THE SAMPLE MEAN AMONG THE MODERATE ORDER STATISTICS!
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0. Summary. The first part of this paper (Section 2) is devoted to the deriva-
tion of the asymptotic distribution of the sample proportion above a normal
sample mean. The second part of the paper, leaning on the first, treats the asymp-
totic joint distribution of runs of various lengths above the sample mean (Section
3). The approach here proves general enough to cover asymptotic run distribu-
tions arising when the dichotomy criterion is magnitude relative to a sample
function other than the sample mean and the population is other than normal.

1. Introduction. This is one of two papers investigating the magnitude of the
sample mean relative to the order statistics. Emphasis here is placed on the inter-
mediate order statistics. Specifically, we study the asymptotic form of
S P(n, 4), (k~ %n), where P(n, 1) is, as in [5], the probability that a
normal sample mean will fall between the 7th and (¢ 4+ 1)st order statistics.
This study leads in a natural way to investigating the asymptotic joint distribu-
tion of runs of various lengths above the sample mean, and the approach proves
broad enough to cover run distributions where the dichotomy ecriterion is magni-
tude relative to sample functions other than the sample mean, and where the
population is other than normal. This generality of the study arises from the
fact that all such run distributions asymptotically are convolutions of the dis-
tributions of two vectors, one following the multivariate normal distribution
derived by Mood in the first part of [8], the other following a singular (one-
dimensional) distribution which is a function of the dichotomy criterion.

Previous work on the distribution theory of runs includes the (distribution-
free) study of runs above a fixed sample quantile by Mood (8], and also by F. N.
David [4], Mosteller [9], Stevens [12], Swed and Eisenhart [13], and Wald and
Wolfowitz [14]. It includes as well the (distribution-free) study of runs above a
fixed population quantile, notably by Mood [8], and by von Mises [7].

A possible application of the distribution theory of runs above the sample
mean is to the testing of the homogeneity of a random sample, with seemingly
good power against the two commonly most feared alternatives to homogeneity:
one-sided outliers and trend. Indeed, positive (negative) outliers will lead to a
preponderance of observations below (above) the sample mean, leading in turn
to a dearth of runs above the sample mean, for lack of representation in one of
the two run-producing classes. Again, trend will of course tend to depress the
number of runs with respect to any dichotomy criterion.

It is true that a homogeneity test based on runs above the sample mean would
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be most useful if applicable to the correlated residuals of a least-square model,
and the requisite distribution theory should be developed. However, pending
such development, the present theory is of some practical usefulness as it stands
when applied to suitable subsets of degrees of freedom, say to the paired differ-
ences of a paired-comparison experiment. In a similar vein, it is applicable, in
randomized complete block experiments involving substantial numbers of blocks,
to the “replicates” obtained when the same treatment contrast is separately
computed in each block.

I wish to thank L. J. Savage, who very generously gave of his knowledge and
ideas in guiding this research. I wish to thank as well P. Billingsley and W. H.
Kruskal, who were equally generous in guiding the composition of the final draft.
I also am much indebted to M. G. Kendall, W. H. Kruskal, P. A. P. Moran, F.
Mosteller, H. Ruben, D. L. Wallace, W. A. Wallis and W. J. Youden for their
critical reading of earlier drafts of this paper, and for many bibliographical sug-
gestions.

2. The asymptotic distribution of the sample proportion above a normal sam-
ple mean. The object of this section is to determine the asymptotic distribution
of m, , the proportion above the mean in a random sample of size n from a normal
population. It will be shown that

(2.1) g(ni(m — 3)) = N(0, 1 — 1/(2m),

where N(0, £ — 1/(27)) represents a normal ¢.d.f. with zero mean and variance
(¥ — 1/(2x)), the c.d.f. convergence of (2.1) being uniform in any finite interval
and hence on the entire line by the continuity of the limit c.d.f.

The distribution of =, clearly does not depend on the population mean and
variance, which will for convenience be assumed equal to zero and one re-
spectively.

Consider a random sample of size n from a normal population with zero mean
and variance unity. Let z, and ¢, be, respectively, the sample and population
quantiles of order p. Let 7, be the proportion of the sample exceeding the sample
mean, and let p(n) = % + tn?, g(n) = & — tn™*, t any real number. Then

Pr{n'(m, — %) £t} = Pr{m < p(n)}

(2.2)
= Pr{zqmy =< %} = Pr{zemy — & = 0}.

