CONDITIONAL PROBABILITY OPERATORS!

By RoBERT COGBURN
University of California, Berkeley

0. Introduction and summary. The study of laws of random variables is facili-
tated by various methods of representing these laws. The distribution function
and characteristic function have played an important role, and the functional
representation of the law of a random variable X as a mapping T of the bounded
Borel functions into the real line given by Tg = Eg(X) connects many problems
in probability theory with functional analysis.

Similarly, in the study of cenditional probability laws various representations
of these conditional laws are desirable. In particular, in the study of Markov
processes an operator representation has proven most useful. In this paper we
develop the representation of the conditional law of a random variable in a way
analogous to the functional representatlon mentioned above Thus, if X is a

random variable on a probablhty space (Q, @, P) and @* is a sub-o-field of @,
then we introduce the @* conditional operator T' of X mapping the bounded
Borel functions into L.(2, @*, P) and given by Tg = E¥¢(X).

The first four sections of the paper develop a rudimentary theory of such
operators. The use of these operators in probability theory leads one to consider
various operator topologies, etc., weaker than those usually studied in functional
analysis. Most of the material presented in this development is quite elementary,
and many properties of these operators having potential interest have not even
been mentioned. Nevertheless, it is hoped that this exposition may suggest
further use of the operator representation of conditional distributions in prob-
ability theory, and that the properties of these operators relevant to probability
theory will be investigated more systematically.

In the final section conditional probability operators are applied to a mixing
problem. A stationary process is said to have central structure if, under condi-
tions similar to those of the central limit problem for independent random vari-
ables, conditional limit laws given the invariant o-field are infinitely divisible.
It is shown that central structure is closely related to a type of uniform ergodi-
city.

1. Order continuous operators on G to L., . In this section we will be-concerned
with the space G of all bounded real-valued Borel functions on the Borel line
(R, ®), and the space L«(S, 8, ) of an arbitrary finite positive measure space
(8, 8, u). The designation (8, 8, u) will be omitted from the notation except
when it is needed for clarity. The space G under the uniform norm, [jg|| =
Sup..z |g(z) |, isa Banach space, and under the orderrelation, g < hifg(x) < h(z),
z ¢ R, G is a conditionally o-complete lattice in McShane’s terminology [8, p. 9],

Received October 3, 1961.
1 Prepared with the partial support of National Science Foundation Grant G-14648.

634

&5
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é%%
The Annals of Mathematical Statistics. BINORN

www.jstor.org
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that is, every bounded countable set, of elements of G has a supremum and an.
infimum in G. Moreover, G is a Banach lattice, that is, the norm and order rela-
tion are connected by the property.

Ifl = lgl = IfIl = lgll-

The space L. is, of course, a Banach space with thenorm, || X||. = u — esssup |X],
and there is a natural order relation, X < Y if u[s: X(s) > Y(s)] = 0. With this
relation, L. is a Banach lattice and is conditionally complete (see [2, p. 302]),
that is, any bounded set of elements in Lo, has a supremum and infimum in L .

The symbols \/ and A will denote the usual lattice operations, supremum and
infimum, respectively. We say that a sequence of elements Iy, iy, ls, --- of a
vector lattice £ converge in order to I ¢ £, denoted I, = lor l = o— lim [, , if
Al and /I, exist and

AViai=V Nl.=1
n mzn n mzn

Clearly, order convergence of sequences in G is simply bounded (in sense of
norm) pointwise convergence, and order convergence in L. is bounded (in
sense of norm) u — a.e. convergence.

Convergences in terms of sequences will frequently be introduced in this
paper, but such convergences extend immediately to countable generalized se-
quences (for example, double sequences) and such extensions will be used with-
out further comment.

It is to be understood that when we write X < ¥, X = Yor X = Y for
X, Y ¢ L., these symbols denote the corresponding order relations and not the
pointwise relations X(s) = Y (s), s € S, ete.

We introduce several subspaces of G. Namely, the space C of bounded con-
tinuous functions; C. of continuous functions having a limit at infinity (g & Cs
if g e Cand g(®) = lim,.+g(z) exists); Co of continuous functions vanishing
at infinity (g € Coif g £ Co and g(®) = 0); Co of continuous functions with
compact support; and finally the space AP, of continuous functions almost
periodic at infinity defined as follows: g ¢ AP if g £ C' and, for every ¢ > 0,
there exists a periodic function g, and a compact set K. such that |g — g < e
for z £ K. . Note that, since g is continuous, g. can be chosen to be continuous.

Clearly,
GO CDAP, D Ce D CyD Cyp.

The subspaces C, AP., , Cs, and C are closed in the normed typology of G,
and the closure of Cy in this topology is Co . ‘On the other hand, the closure of
Cy under passages to the limit in order by sequences is G.

Since it is closed in the normed topology, the subspace Co with its relative
topology is a Banach space, and, according to the Riesz representation theorem
and its classical extensions, the adjoint C§ of Cy is isometrically isomorphic to
the space ® of all finite real-valued countably additive set functions on the
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Borel line. Moreover, every ¢ ¢ ® determines a continuous linear functional on
all of G through the relation o9 = [g(x)¢(dz), hence these functionals are in G¥,
and we use the same notation for elements of & and the corresponding func-
tionals. The ® topology of G is defined to be the coarsest topology of @ for which
all the functionals in ® are continuous. Since ® contains measures concentrated
at a single point, it follows from the dominated convergence and uniform bound-
edness theorems that a sequence g, ¢ G converges to g in the & topology of G if
and only if the g, are uniformly bounded and converge pointwise to g. Thus
order convergence and convergence in the ® topology of @ coincide for sequences.

The space L is isometrically isomorphic to the adjoint of L, , and the canoni-
cal mapping of elements X of L, into elements X of the adjoint, L% , of L., is
given by .

XY=[XYd,u, Y & L,

(see [2, p. 289]). We let ,Z’l denote the canonical image of L, in L& . Note that
L, is norm determining for L , that is, for X ¢ Lo,

Xl = suprez,,yri, 17X,

where ||Y|; = [|Y| du is the L; norm.

Convergence in norm and weak convergence in L, are usually too strong for
our purposes. Besides order convergence, we introduce bounded convergence
in measure and convergence in the L, topology of L. (to be called simply the
L, topology): a sequence X, converges boundedly in measure to X, denoted
X,.—X b — u, if the X, are uniformly bounded in norm and X, converges in
w-measure to X. And X, converges in the L topology to X, denoted X, — X L,
if for every ¥ e L, YX, — PX.

We have introduced five notions of convergence in L., . For sequences these
convergences are simply related, namely,

norm = weak = order = bounded in measure = L, convergence.

Except for the second implication these relations are classical and will be found
discussed, for example, in Dunford and Schwartz [2]. To prove the second rela-
tion we begin by putting a standard relation of measure theory into a convenient
form.

LemMma 1. A sequence X, € L., converges in order to some X € L., , if and only if

Ym,n = V X k /\ X k
m<ksn msksn
converges to 0 in the L, topology as m,n — «.

Proor. The only if assertion follows from the dominated convergence theorem.
To prove the converse, observe that if the Y, . converge to 0 in the L, topology,
then by the uniform boundedness theorem, the Y., , hence the X, , are uni-
formly bounded in norm. Now assume that the X, do not converge in order.
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Then
AV X —V A Xy=Y>0.

But as n — o,
Y= V Xi— N Xip<=Yun u — a.e.,

kzm kzm
and since the Y, are uniformly bounded, the dominated convergence theorem
yields

lime,,.,,.dp > deu > 0.

