DISTRIBUTION OF DEFINITE AND OF INDEFINITE QUADRATIC FORMS FROM A NON-CENTRAL NORMAL DISTRIBUTION

Ву В. К. Ѕнан

University of Baroda, India

1. Summary. In this paper we generalize the results of John Gurland [1] on the distribution of definite and indefinite quadratic forms to non-central normal variates.

The results of this paper may be compared with those of [4], by H. Ruben, where, by a purely geometric approach, the distribution functions of homogeneous and non-homogeneous quadratic forms are expressed as infinite linear combinations of central and non-central chi-square distribution functions.

2. Introduction. Suppose we have a quadratic form $\mathbf{y}'\mathbf{A}\mathbf{y}$ where \mathbf{A} is a $p \times p$ symmetric matrix of rank $n \leq p$, $\mathbf{y}' = (y_1, \dots, y_p)$, and the y_i' are independent normal variates with means ν_i and variance one $(i = 1, 2, \dots, p)$. It is well known that we can make an orthogonal transformation reducing $\mathbf{y}'\mathbf{A}\mathbf{y}$ to its canonical form $\sum_{i=1}^{n} \lambda_i x_i^2$, where $\lambda_1, \lambda_2, \dots, \lambda_n$ are the latent roots of the matrix \mathbf{A} . Under such a transformation x_1, x_2, \dots, x_n are independent normal variates with means μ_i and variance one. (The μ_i $(i = 1, \dots, n)$ are obtained from the ν_j $(j = 1, \dots, p)$ in the same manner as the x_i are obtained from the y_j). Our problem is to find the distribution function F(x) of $\sum_{i=1}^{n} \lambda_i x_i^2$ where the λ 's are real numbers and \mathbf{x} has the probability density function

(1)
$$f(\mathbf{x}) = (2\pi)^{-\frac{1}{2}n} \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{u})'(\mathbf{x} - \mathbf{u})\right],$$
where $\mathbf{x}' = (x_1, x_2, \dots, x_n)$ and $\mathbf{u} = (\mu_1, \mu_2, \dots, \mu_n)$.

3. Distribution of a positive-definite quadratic form. Suppose $\lambda_1, \dots, \lambda_n$ are all positive and let

$$\alpha_j = \lambda_j - \bar{\lambda},$$

where $\bar{\lambda}$ is an arbitrary number satisfying the inequality

(3)
$$\bar{\lambda} > \frac{1}{2} \max_{i} \lambda_{i}.$$

The characteristic function of $\sum_{j=1}^{n} \lambda_{j} x_{j}^{2}$ may be written as

(4)
$$\phi(t) = \exp\left(-\frac{1}{2}\sum_{j=1}^{n}\mu_{j}^{2}\right)\exp\left\{\sum_{j=1}^{n}\left[\frac{1}{2}\mu_{j}^{2}(1-2it\lambda_{j})^{-1}\right]\right\}\prod_{j=1}^{n}(1-2it\lambda_{j})^{-\frac{1}{2}}$$

Expanding the exponential term containing t we have

$$\phi(t) = \exp\left(-\frac{1}{2}\sum_{j=1}^{n}\mu_{j}^{2}\right)\sum_{k=0}^{\infty}(k!)^{-1}\left\{\sum_{j=1}^{n}\frac{1}{2}\mu_{j}^{2}(1-2it\lambda_{j})^{-1}\right\}^{k}\cdot\prod_{j=1}^{n}(1-2it\lambda_{j})^{-\frac{1}{2}}.$$

Again, expanding the curly bracket by the multinomial theorem and substituting

186

Received February 8, 1961; revised May 28, 1962.

the values of the λ_j 's from (2), we get

$$\phi(t) = \sum_{k=0}^{\infty} \sum_{\pi's} C_k(\mu, \pi) (1 - 2it\bar{\lambda})^{-\frac{1}{2}n-k} \prod_{j=1}^{n} \{1 - 2it\alpha_j (1 - 2it\bar{\lambda})^{-1}\}^{\pi_j - \frac{1}{2}},$$

where $\sum_{\pi's}$ means summation over π_j 's such that $\sum_{j=1}^n \pi_j = k$, and

