POST CLUSTER SAMPLING!

By Sakmi P. Grosg?

University of California, Berkeley

1. Introduction. The main difficulty often faced in cluster sampling is the lack
of information relating to the composition of the clusters. In such situations the
clusters can be built up on the basis of an initial random sample, then the final
sampling can be done with these clusters as sampling units. Thus the name
“Post Cluster”, which essentially means that the clusters are formed afterwards
and are not known beforehand, has been coined by T. Dalenius, who first in-
troduced the idea in his book Sampling in Sweden, pp. 156—158.

The notion of forming groups of units (which may either be regarded as strata
or clusters) after drawing an initial sample is due to Friedman and Wilcox.
They queried Neyman at a Conference on Sampling Human Populations held
in Washington, D. C., in April 1937 whether there was a solution to the problem
of the optimum size of the initial sample and the smaller stratified sample selected
from the initial sample. Neyman solved this problem subsequently and gave the
results in a paper in 1938. In the Friedman-Wilcox method a certain number of
units (indicated by the relevant optimum allocation theory) are sampled from
every cluster (or strata); but in the method proposed in the paper a subset of
entire clusters is selected. Later the Friedman-Wilcox method came to be known
as phase sampling. David following Neyman (1938), among other things, gave
a slightly more general treatment of the problem and also used the method of
characteristic random variables. The common feature in the two methods is the
regrouping of units after initial sampling according to some rule.

This technique of sampling differs from phase sampling in that it uses a
hierarchy of sampling units, and differs from ordinary subsampling in that
sampling units at the second stage are larger than the sampling units at the
first stage. "

The purpose of this paper is to develop a stochastic model for analysis of
sampling problems that may arise in cluster sampling when the composition of
the clusters is not at hand.

2. A stochastic model for the selection of the initial random sample. The
type of sampling outlined above, will obviously depend on the ‘“‘rule” which will
be adopted in forming the clusters out of the sampled elements. We shall first
consider the simplest situation where the clusters already exist in the popula-
tion but the elements cannot be identified to the proper clusters until some
auxiliary character is observed. The model behind the sampling procedure can

Received March 14, 1962; revised November 2, 1962.

1 This paper was prepared with the partial support of the Office of Ordnance Research,
U.S.A., Grant (DA-ARO(D)-31-124-G183).

2 Now at Thomas J. Watson Research Center of IBM.

587

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to &)

A

The Annals of Mathematical Statistics. KON

Www.jstor.org



588 SAKTI P. GHOSH

be looked at from the point of view of an urn-scheme as follows: We have a
large urn containing N balls. These balls are of M different colors, but the colors
cannot be identified unless the balls are drawn. Now at the first stage of the
sampling procedure we draw = balls out of this urn and place them into M
small urns'according to the color of the balls (some urns may be empty). At the
second stage we shall select m small urns from these M small urns and then
measure some properties of the balls, say diameter, etc.

The statistical model which will be the basis of the analysis may be described
as follows. Suppose we have a finite population (7) consisting of N distinct
elements and the values, which the character under analysis can take, are given
by Xi,X:, -+, Xx. These N elements may in principle be grouped into
M (> 1) clusters, which may be denoted by CJ’s, 7 = 1,2, ---, M and C; con-
tains N; elements, i.e., ) .ie; N; = N. The elements of C; are given by C; =
(Xa,Xie, - ,Xiw,;) where (71, 42, --- ,iN;) ¢ (1,2, --- , N). We are inter-
ested in estimating the mean per element, i.e.,

- ¥ N .

X = ;1 ; Xii/N.
Suppose we first draw a random sample of n elements without replacement.
Let us introduce a set of random variables e;,7=1,2, --- ,N;,7i=1,2,
.-+, M, indicating the performance of the random sample, i.e.,

;=1 if X, is selected in the random sample and this event can happen
with a probability = n/N,
=0 otherwise.
Hence our random sample selected is given by

R, = (é11X11 ) a2 X1z y T, GMNMXMNM)-
The clusters formed out of R, will be denoted by d.’s and are given by
di = (eaXa, €aXir, -+, ew;Xaw;) 1=1,2,--- M.