Upon taking the function identically 1 in L, , the lemma follows ab contrario.
THEOREM 1. If a sequence in L. converges weakly, then it also converges in order.
Proor. According to a basic theorem of Krein and Kakutani [4] the space Lo

is isometric and lattice isomorphic to the space C(S;) of all bounded continuous

real-valued functions on a compact Hausdorff space S; . Let T denote an order
preserving isomorphism from L. to C(S;). Then if X, converges weakly to X in

L , is follows that TX, converges weakly to TX in C(.S;). But weak convergence

in C(8;) is equivalent to bounded pointwise convergence (see [2, p. 265]), hence

Ymn = Vimz<kenTXk — Am<k<a¥Xr — 0 as m, n — in the weak topology of

C(8,). Now let Y, be defined as in Lemma 1. Then since T is order preserv-

ing, ™ ¥mn = Yma = 0. But T™%,,, — 0 as m, n — « in the weak topology of

L. , hence in the L, topology, and it follows that ¥, . — 0 as m, n — c in the

L, topology. The theorem follows from Lemma 1.

CoroLLARY. For monotone sequences tn Lq

1. Convergence in norm and weak convergence coincide.

2. Convergence in order, bounded convergence in measure and convergence in the
L, topology coincide.

Proor. Let X, | 0 weakly. Then X, | O weakly, hence in order in C(S;).
By Dini’s lemma, ||TX,| — 0, hence ||X,|| — 0. It follows that if X, | X or
X. T X weakly, then || X, — X|| — 0. The second assertion is an immediate con-
sequence of Lemma 1.

Given two Banach spaces B; and B: , we let B(B; , B:) denote the Banach space
of all bounded linear operators on B; to B:, and given two vector lattices £;
and £;, we let O(£;, £2) denote the space of all order continuous linear opera-
tors on £; to £, that is, linear operators T such that I = o — lim I, implies
Tl = o — lim TI, for all sequences of I/, ¢ £ . An operator T in O(L;, £2) is
positive, denoted T = 0,if { = 0 in £, implies 77 = 0in £, .

LemMma 2. 0(@, L) € B(G, L) and O(Cy, Le) = B(Co, Le). Moreover, each
operator T € O(Cy , L) determines a unique extension to an operator Ty € O(G, L),
and | T3] = |7 A

Proor. Let T ¢ O(@, L.). The mapping (X, g) — XTg defines for each fixed
g € G a bounded linear functional on L, and for each fixed X & L; a bounded
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linear functional on @, since X7 is continuous under order convergence, hence
under convergence in norm in @. It follows from the uniform boundedness
theorem that ||T]| = sup XTg < «, where the supremum is over all g ¢ G with
llgll < 1 and all X ¢ L, with | X]|; < 1. Thus O(@, L.) € B(G, L), and in the
same way O(Cy, L,) < B(Cy, L.,) But an operator continuous in the normed
topologies of Cy and L., is also continuous in the weak topologies, and for se-
quences weak and order convergence coincide on Cy, while weak convergence
implies order convergence on L., . It follows that a bounded linear operator on
Cy to Ly is order continuous, hence O(Cy, L,) = B(Cy, L). The last assertions
follow sinee @ is the closure of its subspace Cy under order passages to the limit
by sequences, and the lemma is proved.

Operators T in O(G, L) are in B(G, L,) and this subset of B(@, L) is par-
tially characterized by the adjoint operators T* in B(L% , G*).

LeMMA. 3

1. TeO(G, L) = T*L, C &. _

2. TeB(G, L), T*"Ly C®and T =2 0= T ¢ 0(G, L).

3. TeB(G, L), T*LE c®= T ¢ 0(G, Ly).

Proor. Let T ¢ O(G, L) . Then for every X ¢ L, , the functional T*X = XT
on G is order continuous, hence in . To prove the second assertion, observe
that since T = 0 it suffices to show that g, | 0 in order implies T'g, — 0 in order.
But g, | 0 implies T'g, is monotone nonincreasing in L. , and for every X ¢ L, ,
XTg, = (T*X)g, — 0 since T*X is in ®. The Corollary to Theorem 1 implies
that T'g, — 0 in order. Finally, the hypothesis in 3 implies that, if g, — 0 in
order, then Tg, — O weakly, hence by Theorem 1, Tg, — 0 in order, and the
lemma is proved.

Hereafter we will be concerned exclusively with operators in O(G, L) and the
restrictions of these operators to various subspaces of G. A number of notions of
convergence in O(@, L) are available corresponding to selection of various sub-
spaces of G and convergences in L, . Thus for any subset Gy C G we will say that
a sequence of operators T, € O(G, L.) converges Gy strongly (weakly; in order;
boundedly in measure; in the Ly topology) to an operator T ¢ O(G, L.), denoted
T,—T Go, s(Gy, w; Gy, 0; Go, b — u; Gy, L), if, for every g ¢ Gy,
T.g — Tg in norm (weakly, in order, boundedly in measure, in the L; topology).
Of course, for a given G, the five types of convergence are simply related:

T,—>T Gy,s=T,—>T G, w=>T,—>T Gy, o
=>T.,,—)'T, Go,b—u=>Tn—)'T Go,Ll.

The convergence T, — T Gy, b — u is clearly equivalent to sup || Tng|| < «
and || T»g— Tg|l: — O for every g € Gy, and is also equivalent to sup || T.g|| < «,
and [4T,.g du — [4Tg du uniformly in A ¢ 8 for each g € Gy . On the other hand
the convergence T, = T Gy, L, isequivalenttosup ||[Tag| < « and [4Tng du
— [4 Tg duforeach g e Goand A ¢ 8

Considering the operators restricted to Cy , the convergence 7', — T' Co, Ly
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corresponds to the topology of 0(Co , L) obtained from the base
N(To:4,B,¢) = {T: |XTg — XTog| < ¢,gc 4, X ¢ B},

where Ty ¢ O(Cy, L), 4 is a finite subset of Cy, B is a finite subset of L, and
€ > 0. This topology will be called simply the L, topology of O(Cy, L.). Let Q
denote the closed unit sphere in O(Co , L) = B(Cy, L) in the normed topology.

Lemma 4. Q s closed in the Ly topology of O(Co, Lw). For, if [|T|| > 1, then
there exist g ¢ Co with [lg]| < 1 and X ¢ L, with the L; norm, [|[X|; < 1, such
that [XTg| = 6 > 1. But then N(T: {g}, {X}, 6 — 1) isdisjoint from @, and the
lemma follows.

The next proposition is a variation on Alaoglu’s theorem.

THEOREM 2. @ is compact tn the Ly topology of O(Cy, Le).

Proor. Furnish B =]], . L& with the product topology obtained by giving
each LY = L. the L, topology. Then the mapping 7: T —] ], « ¢,Tgis a homeo-
morphism of O(Cy , L.) with the L, topology onto a subset of P with its relative
topology. By Lemma 4, 7Q is closed. But for every g ¢ Cy, pry7Q is bounded by
[lg]l, hence the closure of this set is compact by Alaoglu’s theorem. By Tychonoff’s
theorem ], ¢ ¢, (pry7Q) is compact, hence the closed subset Q is compact, and
the theorem is proved. ‘

CoroLLARY. 4 subset of O(Co , L) vs compact in the L, topology, if and only
if it is closed in the L, topology and bounded in the normed topology.

We let A; denote the functional on G defined by A = g(a), g ¢ G, and we
say that an operator T on G to L., is a simple operator if for some finite number n

T = D o1 Xils, where Xy, -++ , X € Lo .

Lemma 5. Every T € O(@, Ly) s the C, o limit and the Cy , s limit of a sequence of
simple operators.

Proor. Let

1—fnz—k for (k—1)/nszs (k+1)/n
0 for |¢ — (k/n)| = (1/n),
and given T ¢ O(G, L), set T, = Zi‘:_,,zThnk-Ak,,, . Then

iz Thax-g(k/n) = Tkniznzg(k/n)hnk.

=—n

hnk (x) = .

T.g =
E

Butif g e C then g = 0 — lim Z;’c’:_nz g(k/n)hn , and if g € C, then the order
limit becomes a limit in norm. The lemma follows from the order continuity
and boundedness of T'. .