(5)
$$C_k(\mu, \pi) = \frac{\exp\left(-\frac{1}{2} \sum_{j=1}^n \mu_j^2\right) (\mu_1^2)^{\pi_1} \cdots (\mu_n^2)^{\pi_n}}{k! \pi_1! \cdots \pi_n! 2^k}.$$

Since $|2it\alpha_j(1-2it\bar{\lambda})^{-1}|<1$ $(j=1,2,\cdots,n)$ for all values of $t,\phi(t)$ may be expanded as the product of n power series. Thus, we can write

(6)
$$\phi(t) = \sum_{k=0}^{\infty} \sum_{p=0}^{\infty} b_{k,p} (-2it)^p (1 - 2it\bar{\lambda})^{-\frac{1}{2}n-p-k},$$

where

(7)
$$b_{k,p} = \sum_{\pi' s} C_k(\mu, \pi) a_p(\pi)$$

and $a_p(\pi)$ is the coefficient of θ^p in the expansion of

(8)
$$\prod_{j=1}^{n} \sum_{l=0}^{\infty} \alpha_{j}^{l} \beta_{j,l} \theta^{l}, \qquad \beta_{j,l} = (-1)^{l} \binom{\pi_{j} + l - \frac{1}{2}}{l}.$$

Explicitly, $a_p(\pi)$ may be written as

$$a_p(\pi) = \sum_{j=1}^n \beta_{j,p} \, \alpha_j^p \, + \sum_{j \neq t} \beta_{j,p-1} \, \beta_{t,1} \, \alpha_j^{p-1} \alpha_t$$

$$(8.1) + \sum_{j \neq t} \beta_{j,p-2} \beta_{t,2} \alpha_j^{p-2} \alpha_t^2 + \dots + \sum_{j \neq t \neq l} \beta_{j,p-2} \beta_{t,1}^2 \alpha_j^{p-2} \alpha_t \alpha_l + \sum_{j \neq t \neq l} \beta_{j,p-3} \beta_{t,2} \beta_{l,1} \alpha_j^{p-3} \alpha_t^2 \alpha_l + \dots$$

Thus,

$$a_0(\pi) = 1, a_1(\pi) = \sum_{j=1}^n \beta_{j,1} \alpha_j, a_2(\pi) = \sum_{t \neq j} \beta_{t,1} \beta_{j,1} \alpha_t \alpha_j + \sum_j \beta_{j,2} \alpha_j^2,$$

$$a_3(\pi) = \sum_{t \neq j \neq l} \beta_{t,1} \beta_{j,1} \beta_{l,1} \alpha_t \alpha_j \alpha_l + \sum_{t \neq j} \beta_{t,2} \beta_{j,1} \alpha_t^2 \alpha_j + \sum_{i=1}^n \beta_{j,3} \alpha_j^3, \cdots$$

Application of the inversion formula [2], namely, 1

(9)
$$F(x) = \frac{1}{2} - (2\pi i)^{-1} \oint \phi(t) t^{-1} \exp(-itx) dt,$$

¹ The integral \mathscr{I} is understood as a principle value, i.e., the limit, as $\epsilon \to 0^+$ and $T \to \infty$ of the integral over $\epsilon < |t| < T$.

