POISSON PROCESSES WITH RANDOM ARRIVAL RATE!
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1. Introduction. Let F be a distribution function on (0, «). A probability
Py on the integers defined by

v

Pe(n) = (u)™ fo e \" dF, n =0,
will be called a mixture of Poisson probabilities. Since {1] there is a 1-1 correspond-
ence between Pr and F, any statistical question about # can, in principle, be
answered by random sampling on P . However, F can be estimated more easily
by random sampling on mixtures of laws of Poisson processes (to be defined
below). Even then no unbiased estimate for F exists; but the Glivenko-Cantelli
Lemma [2], p. 20 does hold for the natural estimate of a continuous F. These
two results are proved in Section 3; Section 2 contains some preliminary material.

2. Independent realizations of mixtures. Let v be a nonempty set, and B(y)
a c-algebra of subsets of y. Let {Py : A’ ¢ A} be a family of probabilities defined
on B(y). Take B(A) to be the smallest s-algebra of subsets of A over which all
the functions {P\ (E) : E € B(y)} are measurable. If u is any probability on
B(A), define

P(E) = [ Py (E) du:E ¢ B(~).

The set function P, is again a probability on B(y), and is called a mixture of
the probabilities Py, . If X is any B(vy)-measurable function, and P any proba-
bility on B(y), define E(X | P) = [, X dP. Then

LemMa 1. E(X | P,) = [a E(X | Px) du, in the sense that if either side exists,
both do and they are equal.

Proor. When X is the characteristic function of a measurable set, the lemma
is a restatement of the definition. Hence the lemma holds for all simple functions
by linearity, for nonnegative functions by a monotone passage to the limit, and
finally for general functions by linearity.

The purpose of the next lemma is to describe mixtures on product spaces.
Define ([2], pp. 90-91)

(', B(y"), P’) = ,IJ, (v, B(x), P)

(A7, B(A"), n') = jI=Il (A, B(A), ),
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where J is any natural number or «. If s v’ (X £ A7), its jth coordinate will be
written s;(\;). The convention adopted here (for typographical reasons) is the
following: A is a point of a product space whose factors are A; A" and A; are points
of A\. Leth = H'JI'_.:lP)\j for A SAJ.

LemMma 2. For any E € B(v”), P\(E) is B(y’)-measurable and

P/(E) = [ P\(E) dyp’.

Proor. Both assertions hold for (finite dimensional) measurable rectangles by
Fubini’s theorem, and are preserved under complementation and countable
unions of the sets F for which they are ture.

Lumma 3. For each j € Z (the set of nonnegative integers) let {Y;, : n € Z} be a
stochastic process on (v~, B(v*)). Then lim; e Yjin = 0 a.e. [Py], if and only
if, for almost all sequences N & A*[u™], im; now Yjn = 0 a.e. [Pl

Proor. For m ¢ Z let E,, = {s : s £¢v” and for any jo and n, there exist j >
joand n > ne with |Y;,(s)| > 1/m}. Then each statement below is equivalent
to the one following it.

(i) Y;»—0 ae. [Pyl
(i) PR (En) =0, allm.

(i) fA _Pu(Ew) du® = 0, allm.

(iv) Pr(En) =0, [k~],all m.
(v) Py(En) =0, allm, [u”].
(V]) Yj,n —0 a.e. [P)\][uw].

3. Poisson processes. Let B(Z) denote the family of all subsets of Z, and
define (v, B(y)) = [If (Z, B(Z)). If s v, its nth coordinate will be written
s, . Define (using [2], p. 93, Theorem A) P, as the probability on B(y) making
X.(s) = sn,n = 1, Xo(s) = 0 a Poisson process with parameter N’ for
N eA = (0, ©); B(A) is easily seen to consist of the Borel subsets of A. If u is
a probability on B(A), its distribution function will be denoted by F.

When P, is constructed on B(y), the law of the process { X,} is called a mixture
of laws of Poisson processes, with mixing distribution p.

Recall that (v*, B(y")) = IIF (v, B(v)) = II% II¥ (%, B(Z)) so that +"
is the space of infinite matrices of nonnegative integers.