3. Selection of post clusters with equal probabilities. In this section we will
primarily be concerned with the selection of m clusters with equal probabilities
without replacement. Here also we introduce another set of random variables
¢i,t =1,2 - M indicating the performance of selection of clusters, i.e.,

¢:i=1  if d; is selected in the sample and this can happen with prob-
ability m/M, ‘
=0 otherwise.
The ¢.’s are dependent among themselves but because of independence between

sampling of elements and sampling of clusters (empty clusters are also to be
selected—discussed in more detail in ‘the footnote’). However ¢’s and the

3 In actual realization any of the di’s may be identically zero. Th such cases also, we
shall assume while drawing samples from the di’s that the particular d; exists hypotheti-
cally. This presents no difficulty in building up the estimate if d; = 0 appears in the sample
and at the same time retains stochastic independence of the ¢; and e;;’s. -



POST CLUSTER SAMPLING 589

e;;’s are stochastically independent. Hence the sample finally selected out of =
can be denoted by S = (¢1di, dods, - -+ , duldn).

Unbiased estimate of X. Without any confusion we can denote the total of
the values of the X;;’s in d; by the same symbol, ie., d; = 21" ;X , hence
éid; = ¢; 2 101 €;X.; . Thus the sample total is given by

M
= 1Z=1 ¢'Ld Zl ]Z ¢z€u i .
LemMa 1. £ = Mz,/mn is an unbiased estimate of X.
ProoF. On account of the independence of the ¢.’s and the €;;’s we have

M N;
B(w) = 3 3, Xiy B(4:) B(e) ;_“, Z Xugp m=3r X
Thus the lemma follows immediately.

ReMARK 1. We have assumed that the ¢.’s are independent of the e;;’s but
when the zero d; are omitted, while selecting a sample from the d,’s, some de-
pendency is introduced, but still an unbiased estimate can be developed for the
situation as follows: Suppose » (random number) of d;s are not identically
zero. Then we define

oi if d; is selected in the sample with probability = m/» (» > m),

1
0 otherwise.

Il II

Thus ¢; = 0 also for those 7 for which d; = 0. Now our estimate can be defined as

Z Z @iei; Xijv/mn.

1=1 j=1

Z, will be unbiased because E(Z;) = Egz E(&y/R,) where E(&/R,) is the condi-
tional expectation of %, given R, and Ey, is the expectation over R; . On simplifica-
tion E(&%) = X. In this case, however, the variance will depend on » and this
may present some difficulty.

Lemma 2. If X and Y are stochastically independent, then

V(X-Y) = E(Y)V(X) + E(X)V(Y) = E(X)V(Y) + EX(Y)V(X).

This lemma is due to Quenouille (1958, p. 37) and subsequently given in a
slightly different form by Goodman (1960).

LemMma 3. E’(eij) = n/N, V(eij) = n(N - n)/N2; COV(&;,‘ y eu) =
—n(N — n)/N*(N = 1) for j #1; E(¢:)) = m/M; V(¢:) = m(M — m)/M?%
Cov(es , ¢s) = —m(M ~ m)/M* (M — 1) for i 5 k.

Lemma 4. If { X, X} are independent of {Y1, Ys} (but X, 7s dependent on X,
and Y, is dependent on Y,) then

Cov(X; Y, X2 Yy) = Cov(XiX2) E(Y1-Ys) + Cov(Yy, Yo)E(X1)E(XS).

