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Lastly, a nonstationary example is provided by the Brownian motion kernel.
For

K(s,t) = min (s, ¢), 0<st=s1,

the unit sphere of H(K) consists of absolutely continuous functions m for which

m(0) = 0, and

1
f |m’(¢)|* dt < 1.
0
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THE OPINION POOL!
By M. Stong?

Princeton Unaversity

1. Introduction and summary. When a group of ¥ individuals is required to
make a joint decision, it occasionally happens that there is agreement on a
utility function for the problem but that opinions differ on the probabilities of
the relevant states of nature. When the latter are indexed by a parameter 6, to
which probability density functions on some measure p(8) may be attributed,
suppose the k& opinions are given by probability density functions p.(6), - - -,
pax(0). Suppose that D is the set of available decisions d and that the utility of
d, when the state of nature is 6, is u(d, 9).

For a probability density function p(8), write

uld|p(0)] = [ u(d,0)p(6) du(0).
The Group Minimax Rule of Savage [1] would have the group select that d
minimising
maxi;—i,...x {maxd:w ’U,[d' | psi(O)] - u[d | pn‘(e)]}'

As Savage remarks ([1], p. 175), this rule is undemocratic in that it depends
only on the different distributions for 6 represented in those put forward by the
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group and not on the number of members of the group supporting each different
representative.

An alternative rule for choosing d may be stated as follows: “Choose weights
My, M A =20,6=1,---,k and D tX; = 1); construct the pooled
density function

pa(0) = ;xm(a);

choose the d, say d. , maximising u[d | p(6)].”” This rule, which may be called
the Opinion Pool, can be made democratic by setting \; = -+ = N\, = 1/k.

Where it is reasonable to suppose that there is an actual, operative probability
distribution, represented by an ‘unknown’ density function p.(8), it is clear
that the group is then acting as if p,(8) were known to be pa(6). If p.(0) were
known, it would be possible to calculate u[da | pa(60)] and uld,; | pa(6)], where
ds: is the d maximising u[d | ps:(8)], ¢ = 1, --- , k and then to use these quanti-
ties to assess the effect of adopting the Opinion Pool for any given choice of
A, oty Mk

It is of general theoretical interest to examine the conditions under which

(1.1) ulda | pa(8)] = miney,... » uldes | Pa(6)].

Theorems 2.1 and 3.1 provide different sets of sufficient conditions for (1.1) to
hold. Theorem 2.1 requires ¥ = 2 and places a restriction on p,.(6) (or, equiva-
lently, on p.(6) and p.(6)); Theorem 3.1 puts conditions on D and u(d, 9)
instead.

2. The case of k = 2. The following example shows that conditions are needed
for (1.1) to hold. With k& = 2, suppose that p.,(0), p:2(0), p.(8) are given by
atoms of probability one on 6; , 6, , 8, respectively, where 6, , 6, 6, are different;
also suppose that D has only three elements d; , d» , d; and that

u(dl ) 01) = la u(d2 ) 01) = 0’ u(ds ’ 01) = %y
u(dl ) 02) = 0, ’ll/(dz ) 02) = 1’ u(d3 ) 02) = %’
u(dl ) 041) = '12'a u(d2 ) ea) = %, u(d?: ) 0.,) = 0.

Then dy = dy, des = ds and, for \; = N\ = %, don = d3 and (1.1) does not ob-
tain.

However, the following theorem may be stated:

THEOREM 2.1. If, for some ui, us, Pa(0) = wmPa(8) + uepse(0), then (1.1)
holds for any weights N1, N2 . (As heretofore explicit, the assumption is made
that ds , des , da exist.)

ProoF. d,; maximises u[d | p.:(0)], ¢ = 1,2, and ds maximises u[d | pa ()]
or Muld | pa(0)] 4 Mauld | pe2(6)]. Writing by; for uldsi | ps;(6)] — ulda | pas(6)],
it follows that
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(2.1) by = 0,
(2.2) by = 0,

(2.3) AMbu + Nebie £ 0,

(2.4) Mba + Abas < 0

For (1.1) to hold, it is necessary that either

(2.5) pbu + pebe = 0 or
(2.6) wibar + uabee < 0.

Now it is necessary that u; + ps = 1 so that, if y3 < A1, (2.1) and (2.3) imply
(2.5); while, if u; > A1, (2.2) and (2.4) imply (2.6). Therefore (1.1) holds and
the theorem is established.