For functions £ on R to G (or to L,) we introduce the order Riemann integral
on [a, b], denoted [ £(z) dx, and defined to be the order limit of the usual Rie-
mann sums, provided this limit exists in G (or in L,). It is easily seen that the
integral does exist whenever £ is order continuous in G (or in L) on the interval
[a, b].

LemMa 6. If T ¢ O(G, L) and g. € G and is order continuous in o on [a, b],
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then Tg. is order continuous and

b b
Tf gada=f Tg. de.

Proor. The first assertion follows from the order continuity of 7. Then
J2 gada and [ Tg, da exist, and, setting ome = a + k(b — a)/n,

b n
ngada=T0_limb azg“nk
a k=1

n

n b

0o—1m 2= 1, = [ Tg. do.
n k=1 a

The lemma is proved.

One of the most useful tools for studying laws of random variables is the
distribution function. This method of representation of conditional distributions
seems less natural, but appears as a direct generalization of the unconditional
case.

A function { on the real line to L(S, 8, ) having the properties

1. ¢ is left order continuous: z Ty = ¢(x) — ¢(y) in order,

2. ¢l = supx & 2y, 1x1; < 1 Total variation X¢ < o,

will be called an (S, 8, u) generalized distribution function ((S, 8, u) g.d.f.).
If (S, 8, u) is understood, then we may omit this part of the designation of ¢.
Every T ¢ O(G, L) determines a g.d.f. through the relation

$(x) = T, zekR.

The left order continuity of ¢ follows from the order continuity of 7', and the
relation

l; ,X(f(ak) - g'(ak—l))l = XT ]; skl(uk,ak_lb

where X € L;, sy = +1 or —1 according as X({(az) — ¢(ar1)) = 0or < 0
and we take a0 < a; < -+ < @, , implies that ||[¢|| = ||T] = .

On the other hand, for every g.d.f. ¢ a Stieltje’s integral [ g d¢ can be defined
in the usual way, the integral existing as an order limit in L., for every g ¢ C.
The mapping 7 of C into L. determined by Tg = [ gd¢ is linear and order
continuous, and ||T|| = |¢||. Thus there is a natural correspondence between
order continuous operators and g.d.f.’s. These results are in [5] for order con-
tinuous 7' on C|0, 1] to L., and require only slight modification for our situation.

Setting ¢ = ¢+ — ¢, where

£ =V 2 (0 — tla),

the supremum over alln, a; < b; < +++ < an < b, < z, it follows that ¢+ and
¢~ are nondecreasing g.d.f.’s with max ([|¢]], [£7]) = ||¢]|. Thus we have
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TrEOREM 3. The relation Tg= [ g d¢, g € C, establishes a one to one correspond-
ence between order continuous operators T and g.df.’s ¢, and |T|| =|¢||. More-
over, T hasthedecomposition T = TT — T~ whereT*g = [gd¢T and T g = [ gd¢~
are positive order continuous operators with max (|77, |T7]) < ||T|.

The g.d.f. yields a representation of order continuous operators on C but not
- directly on G. However, any T &€ O(@, L) defines a set function M/ on the Borel
sets to Lo by MB = TI, and M is additive and order continuous: B, | ¢
implies MB, — 0 in order. An integral can be defined in a natural way on G
with values in L, using the set function M, and a representation of 7 results.
The theory of integration in abstract lattice spaces is developed by McShane [8].

Upon replacing any function space over the real scalar field by the corresponding
space over the complex scalar field, we add a dagger to the symbol denoting that
space, thus G, L., , G are replaced by G, LY, G}, ete. An operator T £ O(G, L)
has a natural extension to an operator on Gf to LL given by the relation Ty =
T®(g) + +T9(g), g ¢ G'. We use the same notation for this extension of T and
note that (bars denoting complex conjugates) )

Tg = (Tg), |Tgl < T"lgl + T lgl.

Another convenient representation of operators in O(@, L) is in terms of
their Fourier transforms. We define the (S, 8, u) generalized characteristic func-
tion ((S, 8, u) g.chf.) of T, denoted T, through the relation T'(u) = Tg,, — =
< u < o, where g,(z) = ™. If (S, 8, u) is understood, then we may omit

this part of the designation of 7. )
Note that, if T is the g.ch.f. of T £ O(G, L) with ||T| = ¢, then T has the

properties
1. T is order continuous,
2. T(—u) = T(w),

3. 122 axT(w) o < el 22 arguall,
for every finite set of numbers a; and u; (where, as always, g.(z) = €**). In
particular, || T(u) ||l < ||T| for all u, and if T = 0 then [|7(0) || = || T1]|» = || T
It would be interesting to know if the above three properties characterize order
continuous operators.

The closure of the linear subspace generated by {g., —© < u < «} in the
order topology is the class of all bounded measurable complex-valued functions,
hence there is a one-to-one correspondence between T and 7. On Cy we obtain
a more explicit representation of T’ through the inversion formula.

THEOREM 4. For g € Cy,

” Tg — 51;[: T(u) fe"’“‘g(x) dx

—0

as v — o,

Proo¥. Applying the definition of 7' and Lemma 6,
L T(u) du f e“*g(z) de = Th,,

27 —
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where, by Fubini’s theorem and elementary computations,

h”(y) — if eiuydufeiuzg(x) dr = fg(y + E)?ﬂfdz.
27 J—y v) w2
Since g ¢ Cy is uniformly continuous, ||k, — g|| — 0 as v — «, and the theorem
follows since T is order continuous, hence bounded.

2. Convergence of order continuous operators. Using the g.d.f. and g.ch.f. we
can obtain conditions for various types of convergence of the corresponding
operators. ’

Associated with every g.d.f. { is a function of bounded variation, F, given by
F(z) = [¢(x) du. We say that a sequence of 'g.d.f.’s {, converge strongly
(weakly; in order; boundedly in neasure; in the L; topology) to a g.d.f. ¢, denoted
tn > ¢ s(w; 0; b — u; Ly), if for every pair z, y of continuity points of F,

in norm (weakly; in order; boundedly in measure; in the L, topology). The
generalization of the Helley-Bray theorem is then

THEOREM 5. Let {u, ¢ be, respectively, the g.df.’s of T, T ¢ O(G, Ly). Then

1Ltn—>¢ swsob— L) =T >T  Co,s(w;0;b— u; Ly). If,
in addition, [ dg, — [ d¢ s(w; 0; b — u; Ly), then Cy 1s to be replaced by C.
in the above implication. :

2. If the T, are positive, then ¢, — ¢ ob — ;L) T, > T Co,
o(b — w; Ly). If, in addition [ d¢, — [ df o(b — u; L), then Cy is to be re-
placed by C in the above implication.

Proor.

1. The function F(z) = [ ¢ du is of bounded variation, hence has at most a
countable number of discontinuities. Then the first assertion is immediate since
it is possible to approximate functions g ¢ Cy uniformly by step functions On
that are identically 0 outside compact sets K, and that have no discontinuities
at the discontinuity points of F. The second assertion then follows since functions
in C,, can be decomposed into the sum of a constant function and a function in
Co.

2. To prove the first assertion in 2, observe that if 7, = 0Oand T, —» T Cy, L,
then necessarily 7 = 0 and ¢ is nondecreasing. But { is continuous in the L, top-
ology at continuity points of F, hence, by the Corollary to-Theorem 1, { is
also continuous in order at these points. For ¢ > 0 let

;1 for y <z — ¢
haoe(y) = {(z —y)/e for z—e=y=a,
10 for y =z,

and, given z, y continuity points of F with z < y, let d. = hyte,e — hs, and
de = hye — bopee T —T Co, s(w; 0; b — w; Ly), then

TdeTodi £ ta(y) — tn(z) £ Tode — Td.
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in the given mode of convergence asn — ». But T'd. < ¢(y) — ¢(z) < Td.,
and y and z are order continuity points of {, hence, by letting ¢ — 0 it follows
that ¢, — ¢ in the given mode of convergence.

