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of using simply ¢ (), x a single observation from the uniform distribution, one
should use,

{p(@) +¢(1 —2) +0)}/3

where y=x 0=z=3%
=%z <z =1

for example. The reduced variance property of this estimate is a result of the
above theorem. G consists of the identity transformation, the transformation
z — 1 — 2, and the transformation x — y. Each of these transformations then
has weight %.
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ON STOCHASTIC APPROXIMATIONS

By SeMUEL FRIEDMAN

The Hebrew University, Jerusalem

0. Summary. The procedure of stochastic approximations suggested by
Robbins-Monro [1], for reaching a zero point xz, of a regression function, was
shown by Dvoretzky [4], to be a convergent w. p. 1. and in mean square under
certain conditions. In this paper we deal with two problems of modifying the
process to acquire convergence under weaker conditions.

1. Introduction. Let H(y/x) be a family of distribution functions, which
correspond to the parameter x.

Let us write: m(z) = [ydH(y/z); o*(z) = [(y — m(z))® dH (y/x).

Let {a,} be a sequence of positive members, such that, Y a, = ®, > a2 < .

Let x; be an arbitrary number. The Robbins-Monro process is defined re-
cursively for all » by %, = %, — @Y., Where y, is a chance variable with
distribution function H (y/z,). The conditions for its convergence were shown
to be:

(1) Im(z)| < L |2| + K.
(2) (x) £ o < .
If z<a, then m(z) <0,

(3)
while if 2 > z, then m(z) > 0.
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{4) For every & > & > 0, infs, <joso1 <5, |m(z)| = O.

In this paper we shall use two modifications of the process. The first modification
will remove the necessity for m(z) and ¢*(z) to be bounded by a linear function
and a constant respectively. The second will lead to convergence when the point
Zo is not a unique zero point m(x), and will be particularly useful when the
function m(x) stops being a constant.

2. Weakening of Conditions (1) and (2).
TurorREM. Let f(x) be a function which is positive and bounded in any finile
interval. Let the following conditions be satisfied:

(5) Im(z)| £ (L |2| + K)f(z)
(6) ’(z) = of(2)

and also Conditions (3) and (4). Let us define Tny1s = Tn — @uYn/f(Ta), for n = 1,
where x, ts arbitrary. Then x, — xo w.p.1. and in mean square.

Proor. Let us define the new random variable y*(z) = y(2)/f(x), and let us
denote its mean and variance by m*(z), o%(z). Then:

(7 Im* ()| = m(z)/f(x) = L |a| + K.
(8) ox(z) = o*(2) /f(x) £ o

(7) and (8) show that y*(x) satisfies Conditions (1) and (2). (3) and (4) are
obvious, because 0 < f(2) < o in any finite interval, so that the sequence of
random variables: Z,11 = Zn — @,y" (2,), tends to o according to Dvoretzky’s
Theorem [4].

This theorem enables us to construct a convergence process when |m(z)| and
o’(xz) are bounded by known functions fi(z), fu(z). If we take as f(x)
max {f,(2), [fa()]}.

This procedure is also applicable in the case when f(x) is decreasing to zero
for large values of z. In this case there is also convergence in the usual Robbins-
Monro procedure, but the convergence is rather slow. By dividing by f(z) we
enlarge the step for big values of z.

Another transformation of the r.v.y. can sometimes be used if the variance
does not exist for all values of z. In this case if we define ¥™* = |y.|* sgn v ;
Tni1 = Tu — Gy, then this process converges to o under certain conditions.

3. Convergence to the point where m(z) stops being a constant.
TuroreEM. Let Conditions (1) and (2) be fulfilled, and also the following con-
ditions:

If z<u, then m(x) = 0;
while if = > o, then m(x) > 0.
(10) For every 0 < 9, infs o< [m(z)| > 0.
If we choose a; , §; such that: a; > 0, Zai = oo, Za? < w;46;, > 0, > ad; =

(9)
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0, §— 0 and if we define Ty = T, + (8, — yYu) then x, — 2o w.p.1. and in
mean square.

