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0. Summary. For two multivariate nonsingular normal distributions, the
familiar null hypothesis of equal dispersion matrices is considered against various
alternatives stated in terms of certain characteristic roots, and a physical in-
terpretation is given for the alternatives considered. An inference procedure,
which depends on similar regions and is based on one independent random sample
from each of the two distributions, is proposed for the null hypothesis against
each of the alternative hypotheses. Also, for three of the cases, conservative
confidence bounds are obtained on one or more parametric functions which
might be interpreted as measures of departure from the null hypothesis in the
direction of the corresponding alternative.

1. Introduction. For two nonsingular p-variate normal distributions,
Nlu:, =] and N[u: , ], we start from the familiar null hypothesis Hy: X; = X, .
The characteristic roots, all positive, of £;X;", no matter whether H, is true or
not, will be denoted by v1, v2, -+, vp . Most often, the largest and smallest
roots will be denoted respectively by vi and v, . Ho can now be stated in the form
H,: allv’s = 1. As alternatives, however, the following are considered: (i) H;: all
v's > 1; (ii) Hp:allv’s < 1; (iii) Hs: ally’s > lorally’s < 1; (iv) Hy: at
least oney > 1; (v) Hs : at least one v < 1; (vi) He : at least oney > 1 and at
least one vy < 1; (vil) Hy : at least one v > 1 or < 1. It may be noted that (iii)
is the union of (i) and (ii), (vi) is the intersection of (iv) and (v), (vii) is the
union of (iv) and (v), and (vi), taken together with equality with 1 in both in-
equalities, is the complement of (iii). Also, while each of the alternatives forms
a mutually exclusive pair with Ho , only (vii) is the complement of Hy , and it is
only (vii) that has attracted attention heretofore [2, 5, 11]. The relations in
logical structure between the various alternatives may be useful in understanding
the forms of the inference procedures proposed in Section 2 of this paper for H,
against each of the alternatives. Section 3 discusses some conservative confidence
bounds of varying degrees of appropriateness. For the first three cases, the con-
servative confidence bounds are on parametric functions which are natural
measures of departure from H, in the direction of the alternative hypothesis in
question. Section 4 consists of some concluding remarks.

We consider one possible physical meaning of the alternatives considered in
this paper. If x;(p X 1) is p-variate nonsingular N[u:, Zi, (z = 1, 2), and
the components (variates) of x; are physically of the same nature as those of x;
(for example, the first element in both is amount of steel produced, the second
element is total farm produce, etc.), then, if a’ = (a1, a2, - - - , a,) is a vector of
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nonstochastic utilitarian “weights” that go with the p variates, the linear func-
tions a’x; , and a’x, are of utilitarian interest. It is well known that a’x; is uni-
variate N(a'u;, a’®a), (+ = 1, 2). If a’ were known then a direct comparison
of a’x; and a’x,, for observed values of x; and X, , using the usual univariate
techniques would be quite appropriate. Thus, for instance, one may be interested
in the difference between the means a’u; and a’u;, or in the ratio of the vari-
ances, a'X;a/a’.a. For a known system of utilitarian weights then, one may,
for instance, wish to test Hy : a’=a/a’=.a = 1, against H; : a’Sa/a’S.a > 1.
The test is the well-known one-sided F-test. But now, if a’ is not known or given,
then one may want to obtain a weight-free solution by protecting oneself against
the worst possible or most stringent set of weights (in a sort of minimax sense)
and pose the question as a test of H, : a’¥a/a’Z,a =" 1 for all a, against H; :
a’Xja/a’Z,a > 1 for all a. This is exactly the null hypothesis of Hy : all v’s = 1,
against H; : all v’s > 1. Another way to express this would be to say that if
01s and o3, stand respectively for the variances a’=;a and a’%.a, then H, means
that ols = o3, uniformly in a and H; means that o3, > o3, uniformly in a. Of
the other alternatives, H; and H; can be interpreted in exactly the same manner.
According to this interpretation, Hy , H; , Hs and H; are much weaker alterna-
tives. H, , for example, means a'X;a/a’®,a > 1 for at least one a, or in other
words, that we are considering (in terms of acceptance of Hy) the most favorable
kind of weights (and trying to reach in a sense a minimin solution). However,
in terms of acceptance of H,, we stay with the same worst or most stringent
set of weights; similarly for Hs to H; . The main point in introducing H, , H; ,
Hg and H; is to indicate how the customary H; shows up according to our inter-
pretation.

We have always preferred the above type of interpretation of Fisher’s approach
to discriminant analysis and Hotelling’s approach to canonical correlations to
the one that is more customary. But this is a matter of opinion and we shall
not press it here.