Lemmas 3 and 4 are obtained easily from definitions.
CororrAry. Cov(X Yy, X Y,) = E(Y,-Yy) V(X) + E*(X)Cov(Y:, Y3).
Using Lemmas 2, 3, and 4 the variance of £ can be calculated directly and
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after simplification is given by

N~ _ MN—n) ; , M(M —m)(n — 1)
1 V(@) = wn =1 ° 1 N = DI =1) '°
+ (M — m)(N —n) b6
N mn(N —1)
where
2 1 X U 2 2 .
T =5 > > X% — X* = Variance of the elements.
im15=1
Ve = 1 > (X ; — }i)z = Variance of the cluster totals
CMa\t M )

The details of the proof are given in the appendix.

It is of interest to investigate whether the estimate Z based on post cluster
sampling (PCS) is better than random sampling (RS) of elements without
replacement. The comparison becomes a little difficult because of the fact that
the number of elements in PCS is a random variable. So the only way the com-
parison can be made is to consider the expected number of elements. The ex-
pected number of elements in PCS is mn/M. The variance V' (Sz) of the mean of
an RS without replacement of mn/M elements is given by

V(8z) = (M/mn)[(N — (mn/M)/(N — 1)]o".

It is easy to see that V(£) can be expressed as

N (M —m) [M*(n — 1) 1<X2_ 2>
2) V(@) = V() + = \avar =1 " T\ 2 ; X )p -

The term in the second _bracket of (2) enables us to state the situations when
the unbiased estimate of X based on PCS will be better or worse than RS. Thus

V(%) <, =, > V(Szr) accordingly as
@) M —-1)/n(M - 1]V, <,=,>Nds" — X[(1/n) — (1/N)].

The sign of equality holds in the trivial situation when m = M.

In a random population, i.e. when the clusters have same variance and hence
V.= 0, we have V(z) <, =, > V(Sz) accordingly as X(N/n — 1) <, =,
> .

In most practical situations o* > X(N/n — 1) and hence for random popula-
tions random sampling would be better than PCS.

Ratio estimate of X. The population mean X, in case of PCS can be looked
upon as the ratio R = X/N of the expectation of two random variables, viz,
the variable under analysis and the number of observations. Hence, a ratio
estimate of X based on PCS can be stated in the form,

M

M N; N;
§= 2 > dieisXij/ D, D bieis -

t=1 j=1 1=1 j=1

It is obvious that £ will be a biased estimate, as it is in the case of ordinary
ratio estimate. (An unbiased ratio estimate can also be obtained by modifying
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the design a little as shown by Lahiri (1951) but we shall not discuss his design
here.) An approximate expression for the bias can be developed by using the
classical technique of expanding the denominator in Taylor series and then taking
expectation. £ is unbiased when we neglect terms of 0(1/N) and the first approxi-
mation to the magnitude of bias, i.e., when we neglect terms of o(1/N?) is given
by

E(#) —R=R[(M —m)(n — 1)N/mn(M — 1)(N — 1)]

{C(N.N:) — C(N.X,)},
where C(N:N;) = M*V(N;)/N* = Square of the coefficient of variation of the
Ns, C(N:X;) = Cov(N;:, X.)/(XN/M?) = Coefficient of covariation between
X:;and N, .

The details of the proof are given in the appendix.
For large N we can approximate N/(N — 1) by 1; thus we have

(3)

n M-1

As m increase the bias decreases rapidly through both factors 1/m and
[1 — (m — 1)/(M — 1)] showing that this ratio estimate is a consistent estimate
as m increases but not as n increases. This ratio estimate has the usual property
of an ordinary ratio estimate that the bias vanishes when the regression of X;
on N, is linear, i.e., C(N;N;) = C(N.X,).