188 B. K. SHAH

to (6), which is uniformly convergent for all t, yields

(10)
$$F(x) = \frac{1}{2} - (2\pi i)^{-1} \sum_{k=0}^{\infty} \sum_{p=0}^{\infty} b_{k,p} \oint t^{-1} (-2it)^p (1 - 2it\bar{\lambda})^{-\frac{1}{2}n - p - k} \exp(-itx) dt.$$

By using

$$\begin{split} \frac{1}{2} - (2\pi i)^{-1} \oint t^{-1} \exp(-2it\bar{\lambda}x) (1 - 2it\bar{\lambda})^{-\frac{1}{2}n - k} dt \\ &= \{2^{\frac{1}{2}n + k} \Gamma(\frac{1}{2}n + k)\}^{-1} \int_0^{2x} v^{\frac{1}{2}n + k - 1} \exp(-\frac{1}{2}v) dv, \end{split}$$

and

$$(\bar{\lambda})^{p}(-2\pi i)^{-1} \oint (-2it)^{p} (1 - 2it\bar{\lambda})^{-\frac{1}{2}n-p-k} t^{-1} \exp(-2it\bar{\lambda}x) dt$$

$$= \Gamma(p) \{\Gamma(\frac{1}{2}n + p + k)\}^{-1} \exp(-x) x^{\frac{1}{2}n+k} L_{p-1}^{(\frac{1}{2}n+k)}(x),$$

where $p \ge 1$, and [3]

$$(d/dx)^{p} \exp(-x)x^{\gamma+p} = p! \exp(-x)x^{\gamma}L_{p}^{(\gamma)}(x), \gamma > -1,$$

we rewrite (10) as

(11)
$$F(x) = \sum_{k=0}^{\infty} \left\{ b_{k,0} [2^{\frac{1}{2}n+k} \Gamma(\frac{1}{2}n + k)]^{-1} \int_{0}^{x/\bar{\lambda}} v^{\frac{1}{2}n+k-1} \exp(-\frac{1}{2}v) dv + \sum_{p=1}^{\infty} b_{k,p} \frac{\Gamma(p) \exp(-x/2\bar{\lambda}) x^{\frac{1}{2}n+k}}{\Gamma(\frac{1}{2}n + p + k) 2^{\frac{1}{2}n+k} \bar{\lambda}^{\frac{1}{2}n+p+k}} L_{(p-1)}^{(\frac{1}{2}n+k)}(x/2\bar{\lambda}) \right\}.$$

We see from (11) that Gurland's result [1] is the particular case when all $\mu_i = 0$ $(i = 1, 2, \dots, n)$.

4. Distribution of an indefinite quadratic form. Suppose

$$y'Ay = \sum_{j=1}^{n_1} \lambda_j x_j^2 - \sum_{j=n_1+1}^n \lambda_j x_j^2$$

where $\lambda_j > 0$ for $j = 1, 2, \dots, n$ and $n = n_1 + n_2$. We continue to assume that **x** has the probability density $f(\mathbf{x})$ of (1). Define α_j and $\bar{\lambda}$ as in (2) and (3) respectively. Then the characteristic function $\phi(t)$ can be written as

(12)
$$\phi(t) = \sum_{k,l=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{p} b'_{k,q} d_{l,p-q} (-1)^{q} (2it)^{p} (1 - 2it\bar{\lambda})^{-\frac{1}{2}n_{1}-k-q} \cdot (1 + 2it\bar{\lambda})^{-\frac{1}{2}n_{2}-l-p+q},$$

where $b'_{k,q}$ is expressible as in (7) with n_1 (in place of n),

$$d_{l,p-q} = \sum_{\eta's} e_l(\mu, \eta) g_{p-q}(\eta),$$

$$e_l(\mu, \eta) = \frac{\exp\left(-\frac{1}{2} \sum_{j=n+1}^n \mu_j^2\right) (\mu_{n+1}^2)^{\eta_1} \cdots (\mu_n^2)^{\eta_{n_2}}}{\eta_1 |_{\eta_2} |_{\dots |\eta_m| |l| |2^l}},$$

and $g_{p-q}(\eta)$ may be expressed, similarly to (8), as

$$g_j(\eta) = \sum_{t=n_1+1}^n \nu_{t,j} \, \alpha_t^j + \sum_{t\neq t'=n_1+1}^n \nu_{t,j-1} \, \nu_{t',1} \, \alpha_t^{j-1} \alpha_{t'} + \cdots,$$

where $\nu_{t,j} = \begin{pmatrix} \eta_j + t - \frac{1}{2} \\ t \end{pmatrix} (-1)^t$. Applying the inversion formula (9), the distribution function may be written as