2. Inference procedures for H, against each of the alternatives of section 1.
Let S; and S; be two (p X p) matrices based on independent random samples
of sizes (n; + 1) and (np + 1) from the two populations. Let these denote the
maximum likelihood estimators of X; and X, with the conventional bias correc-
tion. We assume that p < the smaller of n; and n, , so that S; and S, are positive
definite almost everywhere. Let cx and ¢, denote, respectively, the largest and
the smallest characteristic roots of S,S;". Also, let ch (A) denote the charac-
teristic root of any general (square) matrix A and ch,(A) and chy(A) the
smallest and largest roots. Then, using a heuristic argument similar to that of
[5, 9], the following inference procedures, some of them three-decision procedures,
are proposed, wherein W (H) denotes the acceptance region for the hypothesis H,
and W (I), where it occurs, denotes the region of indecision or no choice between
the two hypotheses in question:

(i) WH): ecu M3 W(HD) e > M ;W) iem SN <o,
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(i) W(Ho): cm Z A s W(H:) :ieu < Ao s W(I)iem <N =,

(i) W(Ho): NS cm=<cu <\s ; W(Hs):cn> N0 car < As ;
(2.1) W(I): cm <A < cyand/orcm < A\s < cu,

(IV) W(Ho) Cym é }\4 ,W(H4) iCu > )\4 y

(v) W(Ho): em = Ns ; W(Hs):em < A5,

(vi) W(Ho): e < ¢m < < Ao ; W(He): em < Ngand ca > s ;
W(I): cm < Neand ¢y < A6 OF ¢ = Asand ca > A6,

(Vi) W(Ho): M < m < e < A1 3 W(H7) : ¢m < Mrand/or e > A7 .

For Case (i), given A; , the probabilities assigned to the three regions, W(H,),
W (H,) and W(I) under H, can be determined. Likewise, given the probability
assigned to the region W(H,) under H,, A; can be determined by the methods
described in [3, 4], and hence the probabilities assigned to W (H;) and W (I)
under H, may be determined. It should be noted that the method of evaluating
the probability assigned to the region W (I) under H,, for a given A;, has not
been explicitly considered. The authors, however, feel that this will not present
any essentially new difficulty and that the methods of [3, 4] will be applicable
to this problem also.

Similar remarks hold concerning the determination of the other A’s, in Cases
(ii)-(vii), under (2.1). For Cases (iii), (vi) and (vii), where we have two con-
stants to determine since the inference procedures are two-sided in each of these
cases, in addition to the conditions of a given probability for W (H,) under H,,
we may impose the condition of local unbiasedness of each of these tests. These
two conditions taken together will enable us to determine both constants in-
volved uniquely. As discussed in [3, 5, 9], for Case (vii), the condition of local
unbiasedness implies certain optimum power properties of the test for this case.
For the other two cases, however, such implications of the condition of local
unbiasedness are yet to be established. Further, regarding all the Ms in (2.1),
it should be noted that, in addition to depending on the conditions discussed
above, they are also functions of p, n; and n, .

Case (vii), as defined in Section 1, with the test given under Case (vii) of
(2.1), is the one that has been considered in great detail elsewhere [5, 6, 7, 8]
and is included here merely for completeness.

Finally, it can be seen that all the probabilities (under Hy) associated with
the procedures proposed under (2.1) are independent of nuisance parameters.

3. Associated confidence bounds. Given a pair (Ho, H) of composite hy-
pothesis and alternative, disjoint but not necessarily exhaustive, we seek a
parametric function that might be regarded as a measure of departure from H,
in the direction of H, or, alternatively, some kind of a distance function between
the set Hy and the set H. We next week a confidence interval for this parametric
function, one-sided (one way or the other) or two-sided, depending upon the
nature of the pair (Hy, H). No claim is made at this stage that the parametric
function chosen or the confidence interval proposed for it is in some sense optimal.
As to the confidence coefficient, it would be very desirable if, given any permissi-
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ble 1 — a, the interval could be defined such that this coefficient were equal to
1 — a. If it does not turn out that way, the next best thing would be to have a
confidence coefficient = 1 — «, given any permissible a, such that the equality
is attained, or, in other words, that the probability of the interval covering the
parametric function, for some value of this function, is equal to 1 — «. If this
does not happen, the next best thing would be, for any permissible 1 — «, to
have a confidence coefficient whose greatest lower bound =1 — « (and might,
in fact, be greater than 1 — ), provided that the interval itself is not trivial,
for example, (0, ©) or (— o, ), ete., but is, in fact, much better than these.
We shall say that such a confidence coefficient is a conservative one, or alterna-
tively, such a confidence region is a conservative one. For really complex prob-
lems even this may be difficult to obtain, to say nothing of intervals of the first
or the second kind, and we would consider even this quite worthwhile, especially
in view of the fact that we consider it more important to estimate this “distance
function,” pointwise or intervalwise, than to test (and accept or reject) the
usual null hypothesis as such. All confidence intervals obtained in this section
are conservative.

For Case (i), (Hy, H1), we have a lower bound on ., , for Case (ii), (H, , H),
an upper bound on v, and for Case (iii) a lower bound on v,, or an upper bound
on vy . The techniques used are the same as those in [8, 9]; in fact, the bounds
are only modifications or adaptations of the bounds given there, with a different
interpretation relative to these new situations. Hence the results will be stated
without any proofs. These techniques are based essentially on a certain type of
“inversion” of tests or inference procedures, appropriate to different (H,, H;)
pairs, extensively used by workers in this area, including the authors.