The vector v = (x;— &, -+, ,— &) is independent of £, and (2,¢y — &) is
a function of v. Hence a, = n’[(2,tsy — £) — ¢amy) and b, = 7' are independent,
so that

(23) 'Yn(s) = Ot,,,(S) 'ﬂn(s)’

where «, and B, are, respectively, the characteristic functions of a, and b, , and
~x is the characteristic function of ¢, = an + by = 7} (24my — Camy)-

A slight modification and specialization of Section 28.5 of [2] shows that the
densities of the random variables (2/7)%, tends to the unit-normal density.
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(The modification involves considering (2, — o) in place of (2, — &),

while the specialization is from a general density to the unit-normal density.)
Since the densities of (2/x)%, tend to the unit-normal density, the ¢.d.f.’s of

(2/7) *¢, tend to the unit-normal c.d.f., by Scheffé’s Theorem [11]. Hence, by the

continuity theorem, the characteristic functions of (2/x)%., tend to ¢ ? or

(2.4) liMyew vn(8) = exp (—ms’/4).
Further, B.(s) = ¢ ? so that, taking limits in (2.3) and using (2.4),
exp (—s’/4) = (liMpsw an(8)) (exp (—57/2)).

The continuity theorem thus implies that

(2.5) £(a,) = N0, 7/2 — 1),
where N (0, #/2 — 1) represents a normal c.d.f. with-zero mean and variance
w/2 — 1.

Recapitulating from (2) (with A4, the c.d.f. of a,), we have
Pri{ni(m, — %) £t} = Pr{zgm — & < 0}

= Pr{n}[(2qm) — &) — o] £ —taw) = An(—1em),

(2.6)

and, by the Taylor expansion about zero of the unit-normal c.d.f. evaluated at
Samy »
(2.7) limp e (—1§qm) = #(2m)*

Hence, by the uniformity of the convergence of (2.5), and by (2.6) and
(2.7), iy [Pr {n¥(mn — 3) = 8] = [N(0, w/2 — 1) evaluated at ¢(27)%,
which implies (2.1).

3. The asymptotic distribution of runs above a normal sample mean.

Lemma 1. (Chernoff) Let Y, andY be r-dimensional random vectors such that
£(Y,) — £(Y), i.e., the c.df. F, of Y, tends point-wise to the c.d.f. F of Y at every
continuity point of F. Let ¢ be a continuous function from r-space to s-space. Then
£(¢(Yr)) — £(o(Y)).

Lemma 1 is Theorem 4 of [10]. Essentially the same result may be derived by
appealing first to Theorem 2.1 of [1], and then to Theorem 1 of [3].

Let m, be a random variable the range of which is a finite discrete subset V, of
the closed unit interval. Suppose that for each p eV, , R, is a k-dimensional
random vector. Then R, = R, ., is also a k-dimensional random vector. Let
7% = n}(w. — po), where 0 < po < 1, and suppose that

(3.1) £(7r’,l:) — £(7).

Let X, = “B(p)(Rp.. — na(p)), where B(p) and a(p) are, respectively,
k X k matrix-valued and %k-dimensional vector-valued functions on the closed
unit interval. Suppose that £(X,,.) — £(X) uniformly in p near po in the follow-
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ing sense. If B is a continuity point of the c.d.f. of X, then there is some positive
¢ (perhaps depending on 8) such that

(3.2) lim,sco SUP| ppy| <e, 2675 IFI,,,.(,B) - F(ﬁ)l =0,

where F,, . and F are, respectively, the c¢.d.f.’s of X, , and X.

TrEOREM 1. Suppose that (3.1) and (3.2) hold, and that, if pe V., then Ry
and m, are independent. Suppose further that B(p) s componeni-wise continuous
and non-singular, and that the components a:;(p) of a(p) have derivatives d:(po)
at po . Then

(3.3) e(n(Rn — na(po)) — £(B™(p0) X + d(po)m),
where X and w are to be taken independent.
Proor. Let

X, = Xopn = 0 B(m) (Ra — na(m)).
If p e V., then, by the independence assumption,
Pr{X, <8, m =p} =Pr{Xpn 28, m =p} =Pr{X,. <} -Prim = p}.
Hence, for ¢ a continuity point of the c.d.f. of =,

PriX,<Bm st = 2 Pr{X,.=< g} Plr.=p
p<pottnT}
PeVp
It follows from (3.2) that, if 8 is a continuity point of the c.d.f. of X, the differ-
ence between the right-hand side of this expression and that of

PriX <@ -Pri{rs =t} = 2, Pr{X =8}-Pri{m = p}
55

tends to zero as » tends to infinity, so that, working with the corresponding
left-hand sides,

(34) limn,, [Pr{X, <8, 7f 8§ — Pr{X < 8}-Pri{rs = t}| = 0.
It now follows from (3.1) and (3.4) that