(13)
$$F(x) = \frac{1}{2} - (2\pi i)^{-1} \sum_{k,l=0}^{\infty} \sum_{p=0}^{\infty} \sum_{q=0}^{p} b'_{k,q} d_{l,p-q} (-1)^{q}$$

$$\cdot \oint (2it)^{p} t^{-1} (1 - 2it\bar{\lambda})^{-\frac{1}{2}n_{1} - k - q} (1 + 2it\bar{\lambda})^{-\frac{1}{2}n_{2} - l - p + q} \exp(-itx) dt.$$

Making use of the *J*-polynomials and *K*-polynomials in the above integration (See Gurland [1]), we have the distribution function, for $x \ge 0$.

$$F(x) = \sum_{k,l=0}^{\infty} \left[b'_{k,0} d_{l,0} \left\{ K + c^{-1} \sum_{h=0}^{m+k-1} {m+k-1 \choose h} \Gamma\left(h + \frac{1}{2} n_2 + l\right) \right. \\ \left. \cdot \int_{0}^{x/\bar{\lambda}} \exp\left(-v/2\right) v^{m+k-h-1} dv \right\} + c^{-1} \exp\left(-x/2\bar{\lambda}\right) \\ \left. \cdot \sum_{p=1}^{\infty} \sum_{q=0}^{p} b'_{k,q} d_{l,p-q} (-1)^{p+q} \bar{\lambda}^{-p} \sum_{h=0}^{m+k+q-1} {m+k+q-1 \choose h} \right. \\ \left. \cdot 2^{m+k+q-h} \Gamma(h + \frac{1}{2} n_2 + l + p - q) K_{m+k+q-h-1,p-1}^{(x/2\bar{\lambda})} \right],$$

where n_1 is an even integer, say 2m. For $x \leq 0$ and $n_2 = 2m'$, we have

$$F(x) = \sum_{k,l=0}^{\infty} c^{-1} \left[b'_{k,0} d_{l,0} \sum_{h=0}^{m+k-1} {m+k-1 \choose h} \right]$$

$$\cdot \int_{-\infty}^{x/\bar{\lambda}} \exp(-v/2) v^{m+k-h-1} dv \int_{-v}^{\infty} \exp(-y) y^{h+m'+l-1} dy$$

$$+ \exp(-x/2\bar{\lambda}) \sum_{p=1}^{\infty} \sum_{q=0}^{p} b'_{k,q} d_{l,p-q} (-1)^{p+q} \bar{\lambda}^{-p} \sum_{h=0}^{m+k+q-1} \sum_{\gamma=0}^{p-1}$$

$$\cdot {m+k+q-1 \choose h} {p-1 \choose r} K_{m+k+q-h-1,p-1-r}^{(x/2\bar{\lambda})} J_{h+m'+l+p-q-1,r}^{(x/2\bar{\lambda})} \right].$$

5. Acknowledgment. The author wishes to express his thanks to Dr. C. G. Khatri for his valuable suggestions and help.

190 B. K. SHAH

REFERENCES

- [1] GURLAND, J. (1955). Distribution of definite and of indefinite quadratic forms. Ann. Math. Statist. 26 122-127. Corrections in Ann. Math. Statist. 33 (1962) 813.
- [2] GURLAND, J. (1948). Inversion formulae for the distribution of ratios. Ann. Math. Statist. 19 228-237.
- [3] Szegö, G. (1939). Orthogonal Polynomials. Amer. Math. Soc. Colloquium Publication 23 New York.
- [4] Ruben, Harold (1962). Probability content of regions under spherical normal distributions, IV: The distribution of homogeneous and non-homogeneous quadratic functions of normal variables. *Ann. Math. Statist.* **33** 542-570.