It would be of interest to look into the variance of the ratio estimate to have
an idea of the precision of the estimate. The variance of the ratio estimate will
be an approximate one, neglecting terms of o(1/N ?). Since the ratio estimate is
unbiased neglecting terms of 0(1/N), this approximate variance will be equal to
the mean square error neglecting terms of o(1/N*)

V(£) = El¢ — E(#)]

~ RE [21 2 (@i eij — mn/MN)Xy; _ Doi i (dieij — mn/MN):I2
~ (mn/MN)X (mn/MN)N
- R [V(Z > ¢ i Xij) + V(O 2 dieij)
(mn/MN )2 X? (mn/MN )2N?
_ 2 Cov Q02 bieis Xi, 20 0 &b Gij)]
(mn/MN):NX ’

All these terms in the bracke®have already been calculated, hence substituting,
we have

V() = R? I}2 (1 - %)(1 o 11)(N]i 1) (C(X: X2)

M(N — n)
W S0 (X X |

where C(X;X:;) = o//X* and C(X.X;) = V./(X/M)>.

(4)  Bias = 5(1 - 1)(1 _m-1 ) [C(N: N:) — C(N: X2)].

(5)
— 2C(N: X;) + C(N;N:) +
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Assuming (N — 1) /N approximately to be unity, we have

V(8) ~ RZ%(1 - })(1 _m= 11) [C<X,~ X:) — 2C(N: X2)

(6)
(1 n/N)(M 1

m/M)(n — 1)
Let us consider the reduction in variance, due to the use of ratio estimate,

over the unbiased estimate. By simplifying (1) a little and then subtracting (6)
from it, it follows that

V() — V(8) = R°L (1 _ %)(1 3 Z - 11>

[((111%4__—_11)_)< >+2C(NX)——C(N N)]

Equation (7) also gives us a chance to find the situations when V(z) = V (%),
namely when the quantity in the third brackeb of (7) is nonnegative, i.e.,
(M — 1)(N —n)/(n — 1)N + 2C(N:X:) — C(N:N:) 2 0.

On simplification, the condition becomes

® sz [1- 521 (- F) o)

where 8(X./N;) is the regression coefficient of X; on N;.

For ordinary cluster sampling, the situation when the ratio estimate is better
than the unbiased estimate is 8(X:/N;) = X/2N, hence from (8) it is obvious
that for the PCS the ratio estimate may be better than the unbiased estimate
even when the ratio estimate is not better than the unbiased estimate for or-
dinary cluster sampling.

Special cases.

(i) The regression between X ; and N ; is linear. In such cases £ will be unbiased

and then
V@) = @) - K (1 - %)(1 - II)B‘V’_“II (1 - %) + C(N; X,-)].

Hence V(£) >, =, < V(&) according as
C(NX:) <,=,>—[(M—1)/(n = D1 —n/N).

(ii) When 2C(N:X:) = C(N:N,), ie., for ordinary cluster sampling the ratio
estimate and unbiased estimate have the same variance. In such situations

V(#) =V(z) —[(M — m)/mnlll — (n/N)]R’
and thus V(&) > V(£) and V(#£) decreases sharply as R increa;ses.

+ NN + (X X,-,->].

(7)

4. Selection of post clusters with probabilities proportional to size. The problem
of selecting with varying probabilities is well known and the general theory has



POST CLUSTER SAMPLING 593

been discussed by many, and as our task is only an application of these general
theories to a special stochastic model, hence we shall not take the trouble of
exploring all branches of the general theories but will work with only one case,
namely drawing m clusters with probabilities proportional to the post cluster
sizes and sampling being done with replacement. Hence the clusters will be
selected with probabilities

N

P,-=Ze,~j/n, i=1,2,...’M.

j=1

Unbiased estimate. Suppose d; = D 11 €:;Xs; and let Z; = di/pm.

Lemma’ 5. Z = Y7y Zi/m s an unbiased estimate of X.

Proor. It is easy to see that the conditional expectation of Z given the p.’s
is E(Z:/p) = D.ie1 di/n which is the same for all 4, hence

E(Z) = Z_‘i E(ds)/n = ; ; X B (eij)/n = X/N = X,

which completes the proof. '
LemMA 6. The variance of Z is given by

V(Z) = [mn(N — 1)]° [(N —n) ; owi+ (n — 1)Nos + (m — 1) (N — n)o”

+ (N —n) Z=; (X} — X*/M) +n(m — 1) (N — 1)}2’2] + o(N) T,

Where
crw, = Ny DN X:; — X* = within variance of the sth cluster.

a=N'"2EX-X)’= between variance of the means of the clusters.

