ON CONVERGENCE TO + « IN THE LAW OF LARGE NUMBERS

By Leonarp E. Baum!

Unaversity of Chicago and Institute for Defense Analyses

1. Introduction. Let {X;} be a sequence of identically distributed independent
random variables. Denote 1y X; by S, . If [ Xt = o while [ X7 < =, it
follows from the strong law of large numbers that S,/n — -+ » almost every-
where. In [1] Derman and Robbins prove that if X* ¢ L, while X~ ¢ Lg, 0 <
a < B < 1, then S,/n — o almost everywhere, provided that for all sufficiently
large ¢

(1) P{Xt > 1) = ¢/t

for some constant C. They then asked if the part (1) of their hypothesis could
be dropped without altering their conclusion: S,/n — <« almost everywhere.
By a construction employing a highly “lacunary” atomic X*, we show that
the answer to this question of Derman and Robbins is negative.

2. The Counterexample.

THEOREM 1. Let ¢ be a continuous non-negative monotonic nondecreasing func-
tion on [0, «) which is unbounded. There exists a sequence { Y} of positive identi-
cally distributed independent random variables such that Y; ¢ Ly , (i.e., f o(Y,) =
o), and a sequence {n;} of positive inlegers, such that for all & in the interval,
0<s8<1,

(2) P {1/nj‘” i:,l V< 1} — 1.

Proor. To see the theorem’s content, observe that it is strongest for slowly
increasing ¢ and for § close to 1. In fact, part of the construction is unnecessary
for 6 < 3.

We will construct the desired common cumulative distribution function F
for a set of independent random variables {Y;} by choosing a very rapidly in-
creasing sequence of non-negative integers m; at which we will place point
masses so chosen that the mass strictly beyond m; is ;. Set m; = 0, u; = 1
and define the m; and yu; inductively for j = 2. After my, w1, me, g2, - -+,
m;j_1, 4j—1 have been chosen, we choose m; so large that there are at least 1/u; 4
numbers of the form ¢™'(k), k¥ = 1, 2, - -- between m;_; and m; . This is pos-
sible because ¢ is by hypothesis continuous and monotonic nondecreasing to
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infinity. We then define p; = 1/7(m;)™; n; = (m;)™. Finally, we add the re-
maining mass 1 — Z}Ll u; to the mass at ms say.
Because of our choice of the integers m; , the ¥; all obey the inequality

SPe(T) 2 H 2 5 A/m) (u) = .

Thus, using Abel summation, we see that the constructed Y; are not in L, .
This is the “largeness’ property of the ¥; asserted in the theorem.

For any non-negative independent variables {Y,;} which are identically dis-
tributed with common cumulative distribution function F we have the in-
equality

@ PS5 ves iz P dmac v Q/on) = w0

We apply this inequality to the constructed F and evaluate at the chosen in-
tegers n; = (m;)™. For any & in the interval, 0 < § < 1, m;(1 — §)/5 is even-
tually >1 so that F(n{®") is for all sufficiently large j greater than F(m,) =
1 — u; . But by choice of g,

(1 — p)™ (1 1 )mjmi
Hal == Fmgymi
—1

as j — . The inequality (3) thus yields the “smallness’ property (2) asserted
in the theorem.

We proceed to the second portion of our construction. For any 8 in the in-
terval, 0 < 8 < 1, we can choose a sequence {Z; of identically distributed
non-negative independent random variables belonging to Lg such that for some
8 in the interval, 8 < § < 1,

(4) P {1/n"5 i Z;> 1} —1.

t=1

Take, for example, a sequence of independent variables Z; with common cumula-
tive distribution function F(¢) defined by:

F(t) =0, t <0,
F(t) = 4, 0=t=2",
Pty =1~ (1/t") 2" <t< =,
where v is chosen in the interval 3 < v < 1. Then Z; ¢ Lg , since
[oun Py dt <

for 8 < v. Moreover, for this sequence {Z;} the desired relation (4) will be
fulfilled for 4 in the interval y < 8 = 1. In fact, since the Z; are independent,
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P {Z Z;> nm} =P {max Z; > nm}
=1

=1
=1—P{Z; < n'%}"
=1— {1 —(1/2")"
—1
for0 < vy < 4.

For our counterexample we combine the constructions of Theorem 1 and of
the above paragraph. We choose identically distributed independent random
variables { X} each of which is distributed like the ¥, (—Z;), fort = 0, (¢ < 0),
respectively; i.e.,

P{Z; £ t}, t=0

P{Y:<t}, >0

This is possible because both the Y; and Z; were chosen to take the value 0 on
sets of measure 4. Then, by construction, X7 ¢ L, while X7 ¢ Ls. However,
for the subsequence {n;} of positive integers chosen in Theorem 1, and for
sufficiently large § < 1,

P (S, < 0)2P {{ZX* < n}”} n{i X7 > ni”}}—uasj—» o,

=1 =1

P{Xq,ét}=;

A fortiori, S./n does not converge to + « almost everywhere or in measure.
To obtain a counterexample to the specific question of Derman and Robbins
[1] which was stated in the introduction of this note it is only necessary to choose,
for example, the function log™ for ¢, since ¥ g Ljog+ implies ¥ ¢ L, for 0 < a.

3. An affirmative theorem. The counterexample suggests that we will have
great difficulty in obtaining a positive result on convergence to -+« without
some uniformity condition such as (1) on the largeness of X ™. Therefore, we
state the following variant of the theorem of [1], which involves a considerable
lightening of the restriction on X~ and a minor strengthening of the condition
(1) on X* and yields a weaker conclusion (only convergence in measure).

TarorREM 2. Let X; be identically distributed independent random variables
such that for some o in the interval 0 < o < 1, X; & Lo while X obeys

t°P{Xf >t > o as t— .

Then S,/n — © in measure. (i.e. for all K, P{S,/n > K} — 1.)
Proor. (Modeled upon Derman and Robbins [
P{l ngl}éP{maxXién”"‘}
1

nl/a ‘ =1

1=

— P{X—{— é nl/a}n

-{i-s0

— 0,
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for k(n) — « when n — « by hypothesis. Since the Marcinkiewicz theorem
[2] yields the almost everywhere convergence of 1/n**> %1 X7 to zero, the
result follows.

The hypothesis insures X7 ¢ L. but we may of course have X¥ & L., for all
as < a, as the function X = |log ¢|/¢"* of the variable ¢ distributed uniformly
on the unit interval demonstrates. Unlike the theorem of Derman and Robbins
[1] which we stated in the introduction, our Theorem 2 is thus a theorem with
conditions involving the same index « for X7 and X7 . Necessary and sufficient
conditions for convergence in measure to + « would be desirable.
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