ON THE SAMPLE SIZE AND COVERAGE FOR THE JIRINA
SEQUENTIAL PROCEDURE

By Sam C. SAUNDERS
Boeing Scientific Research Laboratories

0. Summary. A short exposition of the use of the generalized Ji¥ina sequen-
tial tolerance limits procedure, and the necessary assumptions, is given. A method
of obtaining the confidence level of the coverage for various values of the param-
eters from existing tables is included. Formulae for the expectation and vari-
ance of the random sample size are derived and usable approximations obtained.
That the random sample size, appropriately scaled by one of the parameters,
has an asymptotic distribution as that parameter increases is proved and the
Laplace transform of this distribution is found. Also formulae for the asymptotic
mean and variance are found and methods for their calculation exhibited. Some
applications are given in the following paper.

1. Ordering the observations. Suppose that we have a finite (or countable)
set of (measurable) functions {w;} mapping a sample space  which we may
think of as being a Euclidian n-space, into a space which is partially ordered by
the relation <.

We define a balance (<, ~, >) on & by taking x ~ y iff w:(z) € w:(y) and
wi(z) > wi(y) forc = 1,2, .-+ z < yiff wj(x) < w;(y) where j is the least
index such that wi;(z) € wi(y) and wi(z) > wi(y). Thus, a balance allows us to
say for any two points  and y in & exactly one of “z equivalent with y”’, “z
less than y”, or “y less than 2> must hold.

We assume that the balance is continuous for a random variable (r.v.) X,
that is, Pr[X ~ z] = 0 for each z ¢ . Any triplet of binary relations which are
mutually exclusive and exhaustive for which the equivalence classes induced by
one such relation are such that each has (probability) measure zero will do for
our purposes. But the balance we have defined above fits most applications in
which one has a qualitative way of deciding with probability one for any two
sample values which is the worst (or best). -

In the above definition of a balance we have followed that of Kemperman
[4] in an earlier publication.

We describe the operation of the Jifina procedure. Take » independent ob-
servations for the r.v. X, call them X; , -- -, X, . During the first stage we deter-
mine an acceptable region, call it R, , which is one of the statistically equivalent
blocks.

During the jth stage j = 2, 3, - - - continue sampling as long as
(1.1) XpieRi and § <k,
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where ¢ is the number of observations drawn during the preceding (; — 1)
stages. If (1.1) holds for ¢ = k, terminate the procedure and set D = R;_; .
If X,.HzR,_l and 7 < k determine a new region from the ordered sample of
(t + ©) observations, call it B;, by omitting exactly 7 of the (¢ + ¢ + 1) sta-
tistically equivalent blocks in such a way that R;,_; € R,;. We then continue
to do our sampling for the (5 + 1)st stage.

It is known that this procedure terminates with probability one, call the
region determined D, and if we let Q = Pr[X & D] be the coverage, then

k
(12) PriQ> 6l = (1 — 6)" exp {n; B"/j} for 0<g<L.

In his original paper [2], Jifina has shown that (1.2) holds for the usual ordering
on the real line with the acceptable region the interval between the sth and the
(n + n — r — 1)st order observations where r + s = 7, i.e., we obtain upper
and lower tolerance limits by omitting the upper r and the lower s blocks. How-
ever, the generalization that we have stated is immediate and is given in [5].

Jifina’s original paper [2] was in Russian, however, this paper has recently
been translated and has appeared in [3].

2. Discussion of applications. The sequential tolerance region procedure for
independent identically distributed random variables defined above (as well as
others defined in [5]) are equivalent to standard non-sequential procedures in
which the sample size is chosen at random, according to a specific distribution,
before taking the sample. The procedures are equivalent in the sense that they
have the same distribution of the coverage and of the sample size (see [5]). This
is because for a given sample size the rank statistic which gives the order in
which the set of observations appears and the order statistic which gives the
values of the set of observations are independent.