(3.5) limp,o |Pr{X, <8, 78 <t — Pr{X < 8}-Pr{r < #}| =0,
i.e., since (B, t) now is a continuity point of the joint c¢.d.f. of X and =,
(3.6) (X, ™) — &(X, ),

where X and = are to be taken independent. Now, by the definition of X, , we
have the vector equation

B (m) X = 07 (R, — na(po)) — n” (na(m) — na(p)),

where, by the lemma on page 777 of [6], the last term differs from —d(po) 7y by
a term ¢, with plim, e, = 0. Hence

(3.7) w (R, — na(py)) = B (m) X + d(po) 7k + €.
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But by (3.6), the fact that plim, =, = po, and Lemma 1, (with ¢ taking the
(k + 1)-d1mens10na1 vector ((21, * -, ), Zx+1) into the 2k-dimensional vector
(B_ (po) (@1, « -+, ma), a(po)Tr11) ),

(3.8) L(B7(m) Xn, d(po)wn) — £(B(po) X, d(po) )

and (3.8) yields (3.3) by a second application of Lemma 1 (with ¢ taking the
2k-dimensional vector (z;, - - - , 2%) into the k-dimensional vector

(1 + Tha1, *°° , T -+ x2k));

since plim, ¢, = 0.

This concludes the proof of Theorem 1.

In the special case when = is normal with mean zero and variance », and X is
normal with zero means and unit covariance matrix, Theorem 1 yields for the
limiting distribution of n*(R, — na(po)) a multlvarlate normal distribution
with zero means and covariance matrix

E[(B™ (p0) X + d(po)m) (B (po) X + d(po)m)']
= E[B™(p) XX'B™ ()’ + d(po)d(po) ']
= B (po) B™(po)’ + (v) (d(po)d(p0)").
The computation of the asymptotic distribution of runs above a normal sample
mean illustrates this special case, with the following values for p, , v, B(p) and
a(p):
po = % (see relation (2.1)),
v = + — %7 (see relation (2.1)),
ai(p) = p'q’ for ¢ < k (see (5.1) of [8]),
= p°q for i = k (see (5.1) of [8]),
B'(p)B(p) = ||o*(p)||™", where the matrix ¢*(p) is as given in (5.2) of [8].

4. Extensions. The main assumption underlying Theorem 1 of Section 3 is
that, for each p in V., R, . and 7, are independent. This assumption clearly is
satisfied in the application to runs above a normal sample mean given in Sec-
tion 3; it is satisfied as well in many other applications, some of which are in-
dicated below. However, the assumption will not always hold, as would be the
case, for example, if 7, were, as in the application of Section 3, the proportion
of the sample below the sample mean, but R, . were identically equal to R, .
for all p.

Typical additional applications of Theorem 1 are similar to that of Section 3.
Specifically, let 7, be the proportion of the sample in one of two classes deter-
mined by magnitude with respect to some sample function, and suppose that there
exist constants po and » such that

(4.1) L} — po)v?) = N(0, 1).
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Then the joint limit distribution of runs of various lengths, of items in the given
class, will be multivariate normal, with mean vector '

(4.2A) np'¢" for i <k, np'q for i =k,
and covariance matrix

(4.2B) () (l*(po) Il + (v) (a(po) (po)")).

The normality of the limit distribution of (4.1) is not of course essential to the
convolution character, but must be included if one insists on the normality of the
resultant joint distribution. Note also that the convergence of n%( T — Do)V ! to
zero leads to the asymptotic covariance matrix ||o”(po) ||.

As an application of (4.2B), consider the asymptotic distribution of runsabove
the population quantile ¢, , for random samples drawn from an arbitrary popu-
lation. Here po= = and v = w(1 — =). Hence the asymptotic variance of runs
of length 7, of items larger than ¢, equals

(4.3) ci(m) + (7) (1 = m[(d/dm)='(1 — ),

where o;(w) is as given in the second line of Mood’s equation (5.2). Expression
(4.3), as it should, agrees with the first line of Mood’s (8.2). Another application
of (4.2B) would be to the asymptotic distribution of the number of runs above a
sample mid-quartile (2, + 21—p) /2, in random samples from a symmetric popu-
lation.

A final observation is suggested by the form of (4.2B). Consider any integer
solution in 7 of the equation (d/dpo) ps(1 — po)® = 0. This integer, call it 7, will
have the property that runs of length I will have the same marginal asymptotic
distribution for all dichotomy ecriteria such that =, has asymptotic mean ps .
Thus, for example, since (d/dp)p*(1 — p)*|; = 0, the marginal asymptotic
distribution of runs of length 2 is the same, whether the dichotomy criterion is
magnitude relative to the sample median, the population median, the sample
mean (normal population), or a sample mid-quartile (symmetric population).
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