Using the second assertion in part 1, the second assertion in part 2 can be
proven by showing that, if 7, = 0 and T, — T on C, , then T, — T on C in
the given mode of convergence. But T = 0 so ||T|| = ||T1]|« . Now choose
hi e Coyso that 0 < h; < 1and 1 = o-lim & . Then, given g £ C, Tghy, — Tghi as n
— o for each k and

[Tog(1 — k)| < llglTw(1 — Ba) — [lgllT(1 — Ra)

in the given mode of convergence. The assertion follows by letting ¥ — o« since
T is order continuous so T'(1 — k) — 0 in order. The theorem is proved.
Given & € Cly , we define a functional ho(+) on CT by

hog = f h(zx)g(x) dz, g eCt,

and for order continuous functions £ on R to L) we define o ¢ through the
order integral ho £ = [ h(z)&(z) dx.

For some purposes the g.ch.f. T is not sufficiently smooth, but this difficulty
is avoided by regarding T as a functional on Cy defined by T'(h) = ho T, h e Cy .
When confronted with this problem, a more traditional approach in probability
theory is to introduce the integral characteristic function (see Loéve [7, p. 189]).
We may mention that this latter approach will work just as well here, but we
choose the former method because it seems less artificial.

To each h & '}y we correspond the Fourier transform 7 given by

h(u) = hog, = fh(x)ei“’ dz,

and we let H = {A: h & Cly}. The next lemma verifies that the family H is rich
enough for our purposes.

LemMA 7. The closure of H in the normed topology is C} .

Proor. Since H C C} and the closure of C}, in the normed topology is C} ,
it suffices to show that C}, is contained in the closure of H.

Given g ¢ Clo , set

‘1 for |z|] = n
falx) =<n*+1—mn-lz] for n<|z|<n+1/n
10 for || =2n+1/n

and set g.(z) = §(—2z)fa(x)/2mw. Then g, ¢ Clo and

= gl/n.

~ 1 " ~ TUT
gn(u) — ﬂ[n §g(—z) e dx
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But, upon replacing § by its definition, it follows by elementary computation
that

517; _ng(—x) e dr = fg(u + i)SI:Zd
Singe ¢ is uniformly continuous, it follows that [|§. — g|| — 0, and the lemma is
proved.

In the following theorems we denote the convergence in L, of X, to X
in norm (weakly; in order; boundedly in measure; in the L, topology) by
X, —X s(w; 0; b — w, Ly).

TaEOREM 6. Let T, , T &€ O(G, Ls). Then

1.7,-T Co,s(w;o;b—u;Ll)=>hoT,.—->h0T s(w;0; b — u; Ly) for
every h & Cly and sup, || T.| < .

2. hoT,—> X,  s(w;0;b— p; L) for every b & Cho and sup,||T,|| < « =
T, >V Co,s(w;o;b—u,Ll)forsomeVé:O(G Le) and X = ho ¥,
h ¢ Czo .

ProOF. As usual, g,(z) = ¢™. The first assertion follows from Lemma 6 since

hot, = fh(u)Tngudu ——-’T,.fh(u) gudu = Toh

and £ ¢ C}. And sup ||T..|| < « by the uniform boundedness theorem.

The hypothesis in 2 then states that T, h — X, for every h ¢ Cho .
Since sup ||T,|| < «, Lemma?7 implies that T',g — Vg for every g ¢ C} and some
linear operator ¥V on Co to LL, in the given mode of convergence. In particular,
T.g — Vg in the L, topology for every g & Co. It then follows by Theorem 2
that the restriction of V to Cy is in O(Cy, Le). Finally, since V is order con-
tinuous, h o ¥ = VA = X, and the theorem is proved.

The generalization of the continuity theorem of P. Lévy becomes

TarorEM 7. Let T, , T ¢ O(G, Ly). Then

1. T,—->T AP, , s(w; 0;b—w; L) =T, - T s(w; 0; b — p; Ly).

2. T, > ¢ s(o; b — u; L) with £ continuous in the L, topology and
sup [T < © = T, >V AP, s(0; b — u; L) for some V & O(G, L),
and £ = V.

3. T. >t s(o;b — u; L) with £ continuous at 0 in the Ly topology and
sup ||[Tal| < © =T, —V  Cw,s(o;b — u; L) for some V e O(G, Lx), and
£0) = V(0). )

4. If the T, are positive, then T, — & o(b — u; Ly) with & continuous at 0
mn thele topology = T, = V C, o(b — u; Ly) for some V ¢ O(G, L), and
£ =

Proor.

1. The first assertion is immediate since the continuous functions g, are

periodic, hence in AP}, .
2. To prove the second assertion observe that if T, — & strongly then for
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every h ¢ Cy ,

< [ 1@ ]| Tu(2) = &) || ds—0,

” [ 1) (Tu(@) - &)

hence h o T\, — h o ¢ in norm. If T, — & in order, then

[a(y, )

[au [ v 17e) = t60) |- 1) do

[ (1u@) = &e))htz) do

IA

= [1h@lde [ V1 T@) - @)l du—o.

It follows by Lemma 1 that \/xzslh o (Tx — £)| — 0 in order, hence ho T\, — h o £
in order. Similar arguments establish that T, — ¢ b — u(L,) entails ho T, —
hot b — u(ILy) for all h £ Cy . It follows by Theorem 6 that T, — V on
C, in the given mode of convergence for some V ¢ O(@, L) and that ho V = h o &
for every h € Cop .

Now let

n(l — |n(z — w)|) for |z —u| = 1/n

ha(z) =
for |z —u| = 1/n.

Then for every X & L; , applying Fubini’s theorem,
Xt(u) = lim hy o X¢ = lim Xk, 0 & = lim Xh, o V
= lim hy, 0o XV = XV ().

It follows that £(u) = V(w) in L., hence T,g. — Vg, in the given mode of
convergence for all u. Now if f ¢ AP, , then for every ¢ > 0 there exists a con-
tinuous periodic function, f. , and a function in Cy, fc, such that [f — (fc +
Ol £ e But f. is the uniform limit of finite linear combinations of the g,’s,
hence T,(f. + fi) — V(fo + f.). Since sup || T|| < =, it follows by letting
e — 0 that T,.f — Vf in the given mode of convergence.

3. Under the hypothesis in 3, it follows by arguments analogous to those
given in part 2 of the proof that & o T\, — h o T, — 0 in the given mode of con-
vergence as m, n — . Then Theorem 6 again applies and for some V ¢ O(G, Lx),
T, — V on Cy in the given mode of convergence, and arguing as in 2, V(0) = £(0),
hence T,1 — V1 in the given mode of convergence, and the assertion about C,

follows.
4. The assertions in 4 follow by 3 and Theorem 5, and the theorem is proved.

3. Convolutions. A multiplication is introduced in O(G, L) by the convolution
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operation. Given two simple operators
T =2 XAy, U= 2 Yty
=1 k=1
we define the convolution of T and U to be

T*U= 2,2 X;¥ilaj1s, -
j=1 k=1

It follows immediately that the g.ch.f. of T » U, T ¥ U = TU, and it is easily
verified that ||T * U|| < ||T||-||U||. Then given any operators T, U & O(@, L),
we can choose sequences of simple operators T, and U, as in Lemma 5 so that
T,—>Tand U,—» U  C,o0and Co, s and with ||T.]| = ||T|, U]l = ||U].
But then T, ¥ U, = T,U, — TU inorder, T'U is order continuousand || T,, * U,|| <
ITI-1U]l. It follows by Theorem 7 that T'T is the g.ch.f. of some operator in
O(@G, L) . We then define the convolution of any two operators T, U ¢ O(G, L.,)
to be the operator T x U determined by the g.ch.f. TT. To simplify notation we
will write TU for T *+ U whenever convenient. Note that, using the sequence of
simple operators we have constructed, 7,,U, — TU AP, 0and Cy, s upon
applying Theorems 6 and 7. Also, the convolution of positive simple operators is
positive, and it follows that the convolution of arbitrary positive operators is
positive.