For Cases (iv)-(vii), that is, for (H, , H;) (i = 4,5, 6, 7), using the same tools,
we have attempted but have failed so far to obtain a lower bound on v, for
Case (iv), an upper bound on v, for Case (v), a lower bound on v, and an
upper bound on v, for Case (vi). The trouble seems to stem from the difficulty
in obtaining a lower bound on 7, that is not also a lower bound on v,, or an
upper bound on v,, that is not also an upper bound on v . However, we find
that, if instead of v, and v» we consider, respectively, ym = chm(E1)/chu(E:)
and v = chu(=;)/chn(XE;), then bounds on v, and y3 become feasible by
using the techniques of [1]. The question now is, how are these intervals related
to (Ho, Hs) (i =4, 5, 6,7)? For example, how is [yy = u] related to (Hy , H,)?
In our sense, it is not a natural associate of (Ho,, H,). If we consider:
Hi:%; = 3, = 0l (a diagonal matrix with all diagonal elements equal to &)
and Hf:vx > 1, we observe that Hy < Hyand Hf D H,, and [y = 4 is
really a natural associate of (Hg , Hi). The appropriate bounds on the y*s
relevant to the pairs (Hs , HY), (¢ = 4, 5, 6, 7), are given below in summary
form. The reader must keep in mind that these bounds are not the natural
associates of the inference procedures, given under (2.1), for the Cases (iv)-(vii).
These bounds are given just to inform the reader what to expect if one is tempted
to try, in the first instance, the techniques of [1].

With regard to the “inversion” of tests or inference procedures mentioned
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above, we have realized relatively recently that for obtaining the confidence
bounds that are the natural associates of any particular (H, , H.), the “inver-
sion” may not necessarily be the best means (according to some interpretation
of “best”” at any rate). It may not even be a feasible means. For certain (H, , H)
pairs, other techniques might be better in some sense, or even might provide
bounds when the techniques we have been using, fail. In this paper, however,
we stay with the techniques of [1, 8, 9].

For Cases (i)-(iii), we can use either pp. 107-109 of [9] or the formula (2.3)
of [8] (with a correction to be presently indicated), fill in some details of the
proof from [10] and obtain the conservative confidence bounds in the respective
forms

(1) vm Z ew/M,
(3'1) (ii) Yu = CM/)‘2 ’
(lll) Ym = Cm/)\s , Or vu = CM/)\; , ()\3 < A;)

Here M\, A2, As and A; are constants defined under (2.1) and depend on the
conservative confidence coefficient and on p, 7, and 7 .

The correction to be made in (2.3) of [8] is to replace the prefactor S;, in
each expression where it occurs, by a matrix prefactor T’ and add a matrix
postfactor T, where S; = TT' and T is a lower triangular matrix. Thus (2.3)
of [8] should read as

Ma'(T'S:'T)a  a'(T'Dyy Si'D,aT)a _ A a'(T'S;'T)a
a'a = a'a = a'a

b

for all nonnull a.
The confidence bounds we obtain while attempting (and failing) to find the
natural associates of (Ho, H;), (i = 4, 5,6, 7), are of the respective forms

(iv) vk = v cha(Sy)/chu(Sy),
(V) 7 S wchu(Sy)/cha(Sy),
(32) (Vi)  ¥E = vschu(S:)/chn(S:) and vk = vs cha(Sy)/chu(S:),
(1/; > v3),
vs cha(S)) /chm(S:) and/or vk = vichn(Sy)/chu(S:),
(V; > v).

Here again, the »’s depend on the conservative confidence coefficient and on
p, ny and nz , and the techniques used in deriving the bounds under (3.2) are
those of [1]. Also, v4 and v have been defined and discussed earlier.

The “partials” or “truncated” versions of (3.1), in the sense of [8, 9, 10],
are easily obtained exactly as in [8, 9]. The “partials” for (3.2) are not so
available.

lIA
v

(vii) i



COMPARISONS OF DISPERSION MATRICES 437

4. Concluding remarks. The procedures proposed here are heuristic, and in-
vestigations are underway as to the properties of these procedures, as, for ex-
ample, unbiasedness, monotonicity and admissibility for the two-decision
procedures and analogous properties of the three-decision procedures. Such
properties have already been established for some of the two-decision procedures,
including Case (vii) of (2.1). Also under consideration is a generalization to the
case of more than two dispersion matrices.

However, the more urgent and immediate problems are, if possible, to obtain
(a) the meaningful bounds on v, and v (for Cases (iv-(vii)) that we sought
but could not present in this paper and (b) the greatest lower bound on the
conservative confidence coefficients obtained so far.

Another problem of some statistical interest is one'in which, with the same
setup as the one considered in this paper, we are interested in comparing two
mean vectors instead of two dispersion matrices. This has wide applications,
including some in genetics, and is under the active consideration of a number of

people including the authors.
The authors wish to thank T. W. Anderson for the stimulating correspondence
that was carried on during his refereeing of this paper.
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