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(Abstract of a paper presented at the Western Regional Meeting, Eugene, Oregon, June 20-21,
19638. Additional abstracts appeared in the June and September, 1963 issues.)

10. Representation of Uniform Distributions as Convolutions. RALPH STRAUCH,
University of California, Berkeley.

This paper gives necessary and sufficient conditions for the existence of distributions P
and @ such that H = P %@, where H is uniform on {0, 1,---, n}, as follows.
Let {d::1 = t < 7} bea sequence of integers suchthat (i) d, > 1,1 =t =< 7; (ii) HI=1 ds =
n+1.Let {p:1 < t < 7} be distributions such that p.(k [[iZ1d;) = 1/d;, for0 <k < d.— 1,
where [[}-1 d; = 1 by convention. If A is a finite set of distributions, let *A denote the
convolution of the elements of A. Then there exist distributions P and @ on the nonnegative
integers such that H = P =@ if and only if P = x{p.:t ¢ T1} and @ = *{p::t ¢ T}, where
T, and T, are disjoint sets of integers such that T\ Ur, =11, -, .

(Abstracts of papers presented at the Annual Meeting of the Institute, Ottawa, August 27-29,
1963. Additional abstracts appeared in the March, June and September, 1968 issues.)

26. The Monotonicity of the Power Functions of Test Procedures for Two
Multivariate Problems. T. W. AnpErsoN and S. Das Gupra, Columbia
University.

Let X = [z:;]:p X mand Y = [y;;]:p X n be two random matrices (n Z p) such that
the elements of X and Y are mutually independent, and z;; is distributed according to
N(;,1),i=1,---,¢t = min(p, m), and each of the elements of Y and the other elements
of X is distributed according to N (0, 1). It is shown that for testing the hypothe-
sis @ = --- = 6; = 0, the power function of any test, based on the roots of (XX’)(YY’)"!
and having the acceptance region convex in each column vector of X for each set of fixed
values of Y and of the other column vectors of X, is a monotonically increasing function
of each 6; . This result is used to obtain another sufficient condition for a test to have a
monotonically increasing power function in each of the invariant parameters for (i) testing
a set of multivariate linear hypotheses in the usual linear normal model, and (ii) for testing
independence between two sets of normally distributed variates. This result is a generaliza-
tion of an earlier result by Das Gupta (Ann. Math. Statist. 33 (1962) p. 1504).

27. Adequate Subfields and Almost Sufficiency. OLE BARNDORFF-NIELSEN and
Mogrrrs SKIBINSKY, University of Minnesota. (By title)

Let X1, Xz, -+ , X, and © be random variables and let T = ¢(X1, Xz, --- , Xa) be 2
statistic. Suppose that we want to use T as a predictor for ®. Then the question naturally
arises: does T summarize all the “‘information” concerning ®, which is contained in the
sample X1, Xz, -+, Xa ? The theory developed in this paper originated in an effort to
give a precise meaning to questions like this. Of course the problem is basically similar to
that encountered when one wants to estimate a paramter 8 by a statistic T'. While the rele-
vant notion for the estimation-problem is that of sufficiency, for the prediction-problem it
seems t0 be what we have chosen to call adequacy. Loosely speaking T is adequate (w.r.t. ®)
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if the conditional distribution of ® given X1 , --- , X, depends on X, , - -+ , X, only through
T'. The theory of adequacy given here follows closely the abstract theory of sufficiency due
to Halmos and Savage (Ann. Math. Statist. 20 (1949) pp. 225-241), Bahadur (Ann. Math.
Statist. 25 (1954) pp. 423-462) and others. It is, however, free of some of the pathologies of
sufficiency discovered by Pitcher (Ann. Math. Statist. 28 (1957) pp. 267-268) and recently
by Burkholder (Ann. Math. Statist. 32 (1961) pp. 1191-1200). From a Bayesian viewpoint it
is not surprising that the concepts of adequacy and sufficiency are closely related and that
our main theorem (2.8) establishes the equivalence (under suitable conditions) of adequacy
and “‘almost sufficiency”. The definition of adequacy is given in the paper’s main section
and basic properties derived. The theory is further developed in a product space context.
Some illustrative applications to prediction theory are considered and one of Burkholder’s
examples is discussed.