Proor. By definition, &n4a = &n + Gudn — @ (2,) — (Yo — m(x,)). Let
us put: To(®,) = Zn + Gdn — @m(®.); Yo = au(y. — m(x,) then
E(y%/2 - -+ z.) = 0. By Condition (2): E(y)) < ak¢” so that ZEy)f < o0,
Hence 9" satisfies the conditions of Dvoretzky’s Theorem [4].

Let us show that the conditions of Dvoretzky’s Theorem on 7T, are also
satisfied.

Without loss of generality we assume: 2o = 0. Let us put 5, = .6, (9. — 0),
and let us define £, > 0, such that inf; <o<; m(z) > 28, and & — 0. This is
possible because of (10), and because 8, — 0. Put

(11) A, = max (En ) 77")'

It is clear that A, > 0, A, — 0, > A, = o, and infa, <, m(z) > 28,

‘We shall show that the condition required by Dvoretzky’s Theorem on T', ()
is fulfilled. For 2, < —A, : [Tu(Za)| = [Zn + @] = [ + M| = [@n| — 10,
a,K, by Condition (1). For |z,| > A, : Ta(2s) = @uds + 2. — awm(z,). For n
sufficiently large:

(12) Unbn + Tu — am(,) = @by — Ka, > —Ka,.

Also: a8, + 2, — aum(xn) < @ibn + T — 0420, = %, — 7, . This is true
because, if A, < z, < 1, then m(z,) > 25, by (11), and if 1 £ 2, < <, then
forn > ny, 26, < infy <oce m(x).

Hence for z, > A, : |[Th(z,)| £ max (Kaw , , — 94). If we put @, = Ka, +
A (2 4+ a,L), we find that in all cases:

|Tn| = max (an, [Ta] — 1),
and
a, > 0, a, — 0, > 0, Dt = 0.

This shows that the conditions of Dvoretzky’s Theorem [4] are satisfied, and
2, — %o W.p.l. and in mean square.

Note that Condition (10) is stronger than (4), which is not sufficient in this
case, as will be seen in the following example:

Forz = 0, m(z) = 0.

For (1/2) 27 ai: = & < (1/2) 2217 ads, m(z) = 8./2, y(z) = m(a),
21 = 0. Then 2 = a,(8 — 8&/2) = mdi/2, and we can see by induction that,
Totr = (1/2) 2% andy s0 that z, — .

This Theorem enables us to find the point where the regression function
stops to be a constant, if the value of this constant is known.

We can replace (9) by:

(18) If x> 2y then m(z) >0, whileif z < o, then m(z) <0,
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and get the same result, so that we can also reach the point where m(z) takes
its last zero, which can be sometimes important. (By a similar process, we can
reach the first zero, when m(z) = 0, for every value of = exceeding that zero
point.)

If we do not know the value of the constant, we can use the next Theorem,
which imposes, however, sharper conditions on m(zx).

THEOREM. Let the following Conditions be fulfilled.

(14) m(z 4+ 1) — m(z)| < Ljz| + K.

(15) (2) £ o < .

(16) If x <wx, then Dm(x) =0; whileif © >z, then Dm(z) > 0.
17) For every 6 > 0, infscpgg<oo Dm(z) > 0.

If we choose @, , ¢, , 9, such that:
G > 07 Zan = 0, Zai < o0, Zaf,/ci < oo,
8, > 0, 8, — 0, Za,,&,, = ®;

and if we define: .41 = ¢, — @u{ly(z, + ¢) — y(®a)]/c. — 8.}, then z, — 20
w.p.l. and in mean square.

The problem of finding the point where m(x) stops being a constant, was
suggested by Gutmann [3].
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THE USE OF THE RANGE IN PLACE OF THE STANDARD DEVIATION
IN STEIN’S TEST

By WiLLiam KnigaT

University of New Brunswick

A two sample procedure for obtaining a confidence interval of predetermined
length for the mean, u, of a normal distribution with unknown variance, o*, was
devised by Stein [4] and generalized by Wormleighton [5]. In this procedure a first
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