The proof of the above lemma is given in the appendix.
In the special case when the within variances are the same, say o5, in each
cluster the expression for the variance becomes

V(Z) = [mn(N - 1)]—l [(N — n)Ma; + (n — 1)No3
(9) + (m— )N —n)d"+ (N —n) Z,l (X — XYM)

+ n(m — 1) (N — 1)}2’2].

Though (9) is not a very neat express1on, yet it 1ndlca,tes that for sampling
with probablhty proportlona,l to size PCS o , a5 , o X%, X% all contribute to
increase the variance of Z.

4 In actual realization some p; may be zero, in such situations that particular cluster
for which p; is zero is omitted while drawing samples from the post clustérs.
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5. Optimum design for PCS. It is obvious that in PCS there are two parameters
n and m which can be chosen in an arbitrary manner except for the restriction
n < N, m = M. Here the problem of selecting these parameters in an optimum
manner shall be discussed. The cost plays an important role in all sample surveys
and the survey has to be designed within a fixed budget. In PCS the number of
elements ultimately to be surveyed is a random variable, hence the restriction
that shall be imposed is that the expected cost should be equal to the budget Co.
The cost function can be assumed to be linear, say, C = Cin 4 Cz D ity D 1%
i€ , Where

(1 = Cost per element of the random sample,

C, = Cost per element finally selected through the cluster sample. Hence the
expected cost is given by E(C) = Cin + Comn,

If expected cost is fixed at Co . then the minimum variance unbiased estimate
is obtained with

_ {(¢ + X)(NC — C)MN + M*(Co — C)V.}}
(MV, — X*N»} ’
Co(MV, — XN}

(10)

n

(11) T oMV, — N}

+ C3{(e* + X)(NC, — C)MN + MHCy — COV.}}
These solutions are obtained by routine minimization techniques using
Lagrange multipliers. In the simplification N — 1 and M — 1 have been approxi-
mated by N and M respectively.

6. Appendix. Variance of Z.
V(z) = (Mz/m )[Z Z X‘UV(d”L €i;) + Z Z XiiXa Cov (¢ieij , dpieir)

+ Z Z Z X Xu Cov (diesj , drex) ]

1%k 7
Using Lemmas 2, 3, and 4 we get

v = X (s oyl i om) w2 )
m(M —m) n(n—1) m* n(N —n)
+ ‘:,;X“X"{ g "N(N=1) M* NN — 1)}
nin—1) m(M —m) m n(N —n)
+ ; ; Xis Xu {N(N — 1) M(M —1) MN*N — 1)}]'

The quantities in the second bracket can be taken outside the summation sign
and then making use of the facts

15 X=X = XN,
N; 5

PIDIP D CEDIOIP OUEDIPIPCEDIPCEDIPIPLY
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; El Xij X = (Z Z X)) — E(Z X)) =NX - Z xi,
7 B 3 J 7 F) 7
and using the definitions of ¢° and V, as given in Section 3 and on simplifying
a little we get Equation (1). To obtain (2) we add and subtract V(R,) on the

right-hand side of (1) and simplify a little.
Calculation of bias in £. £ can be written in the form

£=R - 2o 2o ¢ & Xij/ (mn/MN)X

D i 2 i i €/ (mn/MN)N
_ > i (¢i & — mn/MN)X; > 2o (i 5 — mn/MN)|™
=k [1 + (mn/MWX ][1 T i M ] '

The second factor can be expanded in Taylor series and then multiplying term
by term and neglecting terms of smaller order than o(1/N?) we have