ExampLe. If each of p.(0), pa(6), ps2(8) is atomic on two 0-p01nts and if
Pa(8), ps2(0) are not identical, p.(6) may be written as wpa(0) + weps(8) and
(1.1) obtains. If pa(8) = ps2(0), (1.1) clearly obtains.

3. The general case. That the condition ps(0) = pwipu(d) + -+ + wrPsi(6)
is not sufficient for (1.1), when k > 2, follows from the following example:
Suppose that k = 3 and that p,(6) is given by an atom of probability one at
6 = §; for ¢ = 1,2, 3 where 6, 6., 6; are different; also suppose that D has

only four elements do , dy , dz, ds for which
u(do, 1) = £, u(dy, 61) = 2%, u(dy, 61) = %, u(ds, 61) =
u(do, ;) = 3, u(di, 6;) = %, u(dz, 0) = 23, u(ds, 6;) = %,
u(do, 65) =0, u(di,6;) =%  ulde, ) =1  ulds, 63) = 23
Choose a small positive number e. Suppose [u1, u2, us] is such that p,(8) is
atomic on [6; , 6, , 6;] with
[Pa(61), Pa(B2), Pa(8:)] = [5(1 — Fe), 3(1 — Fe), (1 + €)].
Take [A\1, Az, As] 50 that pa(8) is atomic on [6;, 6, , 6] with
[Pa(61), P (62), Pan(63)] = [3(1 + Fe), 5(1 + 3¢), (1 — €)].

Then wuldo [pa(6)] = 1 + 3¢, uldi|pa(0)] = ulds | pa(6)] = 1 + 9¢/24,
uld; | pa(0)] = 1 — 3¢/4; whence da = dy . Also, by symmetry, ulds | p.(0)] =
1 — e, uldi | pa(0)] = uld2 | pa(0)] = 1 — 9¢/24, ulds | pa(6)] = 1 + 3e/4;
whence

= e
<

ulda | pa(0)] = uldo | pa(8)] < min {ulds; | pa(0)] |7 = 1, 2, 3}

so that (1.1) does not hold.
Theorem 2.1 gives conditions on k and p.(6) for (1.1) to obtain. The follow-

ing theorem gives conditions on only D and u(d, 6) for (1.1) to obtain.
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TareorEM 3.1. If (1) D s an interval of real numbers (ii) —u(d, 0) s, for each
0, a strictly convex function of d then (1.1) holds for all weights N1, + -+ , A\ . (The
assumption is made that dg , - -+ , da , dax exist.)

Proor. Consider any three different elements d;, dz, d; of D such that
di = pdy + (1 - p)ds, 0<p<lLl Then, for all 9, ’U,(dl, 0) > p’u(dz, 0) +
(1 — p)u(ds, 6) and hence uld:|p(8)] > puld: | p(8)] + (1 — p)ulds | p(6)].
Therefore —uld | p.(0)], —uld | ps:(0)], 2= 1, --- , k, are strictly convex in d.
Letd, = min {ds, --- , ds} and dy = max{dy, -+, da}. Ford, = d < du,
by the convexity of —uld | p.(9)],

(3.1) uld | pa(8)] = min {uldn | pa(8)], ulds | Pa(6)]}.
Hence
(3.2)  ming,...  ulds: | pa(6)] = min {u[dn | pa(0)], ulds | pa(8)]}.

For weights A1, -+, M\, if dn < don < du, (3.1) and (3.2) together imply
(1.1). However, if da < dn , there exists a d* e D and pf, 0 < pf < 1,4 = 1,
-+, k,such that do < d* < dnand d* = pfda + (1 — pH)dei, i =1, .-+ , k.
By the established strict convexities,

uld* | pi(0)] > piulda | Pas(0)] + (1 — pF)ulds: | pai(6)]
= piulda | psi(8)] + (1 — pH)ulda | psi(6)]
= U[ds)\ | pﬂ'(e)]’ i=1,---, k;
whence 2§ Muld* | p.i(0)] > 28 Mulda | pai(6)] or
uld* [ pa(0)] > ulda | pa(0)],
a contradiction. Hence da < d,, is impossible; and so is d» < ds . Therefore the
theorem is established.
ExampLE. D is an interval, 6 is a real parameter and u(d, 8) = —(d — 6)°.
Because (d — 6)* is strictly convex in d for each 8, (1.1) obtains.
In conclusion, it may be noted that it is quite possible to have
ulda | pa(0)] > max{ulde | pa(0)] [ £ =1, -+, K}.
For example, this will occur (for all but degenerate cases) when
pa(0) = 221 uipsi(0)
and \; = u;,2=1, -+, k.
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