This raises a question as to the usefulness of the Jifina procedure for such
sequences of independent identically distributed random variables unless there
is some saving in either the expected sample size or a gain in coverage. It is
known [2], [3] that for » = 1, (i.e., either an upper or lower tolerance limit using
either the maximum or minimum observation) if the sample size required of the
fixed sample is equal to the expected number of observations for the sequential
procedure, then the coverage of the fixed sample is always greater. On the other
hand for » = 2, if B is sufficiently near 1 and the fixed sample size equals the
expected sample size for the sequential procedure, then the probability that the
coverage of the sequential procedure exceeds 8 is greater than the probability
that the coverage of the fixed sample exceeds 8. The question as to whether the
B required by the theorem is in the range of 8’s used in application can be an-
swered in each specific instance by the results of this paper.

Let us relax the assumption of identical distribution and assume there is a
possible trend in the independent observations. Suppose we establish a tolerance
region using the Jifina procedure and, if no trend exists, we have a specified
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distribution of coverage and of sample size but, if there is a trend in the observa-
tions, the sequential procedure should stop the sampling earlier and increase the
coverage in a stochastic sense. Under what conditions this is true is the subject
of the following paper.

This area of application makes it of interest to study in detail the distribution
of the sample size and the coverage of the Jifina procedure and to provide tables
for their use.

3. The distribution of coverage. In order to be able to determine the param-
eters necessary to obtain a specified coverage, i.e., to be able to determine
7, k such that Pr[Q > B]= 1 — a, where « is small, positive and is specified in
advance, one must have available, in some form, values of (1.2). Thus one needs
values of the function

(3.1) Ax(B) = ‘,-; F/ji —In (1 — ) 0<B<1

for the range of 8 and k of interest. While a short table of D5, 8°/7, at 8 = .8,
.9, .95, .99 in suitable increments of % from 1 to 50, was included in Jifina’s
paper, there does not appear any method for determining anything about the
random sample size, its expectation say. ‘

For a given tolerance estimation situation, i.e., for fixed 7, 8 and «, the prob-
lem of determining the least k such that (3.1) is satisfied can be done by finding
the least integer k such that

(3.2) A(B) = (=1/7) In (1 — a).

That this can be done with an error of at most one from existing tables [6] we
now show by the
TeEOREM 3.1. For 0 < B < 1,k = 1,2, - -+ we have

(3.2.1) Ei[kIn (1/8)] = A(B) = Ei[(k + 1) In (1/8)]
where Ei is the exponential integral defined by

0 —t

(322) Bi (2) = [ Ay for > 0.

Proor. Since §°/z is decreasing for x > 1 we have
0 . 0 ﬂz
=), 03/ — <
rea(®) = 2875 s [ S o< 08)

and by making the change of variable { = z In (1/8) we obtain a double in-
equality equivalent with (3.2.1).
However, it is convenient to have Ax(8) tabled in the range of interest and
Table 1 gives values of 8 = .8, .85, .9, .95, .99, .999 and k = 1(1)30(2)50(5)90.
Recently J. C. Gower [1] has provided some asymptotic formulae for the



TABLE 1
Table* of Ar(B)