The foregoing discussion yields immediately

TurorEM 8. Convolution is an associative and commutative operation, and the
space O(@, Ly) is an algebra under the convolution multiplication and has the
multiplicative unit I = 1. Ay, where 1 denotes the unit function in L. . The sub-
space of positive operators is invariant under convolution. Moreover, convolution is
related to the norm through the inequality ||TU| < ||T|[-||U]||-

Corresponding to each g € G is a reflected function g’ defined by ¢'(z) = g(—=x).
Then given T ¢ O(G, L), we define the reflected operator T" of T by T'g = T¢'.
An operator T will be called symmetric if T = T’, and given any operator
T ¢ O(G, L), we define the symmetrized operator T® of T by T* = T % T". One
readily verifies that an operator is symmetric if and only if its g.ch.f. is real.
In particular, the symmetrized operator T* is symmetric and has g.ch.f. |T|*.

A positive operator T will be said to be ¢nfinitely divisible if for every integer
n = 1 there exists a positive T, ¢ O(@, L) such that T, = T.

LemMa 8. The class of infinitely divisible operators is closed under convolutions,
and, if operators T, are infinitely divisible and T\, — T Cwo,b — u(a fortiort,
in any stronger sense), then T' is infinitely divisible.

Proor. The first assertion is immediate since the convolution of positive
operators is positive. If T, — T Co,b—u,thenT, > T C,b— uhy
Theorem 5 since the T', are positive, hence T, — T b — u. For every integer
m = 1, TH/™ is the g.ch.f. of a positive operator Ty, With || Tl < ||TH|Y™ =
| T.1]|¥™ and, by hypothesis these norms are uniformly bounded. Moreover
Tum— T'™ b — p, and 7Y™ is order continuous, hence is a g.ch.f. of an
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operator V,, . But then T, = Vo C, b — pand the T, are positive, hence
V. is positive, and the lemma is proved.
Note that Lemma 8 is not true if Cw, , b — u is replaced ll)y C, L, . For example,
on—12;

let (8, 8, u) bethe Lebesgue interval [0, 1], let 4, = UiZ, ' [2k/2", (2k + 1)/2"]
and define T, by

Tog = g(1)1a, + 9(0)L4s.
Then T, = 0, and setting
Tomg = g(1/m) 14, + g(0)Lag

we have that T, = 0 and T, = Th... It follows that the T, are infinitely
divisible. Moreover, T', — T C, L, given by

Tg = 3(g(1) + ¢(0)).

Thus T has g.ch.f. corresponding to the characteristic function of the binomial
distribution and is not infinitely divisible.

Furthermore, the convergences T, — T C,L,,V,—>V C, L, do not
imply that 7, * V, = T * V in any sense. In fact, let T,, = V, be defined as in
the above example. Then ‘

Tox Vg = Thg = g(2) 1, + g(0) Lz — 3(g(2) + 9(0))
in the L, topology for all g € C, but
Tx Vg =Tyq = 1(g(2) + 29(1) + g(0)).

4. Probabilistic representation of order continuous operators. The operators
we have been studying are closely connected to conditional probability distri-
butions. Thus let (2, @, P) be a probability space and @* be a sub-o-field of Q.
‘Then every random variable X on (Q, @, P) to the Borel line induces an operator
Tx on G to L.(Q, @*, P) through the relation Txg = E(g(X) | @*), or, equiva-
lently, T'xg is the @* measurable function determined by

fog=ifg(X), Aea™.
4 uS Ja

We then call Ty the @* conditional distribution or @* conditional operator of X.
‘The operator T'x is order continuous (see Loéve [7, p. 348]), hence in O(G,
L.(2, @*% P)). Moreover, Tx is positive and Tx1 = 1.

Let O2(G, Lo(8, 8, 1)) denote the subspace of O(G, L.(S, 8, r)) of all positive
operators T with T'1 = 1, and, given the probability space (2, @, P) with sub-o-
field @*, let O(@*) denote the subspace of O(@G, L.(2, @* P)) of all @* condi-
tional operators of random variables.

THEOREM 9. Let (S, 8, u)) be a finite positive measure space. Then there is a
probability space (2, @, P) and a sub-o-field @* of @ such that Op(G, Lw(S, 8, 1))
is homeomorphic to O(Q*) in the relative normed topologies of these spaces.
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Proor. Let (2, @ P) be the product measure space with the coordinate
spaces (S, 8, u) and the Lebesgue interval [0, 1/uS], and let @* be the sub-o-
field of cylinders with base in 8. Given T & Op(G, Lo(8, S, 1)), define a function
¢£on R to L.,(Q, @* P) by

f £(z) d =—18 f TT(u da, Aes.
e(4) 4 A

where @(A) denotes the cylinder in @ with base 4. Then £ is a nondecreasing
g.d.f. with lim,,_.£(z) = 0 and lim,..£(x) = 1.

But then £ has the properties of a conditional probability distribution func-
tion, and proceeding as in [7, pp. 361-362], we can find a regular conditional
distribution function 5(z, »). That is, » on R X € to [0, 1] is a distribution func-
tion in z for each fixed w ¢ @, and, for each fixed z ¢ R, 5(z, ) is @* measurable
and in the equivalence class of £(x). Since 5 is @* measurable for each z, we
can consider it to be a function on B X 8. Then we define a random variable
Xron (Q, @, P) by setting [Xr < z], = [0, n(x, s)/uS] forallz ¢ R, s ¢ S, where
[Xr < z], denotes the section at s of the inverse image under X of the interval
(— o, ). We then define the mapping = of Or(G, Lo(S, 8, 1)) into O(@*):
T — Tx where Tx is the @* conditional distribution of X7 . Then

/ TxgdP=f g(XT)dP=—1—ngdu, AeS,geG
e(4) e(4) S Ja

and every random variable X on (@, @, P) determines an operator in
05(@, Lo(8, 8, u)) through this same relation. We obtain that r is a homeomor-
phism, and the theorem is proved.

With the above result it follows readily that any order continuous operator 7
can be represented in the form T = Z,Tx, — Z:Tx,, where Ty, and Tx, are
@* conditional operators of random variables and Z; and Z, are nonnegative
@* measurable random variables. Moreover, operators of this more general
type may be useful in probability theory. For example, in Section 5 use is made
of operators that are the differences of two conditional probability operators.

If random variables X and Y, with @* conditional operators T and U, re-
spectively, are conditionally independent given @*, then

* (X +Y * X et Y
E¥e™H = EYeME. Y™ as.

for all . Thus, if V is the @* conditional operator of X + Y, then V = TU,
hence V = T = U. Moreover, given operators T, U ¢ Op(@G, Lo(S, 8, u)), it is
possible to modify the probability space constructed in Theorem 9 so that T
and U are the conditional operators of random variables X and Y, respectively,
where X and Y are conditionally independent given G*. Then it follows that
T x U is the conditional operator of X + Y. To summarize, convolution of @*
conditional operators of random variables corresponds to addition of @* conditionally
independent random variables.
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b. Application to a mixing problem—central structure. In this section the basic
frame of reference will be a probability space (2, @, P) together with a sub-o-
field @ of @ and a group of measure preserving set translations A; on @ (that
is, Asy: = AsA;, Ao is the identity, and for each ¢, A; maps @ into @, commutes
with countable set operations, A2 = @ and PA:A = PA, A ¢ @), where either
¢ takes all real values (continuous case) or ¢ = 0, £1, £2, - -- (discrete case).
Intuitively, @ represents the events observable at time 0, and @; = A;Q, repre-
sents the events observable at time ¢. We let ®; and &, denote the o-fields gen-
erated by U,<:@, and U@, , respectively. We will call ®; and &, the o-fields
of past and future at time i, respectively, and let 3-'= N @, and 3, = N3,
denote, respectively, the tail o-fields of past and future. An event A4 is invariant
if A;A = A for all ¢, and we let @ denote the o-field of invariant events. Finally,
we let D, denote the sub-s-field of ®; generated by the events

{[P®4 < a, Ac¥,, —w < g < 4o},

Thus, D, is the smallest o-field for which the conditional probabilities P®:4
are measurable for all 4 ¢ F,, and we call D; the o-field of dependence at time ¢.

