NOTES

A GENERAL VERSION OF DOEBLIN’S CONDITION

By Ricuarp Isaac

Yeshiva University and Hunter College

Let Xo, X1, --- be a discrete parameter Markov process on a measurable
space (2, Z) Wlth stationary transition probabilities P*(¢, A), teQ, A ¢Z.
Set P'(t, A) = P(t, A). All sets to be considered will be elements of 2. A’ de-
notes the complement of the set A.

The classical condition of Doeblin may be stated as follows:

(1) There is a probability measure m on =, an integer k = 1, and an ¢ > 0,
such that if m(A4) = ¢ then P*(t, A) < 1 — e for every t £ Q.

Under condition (1), a detailed analysis of the ergodic behavior of the process
may be given ([1], pp. 192 ff.) ; in particular @ may be decomposed into a finite
number of so-called ergodic sets, and the process always has a stationary prob-
ability measure A, that is, A(2) = 1 and fP(t, A)N(dt) = A(4) for all sets A.
Since many important processes do not satisfy Doeblin’s condition, Doob [2]
was led to consider more general conditions which could be used to analyze the
ergodic behavior of the process. Doob’s main hypothesis was the assertion that
the process has a stationary probability measure; from this and other conditions
he derived many of the ergodic properties of the Doeblin case in a generalized
form. Since any process satisfying (1) does have a stationary measure, Doob’s
condition is more general than Doeblin’s. The main purpose of this paper is to
phrase a condition in terms of the transition probabilities which includes (1) as
a special case, and then to show that our condition assures the existence of a
stationary probability measure. Doob’s results may then be employed when
applicable to describe the ergodic behavior of the process.

For each set A4, define the measurable set [[A] = {¢:lim, inf P"(¢, 4) > 0}.
(2) There is a probability measure m on = and a 8,0 < & < 1, such that if

m(A) = 8§, then m(I[A]) > 0.

If (1) is satisfied, then (2) holds. For if e is the positive number of (1) and
m(A) = ¢ then P"(t A) £ 1 — efor all ¢, and it is easy to see that P"({, 4) =
1 — eforalltand all n = k. Thus P"(t, A’) = eforalltand alln = %, and so
lim, inf P"(t, A") = ¢ > 0 for all ¢, yielding [A"] = Q. So (2) will be satisfied
fo=1—ce

The main result is:

TuroreM. If (2) holds, then there exists a stationary probability measure N for
the process. Moreover, if m(A) > 8, then N(A) > 0.

The main tools in the proof of the theorem are the notion of generalized limit
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and the use of two lemmas on finitely additive set functions. Before proceeding
with the proof, we define some terms and state the necessary lemmas.

A content p is a non-negative, extended real valued finitely additive set func-
tion defined on a field of sets such that u(¢) = 0. A measure, in terms of content,
is a countably additive content defined on a o-field. If u is a content on a o-
field, then u is called purely finitely additive (p.f.a.) if the relation 0 < o < u
for o a measure implies o = 0. (The ordering is the standard lattice ordering of
set functions.) Define the transformations 7" taking the set of finite measures
on = into itself by: (T"m)( ) = fP"(t -)ym(dt). Since a theory of integration
exists for contents [3], T* can be considered more generally as taking contents
into contents. All limits will be as n — .

The following two lemmas are due to Yosida and Hewitt and appear in [4].

LemMA 1. If u is a finite content and is pf.a., and if m is a finite measure and
u and m are defined on a o-field =, then for every e > 0, there is a set S & = with
w(8) = 0 and m(8) < e

LemMA 2. If p is a finite content on a o-field =, there isa unique decomposttion:
b = ue + wy where p, 18 a measure and us is a p.f.a. content.

Proor oF THEOREM. For every set A, put M,(4) = (1/n) Xr" (T"m)(4),
where T° is the identity transformation. By a corollary of the Hahn-Banach
theorem [3], p. 73, there exists a generalized limit, Lim 4, , for all sequences
of bounded real numbers. Set Lim M,(A4) = u(A) for each set A. The basic
properties of this generalized limit are:

(3) w@) =

(4) w(4) =

(5) If ANB=g¢, then wuw(4UB) = u(4) + u(B)
(6) Lim M,(A) = Lim M,;1(4)

(7 lim inf M,(A) < p(A) £ limsup M,(A4).

It is clear from these properties that u is a finite content and (6) easily shows
that Tu = w. It will now be shown that u is not p.f.a. Let & be as given in (2),
and let m(A) = &. By Fatou’s lemma,

8) f lim inf P"(t, A)m(dt) < lim inf f P(t, A)m(dt) = lim inf (T"m)(A).
If the left hand side of (8) is zero, then lim inf P*(¢, A) = 0 a.e. (m) or, in our
notation, m(I[A]) = 0, contrary to (2). Therefore (8) yields that

lim inf (T"m)(4) > 0.