B

k
80 85 90 95 99 999
1 .809 1.047 1.403 2.046 3.615  5.909
2 .489 .686 .998 1.594 3.125  5.410
3 .319 .481 755 1.309 2.802  5.077
4 .216 .351 .501 1.105 2.562  4.828
5 .151 .262 472 .950 2.371  4.629
6 .107 .199 .384 .828 2.214  4.464
7 772 (-1) 153 .316 728 2.081  4.322
8 .562 (=1)  .119 .262 .645 1.966  4.198
9 413 (-1)  .935 (—1) .219 .575 1.864  4.088
10 .306 (=1)  .738 (—1) .184 .515 1.774  3.989
11 228 (-1)  .586 (—1) .155 .463 1.6903  3.899
12 170 (=1)  .467 (1) .132 .418 1.619  3.817
13 128 (=1)  .374 (1) 112 .379 1.551  3.741
14 .966 (—2)  .301 (—1) .959 (—1) .344 1.489  3.670
15 731 (=2)  .242 (~1) .822 (—1) .313 1.432  3.604
16 .555 (=2)  .196 (—1) 706 (—1) .286 1.379  3.543
17 423 (-2)  .159 (—1) .608 (—1) .261 1.329 3.485
18 .323 (=2)  .129 (-1) .524 (—1) .239 1.283  3.431
19 247 (=2)  .105 (—1) .453 (—1) .219 1.239  3.379
20 .189 (—=2)  .858 (—2) .392 (—1) .201 1.198  3.330
21 145 (=2)  .701 (—2) .340 (~1) .185 1.160 3.283
22 12 (-2)  .574 (—2) .205 (—1) .170 1.123  3.239
23 .861 (—=3)  .470 (—2) .257 (—1) 157 1.080  3.19
24 .664 (—3)  .386 (—2) .224 (—1) .145 1.056  3.156
25 513 (=3)  .317 (-2) .195 (—1) .134 1.025 3.117
2 .307 (—=3)  .261 (—2) .170 (1) .124 .995  3.079
27 .307 (=3)  .215 (—2) .149 (1) 114 .967  3.043
28 .238 (=3)  .177 (—2) .130 (1) .106 .940  3.008
29 185 (—3)  .146 (—2) 114 (1) .981 (—1) 914  2.975
30 .143 (=3)  .121 (—=2) .996 (—2) .909 (—1) .800  2.943
32 .867 (—4)  .825 (—3) 765 (—2) .783 (—1) .843  2.881
34 .526 (—4)  .565 (—3) .590 (—2) .676 (—1) .801  2.823
36 .320 (—4)  .389 (—3) .456 (—2) .584 (—1) 761 2.769
38 195 (—4)  .268 (—3) .353 (—2) .506 (—1) 795 2.718
40 119 (—4)  .185 (—3) .274 (—2) .439 (~1) 601 2.669
42 730 (=5)  .128 (—3) .213 (—-2) .382 (~1) 650 2.623
44 448 (—5)  .888 (—4) .166 (—2) .333 (—1) .620  2.579
46 .275 (=5)  .617 (—4) .129 (—-2) .200 (—1) 601  2.537
48 (169 (=5)  .429 (—4) .101 (—2) .253 (—1) 575 2.496
50 104 (=5)  .209 (—4) .789 (—3) .221 (~1) 551  2.458
55 .314 (—6) .122 (—4) .429 (—3) .159 (—1) .495  2.368
60 058 (=7)  .499 (—5) .235 (—3) .114 (~1) 447 2.287
65 .200 (=7)  .206 (—5) .129 (—3) .830 (—2) 405 2.212
70 100 (=7)  .854 (—6) 713 (—4) .604 (—2) .368  2.144
75 .306 (—8)  .356 (—6) .396 (—4) .441 (-2) .335  2.080
80 .214 (—=8)  .150 (—6) .221 (—4) .323 (—2) .306  2.021
85 161 (—8)  .638 (=7) .123 (—4) .238 (—2) 279 1.965
90 149 (—=8)  .279 (=7) .691 (—5) 175 (-2) 256 1.913

* Integers in parentheses are powers of 10 by which entry is to be multiplied.
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evaluation of A,(B8), the remainder term of the logarithmic series, which are
useful when k(1 — B) is small. In [1] he quotes an unpublished result of P. M.
Grundy which is, in our notation,

Aea(B) = —Ei [k ln (1/8)] + 8°/2k

with an error less than (1 — & In 8)8*/12%*. This result coupled with Theorem
(3.1) should enable one on most practical problems to solve (3.2) readily in
cases where the table does not apply.

4. The first and second factorial moments of the sample size. A general result
for any sequential tolerance procedure given in [5] allows the determination of
the factorial moment generating function of the sample size from the distribu-
tion of coverage. When this result is applied to the Jifina procedure, it yields

(41) ma® = [ 6 = 07 exp fn 2 e at

where p, is the generating function for the procedure with parameters  and k.
Let us define N, and M, ; as the first and second factorial moments. We
then obtain through successive differentiation:

k
(4.11) Nis = exp {21: l/j}
(412) M1,k = ZkNl,k .
Ifn 22

(4.1.3) Noyi = n(n — 1) fo ' (1 — )™ exp {n i t"/j} dt.

If 9 =2
(4.1.4) M,y = 2N3 .
If9p 23,

1 k
(4.15) My =31(" (1 — &)™ expn 2. /7 dt.
3/ Jo 1

Numerical integration of (4.1.3) using both a Gauss seven-point formula
(and as a check Simpson’s rule) for n = 2,3 and k = 1, --- , 25 indicated (to
the authors amazement) that N, was for fixed n nearly a linear function of k.
Tabulation of Ny indicated the same linear behavior. (See Figure 1.) The
points computed are indicated by dots and a slight convexity for k¥ small is not
apparent in the drawing.