The set translations A, extend to the class of all random variables X on
(2, @, P) through the relation [A.X ¢ B] = A{X & B] for all Borel sets B. We
assume throughout this section that the random functions A,X, —o < t < w,
are measurable in the continuous case, and for ¢ % 0 we set

1 t
K,X=t—f A, X ds
0

whenever the integral exists (in particular, the integral will exist if X is bounded).
In the discrete case we set

- 1 :
LX= S ; AX
for the integer-valued ¢ = 0.

Let Y, , Y, Z, be random variables on (2, @, P) with @* conditional operators
T., T, U,, respectively, for some sub-o-field @* of @. Then we say that the
@* conditional law of Y, converges to the @* conditional law of Y, denoted
(Y, - £¥(Y),if T,—>T C,b— P (note that b — x becomes b — P
since the range of T', is now L.(Q, @*, P)). Since the T, are positive, an equiva-
lent condition is that T, —» T Cs, b — P. We say that the @*-conditional
laws of Y, and Z, are asymptotically equivalent, denoted £%*(Y,) ~ £%*(Z,),
f7T,—U,—0 Cw,b — P,or, equivalently, if T, — U, — 0 Co,b— P,
since 7,1 = U,1 = 1.

The law of a random variable ¥ will be said to be @* infinitely divisible if the
@* conditional operator of ¥ is infinitely divisible.

Note that, if €*'(Y,) — £¥(Y) and £¥(¥,) ~ £%(Z,), then U, — T
Cw ,b — P and the U, are positive, hence U, - T  C,b — P,and £*'(Z,) —
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£¥(Y). In particular, if the Z, have @* infinitely divisible laws, then by Lemma
10, Y has an @ infinitely divisible law.

For sequences of random variables that are asymptotically invariant in a
weak sense, @ conditional limit laws reduce to @ conditional limit laws pro-
vided @* D €.

LemMa 9. If a sequence of uniformly bounded random variables Y, satisfy
AY, — Y, — 0 in probability for every fived t as n — =, then for every integrable:
Z,

EY,Z — EY,.E*Z — 0.
Proor. Since the Y, are uniformly bounded, the ergodic theorem yields
sup, EY,.(AZ — E°Z) — 0
as t — «. By the dominated convergence theorem
EY, (Z — AZ) = EZ(Y, — A_Y,) =0
as n — o for each fixed s, hence EY,(Z — A;Z) — 0, and
EY,Z — EY,E*Z = EY.(Z — MZ) + EY,(AZ — E°Z) — 0

as n — o and then { — . The lemma is proved.

TuroreEM 10. Let Y, , Y be random variables with @* conditional operators.
T., T, respectively, and @ conditional operators U, , U, respectively, where the
o-field @* > ea.s., and let A,Y, — Y, — 0 in probability for every fized t asn — .
Then T,g — Tgq in the L, topology of L.(%, Q% P),geC, tmplies that Tq is in-
variant and Tg = Ug a.s. Moreover, U,g — Ug in the L, topology of Lo(Q, @, P).
In particular, if £2(Y,) — £¥(Y), then £2(¥) = £%(Y) and £4(Y,) — £5(Y).

Proov. For g ¢ C, the hypothesis implies that A,g(Y,) — g(¥,) = g(A.Y,) —
g(Y,) — 0 in probability for each fixed ¢t as n — . Then if 7,9 — Tg in the
L, topology and Z is integrable and @* measurable, Lemma 9 yields

E(ZE“¢(Y)) = lim E(ZE*g(Y.,)) = lim E(¢(Y,)Z)
= lim E(g(Y,)E°Z) = lim E(E°Z-E¥¢(Y,)) = E(E°Z-E¥¢(Y)).
Hence
E(E“g(Y) — E(Y))Z = E{(E*g(Y) — E%(Y))E°Z}
= E{E°Z-E°(Eg(Y) — E%(Y))} = 0.

It follows that E*'g(Y) = E°(Y) a.s. The assertions in the theorem are then

immediate.
We say that X is an additive random function (of intervals) if for every s < ¢,

X (s, t) is a random variable and if for every s < ¢ < u,
X(s,t) + X(t,u) = X(s,u).

An additive random function is structure preserving on (2, @, @, , P) if for every
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s < t and every u,

1. X(s, t) is measurable on ®; N &, ,

2. X(s+u, t+u = AX(s, 1),
and we let & denote the class of all structure preserving additive random func-
tions. As examples of random functions in X we may take X, measurable on
® N Fo and set

t
X(s,t) = f A Xo du or X(s,t) = D AxXo
s s<k<t
in the continuous and discrete cases, respectively.
We say that a sequence of random functions X, & & are uniformly asymptoti-
cally locally negligible (u.a.ln.) if for every ¢ > 0 and every finite { > 0,

SUPo<t—s <1 P[,Xn(sy t), = G] -0

asn — o,

Logve [7, pp. 378-383], has introduced the weighted limit problem, that is,
the problem of finding conditions under which the @* conditional laws of a
sequence of random variables converge to some type of weighted law. As a
natural extension of the central limit problem, we may ask when @* conditional
limit laws of sequences X, (s, , £,) of u.a.l.n. random functions X, ¢ & are @*
infinitely divisible. But u.a.l.n. random functions X, ¢ & satisfy the condition

AtXn(sn ) tn) - Xn('gn ) tn) - 0

in probability for each fixed ¢ as n — « however the sequences s, < ¢, of numbers
are chosen. It follows from Theorem 10 that we can reduce @* to @ whenever
@* D e as., and it is easily seen that the @* infinitely divisible property of
limit laws mentioned above cannot hold unless @* D € a.s. Thus we confine
our attention to the invariant o-field. We say that (Q, @, @, P) has central
structure if, for every sequence of u.a.l.n. random functions X, ¢ % and numbers
sp <t , letting T', denote the C-conditional operator of X, (s, , t.), there exists a
sequence of infinitely divisible operators U, with range in L.(Q, @, P) such that

T, —-U.—0 Co,b—P.

Clearly, if (2, @, Qo, P) has central structure and £°(X,(s,, t,)) — £° for
u.a.l.n. random functions X, ¢ % and some @-conditional law, then £¢ is @-infi-
nitely divisible. In particular, if the structure is ergodic (€ = {Q, ¢} a.s.), then
the conditional laws become unconditioned laws and the limits become infinitely
divisible.

We will study conditions for central structure in the remainder of this sec-
tion and will show that central structure is closely related to a kind of mixing:

let
d(P, @, 1) = supas, B |[E®KJ, — P°A|.
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The quantity d(P, @, t) measures the rate of mixing within the ergodic sets
and we say that (Q, @, @, P) is uniformly ergodic on € if d(P, @Q,t) > 0as
{t— .

We have introduced a stochastic structure in this section depending on the
four elements (2, @, @, P) and the group of set translations A; . If the o-field
@ is replaced by any other sub-o-field @* of @, then a related but different
structure is obtained. Note that, if @* D @,, then the past and future o-field
induced by @* will be at least as large as the past and future o-fields induced by
Qo , hence d(P, @*, ) = d(P, G, t). We will be particularly interested in the
structures obtained by replacing @ by D, or ®; N F_; . To avoid confusion, the
symbols ®: and T, will always refer to the past and future o-fields induced by Gy .

