequences {a,} and {8,}, with 8, =< a, (either may be
infinite) for n = 1, 2, - - - ; sampling continues as long as

(5.1) Bn < 2iaXi < an;
sampling stops and the appropriate hypothesis is accepted as soon as either in-
equality is broken. ‘

It is known, [6], [11], that the class of generalized SPRT’s is essentially com-
plete relative to the class of all decision procedures with bounded loss functions.
Tt should be noted that since Wo(x) and W;(u) are unbounded, any procedure
with a bounded loss function must involve taking at least one observation.

Let 8* be the decision procedure under which one observation, X, is taken
“and either Hy or H, , is accepted, according as X; < 0 or X; > 0. I will now show
that 6* is minimax if b/c is sufficiently large.

Clearly,

ewd(—p) + b forp =0

(5.2) L(u, 6%) =
' L("M; 8*) foru<O0
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where
. v '
(5.3) 8(y) = [ (20) 2" g,

Since L(u, 6*) = L(—up, 6*), the maximum value of L(p, 6*) occurs at two
points, say p = =po, with go > 0.

Now let 6 be any other generalized SPRT. If 0 < 8; < o then L(uo, 8)
L(uo, 6*), since the probability of making an incorrect decision on the first
observation is at least as large using & as it is using 6*. Similarly, if 81 < o4 < 0
then L(—yo, 5) = L(—yo ) 5*).

Finally, suppose that 8; < 0 < o; and let Pr {81 < X1 < o1 |m} = £ > 0.
“Then

L(uo, 8) = cuo Pr {Acc. Hy | po, 8} + bE{n | uo, 8
(54) > cpo Pr{X; < Bi|mo, 8} + b[(1 — &) + 2¢]
‘ = cui®(B — mo) + b + bE.

But

(5.5) £ =®(a1 — o) — ®(B1 — w),

and hence

(5.6) B(B1 — mo) = ®(ar — po) — £ > ®(—mo) — &
Thus

(5.7) L(#o , 8) > cui®(—po) + b + £(b — cwr).

It follows that if b = cuo, then L(uo, 8) > L(po, 6*) and 6* is minimax.

It is interesting to note that when b = cus there is no least favorable a priori
distribution. In fact, the Bayes procedure against the a prior: distribution that
places probability % at each of the values u = ==po is an outright decision.
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