¢=F [1 + Zi Zj (¢: et — mn/MN)X; — Z Z (¢i 5 — mn/MN)

(mn/IINNX = (mn/ MN)N
+ {Zi Zi (¢: &is — mn/MN)}?
(mn/ MNVN?
(2o 20 (¢ eij — mn/MN)XiH {2: 2 (i ei; — mn/MN)} 2
- (mn/MNYNX + o(1/N) ] '

A first approximation to the bias is obtained by taking expectation of the above
expression. Hence

V(i 2idies) _ Cov (Do 205 i e Xy, 2i Dui b fii)]
(mn/MN )2N? (mn/MN)NX )
We have already calculated V(D : D_;¢:€:;X:;) and if we substitute in that

expression X;; = 1 and note the following D_: 2.; X3; = 2.s 2.;1 = N, for

fixed ’i, Zj,é}c 1= N,(N, - 1), Ei,ék Zj,z 1= Ei,ék N,Nk then

V(D éiei)
. M
_ _@_[(MN — mn)N + MNn — Nmn — MN + TS NN = 1)

E(%) —R%R[

M2N? N -1
MN — mn + Mmn + Nmn — MNn — MNm )

Now making use of the fact that D u NN, = (D_iN)> — D _:Ni =
N? — > Niand o*(N:) = D_; Ni/M — N*/M?* and simplifying a little we have

V(X X i) = [mn(M — m)/M°N*(M — 1)(N — 1)]
AM*N(n — 1)*(N)) 4+ N*(N — n) (M — 1)].

Again Cov (D2i X i Xis, D.i 2. jbie;) can be obtained from
V(i 2 idieiiXi;) = Cov (D2i 2sdieiiXis, Di Dj bieiiXs;) by substitut-
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ing unity for one set of X;;’s. Thus

Cov (Z: ; i & X5, Z 2]: bi €i;)

mn [N(MN _ mn)X'-l—Nn(M — m) — MN + mn;(Ni — 1) ]ZXu

DY N—1
MN — mn + Mmn 4+ Nmn — MNn — MNm
* Or = D — 1) O AL

I\Ioting the fact that Z'i;ék NiZj ij = Zi;ék N;Xk = NX — Zi N'LX, =
N*X — >, N.X; and using the same type of simplification as in calculating

V(22i 2 dies;) we have
Cov (32 Doy, T T dwe) = lon(M = m) /MN*(M — D(N — 1))

[M*N(n — 1) Cov (Ns, Xs) + N*X(N — n) (M — 1)].
Hence

. 3 R(M — m)
Bias = E(£) — R = mn(M — 1)(N — 1)

[HO=D vy + (v —myar - 1)

- ]‘ﬁ-]’-\”,—}g—l)Cov (Ne,Xo) — (N — n) (M — 1)]

TV mn(M — 1) (N — 1)
Calculation of the variance of Z.
V(i) = ER1 V(Z/Ri) + VR; E(Z-/Rz)

1 M 9 o) = 1 M N3
= Bz, — Elpizi_E(Z/Rl)'i'h‘EVRl PIDITND &

i=1 j=1

[C(N:N;) — C(N: X2)].

1 di 1 1
=~ 2; Er WEIH(; di)’ + o Ve, (2; 2; €5 Xij)

1 W —
_1lfn (X e Xip)? 1 EERY:
- [772 2. By, (—ZT_) + (1 - ﬁ) Er (3 Z eis Xis)
- @ ; X ERl(e’if))z]-
Now ‘ )
(322 X Bale))’ = [0 3 Xo(n/N)T' = n” X
. 2 _n(n—1)N 52 | n(N —n) 2
In( e Xo) = Sy X'+ jy =) & 2 X

(o) 1 Loy 2 o o] o)
ERI( D€ )_N—l[(N_n).]Vizj:Xn'l'(n l)N,Xz]+o ¥.):
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Substituting the above in ¥ (Z) and simplifying we get (9).
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