LemMmA 10. Let Y, Z be real- or complex-valued random variables measurable
on @, F: , respectively, and let |Y| < 1, |Z] < 1. Then for 1 > 0,

E |[E°YAZ — E°YE®Z| < 4d(P, G, [).

Proor. Let @’ denote the o-field generated by U@, the union over all .
and € = € M @' Then it follows (see [1], lemma 2) that €’ < ®, N &, a.s,
Moreover, for any @’ measurable function W, we have E°W = E*W a.s. The
ensuing computations are based on the smoothing properties of conditional ex-
pectations and the stationarity-relations’ valid for any two bounded random
variables Wy, Wy ,EW1A,\Wy = EW,A_ W, .

Assume first that Z is real-valued and let A = [E®A,Z — E°Z = 0]. Then
E|E°YMNZ — E°YEZ| = E |E¥Y(E®'AZ — E°Z)|

< E|E%*AZ — E°Z| = 2E1.(E®’X.Z — E°Z)
= 2E(ZA_d4 — P°AE®Z) = 2EZ(E**A_d, — P°A)
< 4 supaeg, EIs(E™*R_il, — P°A) = 4 supges, BI.(E®K,I5 — P°B)
=< 2d(P, @G, 1).
The case that Z is complex then follows by applying this bound separately to

the real and complex parts of Z, and the lemma is proved.
LemmMa 11. Let X & X, and for ¢, 1 > 0 let

SUPo<t—s<1 P[IX(Sy t)l > G] = 3’
and forr < s < tlet T, U, V denote the @-conditional operators of X (r, s), X (s, t),
X (r, t), respectively. Then
E|Tg.-Ugu — Vgu| = 2(8 + |ule + 2d(P, G, 1))

where g.(z) = €™, u real. _

Proor. If [z — y| < ¢, then |gu(z) — gu(y)| = |ule. For 0 < h < I, the hy-
pothesis then implies that E|Awg.(X (s, £)) — gu(X (s, 1))| = Elgu(AsX (s, 8)) —
gu(X (s, t))| < 2(8 + |u|e), hence
E|Egu(X (1, 8)){Kigu(X (5, 8)) — gu(X(s, 1))}]

= E|E*{gu(X(r, 5)) - Kigu(X (s, 8))} — E°9u(X(r, £))| < 2(6 + |ule).
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The proof is completed by applying Lemma 10 and the definition of T, U, V.

LemMA 12. For every g € Co there exist constants a; depending only on g and k
such that a, — 0 as k — o and such that for every conditioning o-field a* and
every QF conditional operator T of a random variable Y and every k, there exists an
infinitely divisible operator U satisfying |T*9 — Ugll < a .

Proor. Let F(w, z) be a regular conditional distribution function of Y given
@*. That is, F(w, ) is a distribution function in z for each » and @*-measurable
in w for each z and F(-, z) = P¥[Y < 7] a.s. For integers 1 < m < n and
integers j, set

Jam(@) = max {j: F(w, (j/n)) = (m/n)}

and set j,0 = — o and
m/n for juom(w) <1z = Jomp(w), m=0,---,n—2,
Fo(w,z) =
1 for nzr > funa(w).

The F, are regular conditional distribution functions and we let FP, F® de-
note the kth convolution of F, , F, respectively. For any two regular conditional
distribution functions Gi(w, ) and G:(w, ), let d(G1, G2) denote the least
upper bound (as w varies) of the Paul Lévy distances between the distribution
functions Gy(w, -) and Gz(w, -) (for a discussion of Paul Lévy distance see [3]).
One easily verifies that, given g £ C, and ¢ > 0, there exists a 6 > 0 such that
d(Gy, G;) < & implies

[ o@6it0,0) — [ a1t ) | <

for all w. Now T*g is the equivalence class in L«(%, @*, P) determined
by fg(z)F* (-, dz), and it follows that to prove the lemma it will be sufficient
to show that, given e > 0, there exists a ke such that for all £ = k. and all kth
convolutions F® of regular conditional distribution functions, there exist regular
conditional distribution functions G(w, z) that are infinitely divisible for each
» and satisfying d(F®, @) < e.

But d(FY, F®) — 0 as n — «, hence we can confine our attention to regular
conditional distribution functions of the type F”. The F{ are nondecreasing
and can assume only the values j/ n*,j =0, --- ,n" and can have discontinuities
only at points that are multiples of 1/n. It follows that for any n there are only a
countable number of different distribution functions F3°(w, -) possible. Let
H:,i=1,2,3, -, be an enumeration of these possibilities.

We now appeal to a theorem of Kolmogorov [6]. According to this theorem,
there exists a constant ¢, not depending on the distribution functions H; (all
of which are kth convolutions of distribution functions), and infinitely divisible
distribution functions H; such that

sup, [Hi(z) — Hi(z)| < k",
hence the Paul Lévy distance is also bounded by /2 ck™"".
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Let G, be defined by G,(w, ) = Hi(z) for those w such that FP(w, ) =
H;,i=1,2,3, -+ .Then G, is a regular conditional distribution function and
d(FP, @) = ck™°. Moreover, the operator U mapping ¢ into the equivalence
class in L.(2, @*, P) determined by [9G.( -, dz) is infinitely divisible. The lemma,
is proved.

Lemma 13. Given 0 < a < b and ¢ > 0, there exists a 6§ > 0 such
that PIY = a] < e for every random variable Y having a symmetric infinitely di-
visible distribution and satisfying P[Y = b] < 6.

Proor. Let Z,, ---, Z, be independent and identically distributed and
D i1 Z, = Y. Then the Z; are symmetrically distributed and P[Z; = b/n] <
PY"Y = b], hence

p [maxlékén | Zx | = gjl < 2nP'"[Y = b).

Moreover, a regular version of the conditional distribution of ¥ given |Z,|, - - - ,
|Z,| is obtained by letting W, , --- , W, be independent random variables with
P[W, = =+|Z|]] = %. It follows by Chebychev’s inequality that

P[YgaHle,~~,IZ,,I]§{1—2];|Z;C|2&.S.

But then

2 2
P[Y za] = P[maxlskSankI = 9] +b— S2nPMY Z 0] + L )
="= n na? na?

and the lemma follows by selecting first » and then 6.

LemMa 14. Let Y, be random variables with infinitely divisible @™ conditional
operators T, , and let T,g — 0 b — P forsomegeCowithg = 0andg(xe) >0
and T,h — h(0) b — P for some h € C such that h(z) # h(0) for x #= 0. Then
T.—»1C,b— P.

Proor.Let Y3, denotethe symmetrization of Y,(Y5 = ¥, — Y, where Y,
is independent of Y, with the same distribution as Y,). By hypothesis, the @*
conditional distribution of Y, , hence of Y5, is infinitely divisible. Also, the
hypothesis implies that P*[|¥,,| = b] — 0 in probability for some finite b, hence
P¥[|Y%] = 2b] — 0 in probability. Applying lemma13 to the conditional distri-
bution given @* of Y7, it follows that P*'[|¥3| = a] — 0 in probability for every
a > 0. Thus Y3 — 0 in probability, and, letting m, denote the median of ¥, ,
Y, — m, — 0in probability (see Loéve [7, p. 245]). It follows that T.f — f(m,) —
0 b — P for every f ¢ C. But then g(m,) — 0 and h(m,) — h(0). The first
convergence implies that the m, are bounded, and the second then implies that
m, — 0, hence T, — I C,b — P. The lemma is proved.

The structure (2, @, @, P) is said to be Markov dependent if ®, and F, are
conditionally independent given @, or, equivalently, if Dy C @ a.s.

LemmA 15. The structure (R, @, Do, P) is always Markov dependent.

This lemma is proved in [1] for the discrete case. Using the Markov Equiv-
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alence Theorem [7, p. 565], the proof for the discrete case extends directly to
the continuous case.