For s £7”, s; is the jth coordinate of s and is a point of v. Hence s;,, is the
nth coordinate of the jth of s, and is an integer (namely, the entry in the jth row
and nth column of s). Define X;,.(s) = 8ja,n = 1; X;0(s) =0:5 = 1. In
the balance of the paper, the probability on (y*, B(y")) will be Pj.

Less formally, there is an unknown random mechanism which selects a param-
eter \; ¢ A = (0, ©) according to the prior probability x. This is done repeatedly
and independently, which corresponds to selecting a point X = {A\;, g, -« -}
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from A” according to probability u”. Once a \; has been selected, the statistician
observes the evolution of a discrete-time Poisson process {X;,:n = 1,2, ---}
with arrival rate A; . The processes are independent in j. These processes are de-
fined on the common probability space (v~, B(y"), Py), and are a sequence of
independent realizations of a process whose law is a mixture of Poisson laws
(with mixing distribution ). Having observed {X;.:1 =< n = N} for
1 < j < J, the statistician wishes to make inferences about u. The first theorem
gives a limitation on the type of estimates available.

TuEOREM 1. For fired x > 0, F(x) has no unbiased estimate measurable on a
finite number of the X, .

Proor. Let J be the largest j-subscript available, and for 1 < j < J let n; be
the largest n-subscript for each j. Thus 1 £ J < ©,0 = n; < .

It suffices to consider functions of the sufficient statistic {X;.; : 1 = j = J}.
Let T be a function on Z’, and suppose that, contrary to the theorem,

ET(X;n: 1 =j=J)| P =F(x),

for all u (or even all u with carriers of J points).

By Lemmas 1 and 2, the finiteness of E(T | P,) implies the finiteness of
E(T|P)) for almost all vectors A eA’[u’]. Since this holds for all u,
|E(T | P))| < o for all \ e A”. Then E(T | Py) is exp (—n\y — -+ — ns\s)
times a multiple power series, absolutely and uniformly convergent on any
bounded set in A”; and is a continuous function of A.

Let u, assign mass 1 to y > 0 : F, being the corresponding distribution func-
tion. Then [4s E(T | Py) duy = F,(x), and the left-hand side is continuous, as
a function of y, while the right-hand side, as a function of y, is discontinuous at
y = x; a contradiction which completes the proof.

On the other hand, for large n, {n'X;, :1 < j < J} is approximately a
random sample from F, and the sample cumulative distribution function pro-
vides a natural estimate for F. Let f(y) = f(y, z) = 1(y < z) and O(y > z)
and put Fy(2) = J 7 D i f(07 X ;0).

THEOREM 2. If F is continuous at &, imy 4w Fr. = F(z) a.e. [Py].

Proor. By Lemma 3, this is equivalent to showing that F;.(z) — F(x)
a.e. [P»] for almost all [u*] sequences A & A”.

Choose ¢ > 0 and 6 > 0 so that F(xz + §) — F(z — §) < e The idea of the
proof is to discard A; & (x — 8, x + §), committing only a small error. Outside
this region the Markov inequality gives sharp enough estimates to secure the
theorem. ‘

The construction is in terms of the following functions (whose dependence on
¢, 8, and z is understood) :

) =1L,A<z—5; =0, A>z—0
A =0, A<z 6 =1, Azz+d
fs(N) =Lxe(x—8,2+8);=0, rAe(x —dz+9)
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u;(A) = AN — 2)7f:(N), 1=1,2
v:(\) = N — 2) 70, S i=1,2
Q(n,\) = Py(X;n < n).

By the strong law of large numbers [2], p. 239, J LYV LEN) & [atduae. [u7]
simultaneously for ¢ = f;,¢ = 1,2,3, = u;, = v;, ¢ = 1, 2, since these functions
are bounded and therefore summable. Let N.; be the exceptional p*-null set.
Select a sequence ¢ — 0 with corresponding & — 0. Put N = Ur, N.,.s,, so
that u®(N) = 0. In what follows, A ¢ A — N, while (¢, §) takes values in the
sequence (e, 6;). Two estimates of P(n, \) are required. By the Markov in-
equality [2], p. 158, with r = 4 and (n'X;n— ) for X,if NSz — &

(1) 1 —Q(n,\) £ n%u(\) + 307 (N),
whileif A = = + 4,
(2) Q(n, \) = n’us(\) + 3n"v(N).