But, if N, is linear in %, then M, ; should be a quadratic in k. This is true for
M, , and M, by the expressions given. This suggests that one might get suffi-
ciently accurate approximations for practical use by expanding in a Maclaurin’s
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F1e. 1. Graph of the expected sample size of Ny, .

series in k. To do this, substitute

k t k
(42) Y ti=-n(—0)— [ “ d 0<t<1
j=1 0ol —2z
and let this define a function for any real k¥ = 0. However, perhaps because of
the singular behavior of the right hand side of the expression for k = —1, the
circle of convergence was too small to allow such an expression in the region of
interest.
What (4.2) does yield by substitution into (4.1) and simplifying is that

(4.3) Nyo =1 =12 .

5. The asymptotic behavior for k large. Let us define Ni for k = 1, 2,
andg = 2,3, --- by

1
1 — ’
(5.1) Noe = [Nyu/n(n — 1)] = fo =9 e HON(2) dt
where we have made use of the identity (4.2) and the definition (3.2) to set
t k
x
(5.2) A(t) = fo T 0<t<Ll

Then we also write

(53) M= [ h e O
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Knowing from the results of the numerical integration of (4.1.2), as com-
mented upon in the preceding section, that the integral is approximately linear,
one is led to the

TaroreMm 5.1. For any n = 2,3, - - - we have

(54) T (WEn/E) = [ lexp (—nBi0) — 0}/ do = S,

where Ei is the exponential integral defined by (3.2.2).
Proor. Now

" exp [— AL

Ei—op  *“

(54.1) Nia/h) = [

and, if we put * = ¢™°, then

_[®exp [—qAa(e)]e
(5.5) Nixa/k = fo ol = 2—0/76)]2 dv.

But by the same change of variable we have

—v/ky __ ® . 6—“
(5.5.1) A (e77) = _/; B — ) ,du‘

Since k(1 — ¢*) — v, as k — o for each v = 0, there remains only the

justification for the interchange of limits. We will first show that for each » > 0
(5.5.2) limesw Ara(e™™*) = Ei(v).

Let hi(u) be the integrand defined in the right hand side of Equation (5.5.1).
Now hx(u) — ¢ “/u as k — . To see this, note k(1 — e*) = [oe*adt
is an increasing function of k& and by the Lebesgie monotone convergence
theorem (5.5.2) is proved.

We will now show that in Equation (5.5) upon taking the limit as k¥ — o,
the limit may be passed under the integral sign. We shall use the Lebesgue
dominated convergence theorem. One sees that

exp [—nhsa(e™)] _ exp [—nEi(v)]

k(1 —e®E = (1 —e)?

To show that the right hand side of (5.5.3) is an integrable function (with
respect to ¢ *), it is sufficient to show it is bounded near zero. To do this it is
sufficient, since 7 = 2 and v/(1 — ¢ °) — 1 as v — 0, to show that Ve B

approaches a limit as v — 0. We examine’

(5.54) Inv 4+ Ei(v) = fl -1

v x

(55.3)

dz + Ei(1)

for which the result is obvious.
We now derive a form more useful in calculation.
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COROLLARY 5.1. For n = 2
(555) So= [ lexp (=Bi(0)}/ml o
Proor. We obtain by (5.4) and the definition (5.2) that
(5.5.6) S, = [° - -;-exp {—1Ei() }Ei' (v) dv
from:which the result is obvious by integration by parts.
In essentially the same fashion we obtain the
TaEOREM 5.2. For any 7 = 3, 4, - -+ we have
(5.5.7) limyew M /K = [D lexp {—4Ei(v) — v}/0’1dv = T,

where Ei is as defined in (3.2.2), and the
CoROLLARY 5.2. For n = 3

(55.8) T, = ?7/: lexp {-‘-nEi(v)}/v3] dv,

which we state without proof.

From the point of view of application the results (5.4) and (5.5.7) suffer from
the fact that for each different value of n asymptotic values T, and S, must be
computed by numerical methods. A short table is given in Table 2.