THEOREM 11.

1. For any sub-o-field @y of @, if the structure (2, @, Qo , P) s uniformly ergodic
on C, then (2, @, Qo , P) has central structure.

2. Let ®; and F. denote, respectively, the past and future o-fields at time t induced
by Qo . Then for every t > 0, (Q, @, Qo , P) s uniformly ergodic on @ if and only if
(2, @, ® N F_;, P) is uniformly ergodic on C.

3. If (2, @, G, P) has central structure and is Markov dependent, then both
(Q, @, @, P) and (Q, @, Do, P) are uniformly ergodic on C, where Dy denotes the
dependence o-field of (2, @, Qo , P) at time 0.

4. The structure (Q, @, Dy, P) is uniformly ergodic on C if and only if it has
central structure, and in this case (2, @, Qo , P) s also uniformly ergodic on @,
hence has central structure.

Proor.

1. Let d(P, @, t) — Oast— . Given a sequence of u.a.l.n. random func-
tlons X, e Xands, < ¢, and a fixed integer £ > 1, set sn, = 8, + j(tn — ) /k,
Jj= , k,and let YV,; = Xu(Sn,jm1, S0j), J = 1, , k. Let T, , T,,; and
U. denote the C-conditional operators of X,(s,, t,.), Z,_l Y.. and Y,,, re-
spectively. Since X, is structure preserving, U, is also the C-conditional operator
of Y,; for all j. Given ¢, I > 0, choose n large enough so that

SUPoci—s<t Pl|Xn(s, 1) > €] < ¢
and let g, (z) = ™. Then by Lemma 11,

k
E, Tngu Ungu JZ=2E| Tn,jgu - Tn,j—lguUngul

< 2(k — 1) (e + |ule + 2d(P, @, 1)).

It follows by letting n — o and then ¢ — 0 and | — o, that T, — U — 0
boundedly in probability for each fixed k and as k = k(n) — oo sufficiently
slowly. By Theorem 7, T, — U» —0  AP.,b — P, and by Lemma 12, there
exist infinitely divisible operators V, such that Us — vV, >0 Co,b — P
ask = k(n) » . Hence T, — V,— 0 Co, b — P, and the first assertion
is proved.

2. Since Gy C @; Ng_fort> O,

d(P,®: N F_y,t) = d(P, Q,t),

and it suffices to prove that, if (Q, @, @, P) is uniformly ergodic on €, then the
same is true of (2, @, ®; N F_,, P). But the past (future) o-field at time O
of (2, @ ® N F_., P), is contained in ®¢(F_;). Thus, if 4 is in the future o-field
at time 0 of (2, @, ®: N F_,, P), then AyA is in §;, and for s > 0,
E|E®AJs — P°A| £ E|R 4 — KAsd 4| + E|E® A, A0l s — PoA|

< (2t/s) + d(P, Gy, s).
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It follows that
AP, ® N F_.,s) < (2t/s) + d(P, G, s),

and, if, as s — «, d(P, @y, s) — 0, then d(P, ®; N F_,, s) — 0.
3. Let (2, @, G0, P) be Markov dependent and not uniformly ergodic on €.
Then Dy C @ and there is a sequence of events 4, ¢ %o and numbers ¢, — o

and an ¢ > 0 such that
E|\E®R, 1., — P°4,| = e

Define random functions X, by

t
Xo(s,t) = .tl- f A(P®A, — P°A,) du

or

in the continuous and discrete cases, respectively. Clearly, the X, are additive
random functions and P[|X,(s, )| > (t.— s 4+ 1)/t,] = 0, hence the X, are
u.a.l.n. Moreover, P®°A, — P%4, = P™A4, — P°4 is measurable on ® N 5,
and it follows that the X, are structure preserving on (2, @, @, P). Now suppose
(2, @, @Qo, P) has central structure and let T, be the C-conditional operator of
X(0, t.) . Then there exist infinitely divisible operators U, such that T', — U,—0
Ce, b— P. Choose g £ Cos0 g = 0, g() > 0and g(x) = 0 forz| < 1, and
h e Cos0 h(z) = z for || <1 and h(x) 5 O for z % 0. Then T,g — 0 and
T'wh— 0, hence U,g — 0 and U,k — 0. It follows by Lemma 14 that U, — I C,
b— P,hence T, — 1 Cs,b — P (infact,C,b — P).But then, letting f ¢ C.
with f(z) = |z| for |s| < 2,
E|E®A,14, — P°A,| < ET,f — EIf = 0,

and it follows ab contrario that (2, @, @, P) does not have central structure.
Thus, central structure implies uniform ergodicity for Markov dependent
(2, @, G, P), and since Dy C @, (2, @, Do, P) is also uniformly ergodic on €.

4. The first assertion in 4 is immediate, since by Lemma 15, (2, @, D, , P) is
Markov dependent. Letting @), F, be the past and future o-fields at time 0 of
(2, @, G0, P), respectively, the following identity is valid for all 4 ¢ &, and
t>0:

E®Kid, = E™KP™4.

This relation follows easily from the measure preserving property of A, and is
discussed in [1]. Applying Lemma, 10, it follows that

E|E™X,P™A — P°D| < 4d(P, D, t),
hence d(P, Go, t) < 4d(P, Dy, t) (in fact, a slight modification of the inequali-
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ties in Lemma 10 yields d(P, G, t) < d(P, Do, t)). The last assertion follows,
and the theorem is proved.
It is well known that if (2, @, @, P) is uniformly strongly mixing, that is, if

SUD 4cw,5e59 [PAAB — PAPB| — 0

as t — «, then the past and future tail o-fields are 0 — 1, that is, equivalent to
{Q, ¢}. In the discrete time case there is an analogous connection between uniform
ergodicity and the tail o-field. We say that (Q, @, Gy, P) is uniformly ergodic if

SUpcg, B|ES°KJ4 — PA| — 0

as t — . Letting @’ denote the o-field generated by U @, , the union over all ¢,
an equivalent condition is that @ N @’ be 0 — 1 and (Q, @, @, P) be uniformly
ergodic on €. We say that a o-field is finite if it contains only a finite number of
sets.

THEOREM 12. In the discrete time case, if (2, @, Qo, P) is uniformly ergodic,
then the tail o-fields 3p and 3¢ are equivalent to finite o-fields.

Proor. Since 3 C &, for every s,

SUpacgy E|E°"A, I — PA| —0

as n — o uniformly in m. But E°"A,I, - A4 a.s. as m — oo since 3 is con-
tained in the o-field generated by U @,, . It follows that

Supesy E|A T4 — PA| — 0

as n— . Now suppose there exist sets 4,, € 3 such that 0 < PA4,, — 0. Because
of ergodicity, P Ur_;A14,, = 1 for every m, hence there exist numbers k, such
that, setting

kﬂ
B, = U4,

k=0
PB,, — %. But PB;A,B,, < n PA, — 0 as m — « for each fixed n. It follows
that E|A.ls, — PB.) — % as m — « for each fixed n. This contradiction then
establishes that there is an ¢ > 0 such that for every A ¢ 3, either P4 = ¢
or PA = 0, and it follows easily that 3 is equivalent to a finite o-field. The
assertion for 3p follows by interchanging past and future and negative and
positive time in the foregoing argument, since the hypothesis also entails

SUp ey E|E*A_.I, — PA| — 0

as n — . The theorem is proved.

The following example will serve to show that the preceding theorem is not
valid in the continuous time case: let @ be the unit circle in the plane, @ = @
be the Borel subsets of 2, P be the probability on (2, @) invariant under rota-
tions (Lebesgue measure up to a constant factor), and let A, be the rotation
through angle ¢. Then @& = ® = Fo = Jp = Ir = @, and it is easily verified
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that (@, @, G, P) is uniformly ergodic, contradicting the assertion in the theorem
for the continuous case.
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