These estimates can be used to prove
J
(3) limy pe J ZIQ(n, \) = F(z) ae. [u”].
Jj=

Indeed, let A; = J 7 D 7m1 Q(n, M\))f:(N;), ¢ = 1, 2, 3. By inequality (1), with
001,

J J L
A, =J" Zl:fl()\j) — Tt Zl w(x;) — 30m~ T Zi”l()‘f)’
J= = =

the first term converging to F(z — §), the second and third to 0. Similarly, (2) im-
plies that 4; — 0, and clearly lim sup,,»-. 43 < e. In summary

J
lim infypme J 7 20 Q(n, N;) = F(z — 8) > F(z) — ¢
j=1

J
lim Supy nsw J ZIQ(n, A\) <F(z—208) +e<F(z) + e

Allowing & — =, so that ¢ — 0, completes the proof of (3).
The next step is to prove

(4) hmJ,n-»oo J_l il Lf(n_lXj,n) - Q(n; A.1)] = 0Qa.e. [P)\]

As before, put B; = J 7 D i [f(n 7' X;) — Q(n, M)Ifi(A;), 7 = 1,2, 3. Then
B{[f(n'X;.) — Q(n, \)f2(A;) | P} =0
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and
E{[f(n7'X;0) — Q(n, \)TL(N) | Py} = Q(n, X)) (1 — Q(n, \j))fa(N;)
(5) = Q(m, A)fa(Nj)
< %) + 30 ()

by (2).
Let B(J, n) = JB;. To show lim, 4. B2 = 0, a.e. [P)] select 3 > 0 and
define the sets C,, = {s:sey” and there is a J with (i) 27" < J =< 27

(ii) B(J,n) = Jn}, D,n = {s:sev” and there isa J with (i) 1 = J £ 2,
(ii) B(J, n) = 7/2-2}. Then C,, C D,, so that 2 ..,P:(C.)
>+ Pr(D:.n). Now by Kolmogorov’s inequality [2], p. 235, and the estimate (5)

or
P\(D,,) < 4n 27" 2 [n w2 () + 30 "(2))],
J=

so that D, Px(C,.) < . Hence by the Borel-Cantelli Lemma [2], p. 228,
B, = 1y only finitely often [P)]; allowing n — 0 through some sequence of values
gshowsthatlimy 4., Bz = 0 a.e. [Py]. Similarly; lim; ».. B: = 0 a.e. [P)] and clearly
lim Supy n« |Bs| < €a.e. [P)]. These facts show that

J
lim sups,nse J? Zl[f(n_lX,-,n) — Q(n, \))] < eae. [P,
J=

and allowing k — o« establishes (4).
Finally, combining (3) and (4) gives

Hm s 500 Fr,n (IE) =
J J
lilnl.n-m J—l Zl Q(n’ >‘j) =+ liml.n-m J—l Zl [f(n_lXi,n) - Q(n, >‘i)]
= J=

= F(z), a.e. [P,

which is the requisite conclusion.
CoROLLARY. If F s continuous,

limJ,n-»oo (Sup—eo<z<oo IFJ,u(x) - F(x)l) = 0 a.e. [P:’]-

The condition that F be continuous is indispensable. Indeed, by the central
limit theorem, lim,., @(n, ) = %; moreover, for a rapidly increasing sequence
n, , the events 7,° X, ., <  are almost independent. Put f;(A\) = 1 or 0 according
as A = z or not. Then by a slight modification of the Borel-Cantelli Lemma, for
any J

;f(n“Xj,n,)ﬂ(Aj)/jZ_ﬂ fa(rj)



RANDOM ARRIVAL RATE 929

is equal to 0 infinitely often and equal to 1 infinitely often as v — o, [P)]. Hence:
Hm inf; o Frn = F(z—),
lim SUp; new Frn = F(z) a.e. [Py
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