TABLE 2
" 2 3 4 5 6 7 8
S, 1.1380  .4775  .2792  .1894  .1401  .1095  .0890
T, 1.4534  .5168  .2673  .1641  .1120  .0819

Before we proceed we see that the preceding results suggest that we may be
able to obtain the asymptotic distribution of the sample size divided by the
parameter k upon letting & tend to infinity. We have the

TaroreM 5.3. If W, is the (random) sample size of the JiFina procedure with
parameter 7, k, then the limst of the Laplace transform Wox/k as k — «, call it
o, s given by

© _ —1 —u i
(5.6) o(t) =1 f (’“_‘_t) ¢ B g for ¢t>0.
t u u

Proor. We use the definition of A in (5.2) and let ¢ = Bs in (4.1) to obtain
1 (1 . s)q—lsk
o (@ —Bs)

If we replace 8 by ¢ “* we obtain the Laplace transform of W,/k, call it ¢ .

pni(B) = n8™* exp { —nAw(Bs)} ds.



THE JIRINA SEQUENTIAL PROCEDURE 855

In the integrand make the transformation s* = ¢, and we obtain

e [ 1= ¢ o pAplexp(— (et /)]
wlt) = 2 T

Now take the limit as k — «. The interchange of limits is easily justified and

we obtain
T e L Eitn
o0 =0t [ (25) e o

Now we let 4 = ¢ + v to obtain the form given.
Remark. Unfortunately the task of obtaining an explicit form for the inverse
transform of (5.6) does not appear to be easy.

6. Some numerical comparisons. It is known that for n = 1, if any sequential
tolerance procedure has an expected sample size equal to the sample size of the
Wilks’ fixed sample procedure, then the coverage of the Wilks’ procedure, say
Qw, is stochastically greater than the coverage of the sequential procedure,

say Qs .
This strong a result is not true for y = 2. In fact, we know that
(6.1.1) P[Qw > Bl < PlQs > 6]

for 8 in some interval (8, 1) and the reverse inequality holds in (6.1.1) for 8
in the interval (0, Bo). See [2], [3]. ‘

We now make some numerical comparisons between the Jifina procedure
with coverage @, and the Wilks’ fixed sample procedure in the one-sided and
two-sided cases, with » = 1, 2 respectively.

Now from (5.4) and (4.3) we make the approximation

(6.2) Nox &1+ n(n — 1)ES, 722
and in addition from (4.1.1) we have by (4.3) that
(6.3) Nl,k ._%" 1 + k67

where ¢” = 1.78107 - - - and v is Euler’s constant. ,
If we let V,; be the variance of the sample size of the procedure with param-
eters 7, k we have

(6.4) Vo = Myx + Nop — Ny

In particular |

(6.5) Vie =2 (2 — e")k(1 + ke”).
Now applying (6.2) for n = 2, we have

(6.6) Nop =22 + 2EkS;.
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From (4.1.4) we have
(6.7) Ver = Nig + Nip =2 + 3ke” + k™.
Let us set » = 1. Then
PQw>Bl=1—§", PlQ,>pl =™
Now for fixed o we want the least integers k, and n such that
nZha/lnp,  AB) £ —In(l — a).

The first equation is easily solved and the second can be handled by Table 1.
Let us pick « = .05, 8 = .9, and we obtain n = 29 k = 19. Thus from (6.3)
and (6.5) we find Ny 0 = 34.8 (Vl,lg)* = 12.3. Let us set » = 2. Then P[Qw >
Bl=1—8"—n(l—B)B8"", PlQ; > B = exp [—2A4(B)]. Now for fixed « the
problem of finding the least n such that 8" + n(1 — B)8" = a is probably
best handled by the Birnbaum-Zuckerman method of [7]. Using this method and
Table 1 for a = .02, 8 = .9, we obtain n = 56 k¥ = 30 and thus by (6.6) and
(6.7) Np3 = 73.1 and (Va5)* =2 54.9. Thus in the last instance the sample size
for the Jifina procedure might well be two or three times the fixed sample re-
quired.

Acknowledgment. The author wishes to thank Thomas A. Bray and Ellen
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