(7) and the definition of M,(A) now show that u(4) > 0. Hence we have & such
that m(A4) = & implies u(A) > 0 for every such set A. Lemma 1 now applies
to prove that p is not p.f.a. Now use the decomposition of Lemma 2 to write

u = ue + uy where pu, 5= 0.
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u = Tu = Tu,+ Tu; and a little reflection shows that u. is the maximal measure
with the property: u, < u; one therefore obtains Tu, < p,. If T, < u., there
would exist a set E with (Tu,) (E) < u.(E), but then the relation (T'u.)(Q) =
[ P(t, Q)p(dt) = p(Q) gives the contradiction: (Tw,)(E') > u(E’). So
Tue = pe, and p. is a non-trivial stationary measure for the process; norming
it suitably, a stationary probability measure A is obtained. Suppose m(A4) > 8,
say, m(A) = & 4+ 4, 9 > 0. By Lemma 1, there exists a set S, m(S) < /2
and u(8) = 0.m(A'US) =m(4A") +m(S) <1 —56—ng+n2<1-—s
Therefore, (A’ U 8)" = AN 8’ satisfies m(AN 8') > 8, and hence, as we know,
u(AN 8) > 0. But then 0 < (AN S) = (AN 8) + w (4N 8 =
u(AN 8" proving p.(A) > 0 and A(4) > 0. The proof of the theorem is
complete.

As a simple example of a case covered by (2) but not satisfying (1), we con-
sider a process cited by Doob, [2]. Let @ = (—®, ©), £ = Borel subsets of Q,
and

(©) P, 4) = ot [ e — B0,

where p is constant, 0 = p < 1. The process with transition probabilities given
by (9) does not satisfy Doeblin’s condition, and

2
n _ Y
(10) lim P"(t, A) @ )i/ exp — 5 dy > 0

whenever A has positive Lebesgue measure. If m is a probability measure equiva-
lent to Lebesgue measure, and & is any fixed constant 0 < & < 1, (10) shows
that m(A) = & implies /[A] = @, so (2) holds. Of course, in this example, the
right hand side of (10) is the unique stationary probability measure for the
process.

In general, if P"(t, A) is absolutely continuous with respect to m for each
n, and f, (¢, s) are the respective densities such that, for each set 4 with m(4) =
3, there exists a set A*, m(4*) > 0, and a number ¢(4) > 0 with f,(f, s) = ¢
for (¢, s) ¢ A* X A for all n, then

P, A) = Lfn(t, s)m(ds) = & > 0

for t ¢ A*. So inf 4 lim inf P"(¢, A) = e and (2) is satisfied.
Thanks are due Y. S. Chow for having called the writer’s attention to Lemma
1.
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A TEST FOR EQUALITY OF MEANS WHEN COVARIANCE
MATRICES ARE UNEQUAL!

By T. W. ANDERSON

Columbia University

Let =¥ be an observation from the p-variate normal distribution N(n‘?,

%, ),a=1 - ,N,,g=1,---,q. Consider testing the null hypothesis’
(1) H:M(l) —_ . — ”(Q)‘

When the covariance matrices ¥, are equal, the hypothesis is a form of the so-
called general linear hypothesis, and a number of tests are available. (See
Chapter 8 of Anderson (1958), for example.) When ¢ = 2, Bennett (1951) has
extended the procedure of Scheffé (1943) to give an exact test based on Hotel-
ling’s generalized T°. (See Section 5.6 of Anderson (1958).) In this note we
extend previous procedures to ¢ > 2.

As an example, let ¢ = 3and N, = N, = N; = N, say. Let

1) (2) (3)
Ya = 01 To + Qg Ta + a3 Ta

2
2) Za = b2 + b2l + byal?,

where Y o_1a, = 0,>.5_1b, = 0 and (a1, az, az) and (b, by, bs) are linearly
independent. (In practice the indexing of the observations in each sample would
be done randomly.) Then the hypothesis (1) is equivalent to the hypothesis

3 3
(3) &Ya = Zl ap® =0, 82 = Zl b = 0.
g= g=

. . !’ !’ .
The covariance matrix of (y. 2a) is

(4) ( a§21+a§22+a§23 alb121+a2b222+a3b323>
a1 b1 Z + asbe 2o + a3 bs 25 ble'l-bgzz'l‘bgzal )

The hypothesis (3) can be tested by a T -statistic
(5) T = N £)S (g)
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