28. A Characterization of Multisample DF Statistics (Preliminary report).
C. B. BELL, San Diego State College. '

Z.W. Birnbaum (1963) asks whether a SDF (strongly distribution-free) 2-sample statistic
is a rank statistic. Consider % independent univariate samples (Xi;), -+, (Xz;) with
1<=j=<mn and N = nt --- + ns . A k-sample statistic T is SDF wrt @, if for each borel
set B and collection (F;) of cpfs of @, P(T'(B)|F.,---, Fi) depends only on
F\F3', -+, FiF3'; and is SWS if it is a symmetric function of each of the k& samples indi-
vidually. One notes (i) that @, the class of sme (strictly monotone continuous) cpfs on
R, is complete, and can be generated by the group G’ of sme mappings of R; onto R; (ii) that
similarity wrt the power class ©'(N) and the SDF property imply almost invariance
wrt G’ (N) and @'(N); and (iii) (Scheffé, 1943) if a set W has a null boundary, then it is
similar wrt ' (V) iff there exists 0 < b < N!such that W has Structure S(b) (i.e. for each
point £ = (21, -++ , 2x) of Ry , W contains exactly b of the N ! points obtained by permuting
the coordinates of z) except for a null set. Using these results one obtains: Theorem. For
a k-sample statistic 7' (a) if T is a rank statistic, then 7' is SDF wrt @; (b) if T is SWS
and SDF wrt @/, then T is almost invariant wrt G’(N) and Q'(N); and (e) if T is SWS,
SDF wrt @/, and if for each borel set B, 7! (B) has a null Boundary, then T is equivalent
to a rank statistic.

29. The Non-Linear Regression of Time Series. Davip R. BRILLINGER, Bell
Telephone Laboratories and Princeton University.

Let there be given time series Y (t), X1(t), -+ , X&(t) and an error series e (f). Suppose
that the series satisfy a non-linear model of the form; Y (t) = ao + S ai()X: (¢ — r)dr
+ i X [T aii(r, 8)Xs(t — r)X;(t — s) drds + -+ + e(t), for some functions a. The
Fourier transforms of the functions a and through them the functions themselves, may be
estimated by a regression analysis involving the Hilbert transforms of the series involved.
The applicability of the model and its order may be inquired into by an examination of the
residuals.

30. A Bayesian Approach to the Importance of Assumptions Applied to the
Comparison of Variances. G. E. P. Box and George C. T1a0, University
of Wisconsin. (Invited)

Frequently the distribution of observations y depends not only upon a set of parameters
% of interest, but also on a set of nuisance parameters & . In judging the sensitivity of
inference about the parameters of interest relative to assumptions about the model such as
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normality and independence, the nuisance parameters can be measures of departure from
normality and independence. From a Bayesian point of view, the posterior distribution
p(& | & = &0, y) indicates the nature of inference about & if the corresponding assump-
tions & = &3 about the model are made, while the posterior density p (£ = &y | y) reflects
the plausibility of such assumptions. The marginal posterior distribution of £ obtained by
integrating out &, p(&|y) = [rp& | &, y)p(&|y) d&, thus indicate the overall
inference about & when proper consideration is given to the various possible assumptions.
This approach is applied to the problem of making inference about the variance ratio
when two samples are drawn from a class of power distributions characterized by a location
parameter, a scale parameter and an non-normality parameter. An actual example is worked
out in detail.

31. Sampling Properties of Tests for Categorical Data. K. C. Cuanpa, Iowa
State University.

In employing the standard x2-test for testing homogeneity of £ samples from %k multi-
nomial populations with [ classes or for testing independence of two categories with &
and [ classes, when the total sample size n is small we make two kinds of errors viz., (1)
error due to rough approximation as provided by the usual Edgeworth expansion of the dis-
tribution function and (2) error due to replacing the sum of discrete terms representing the
true probability by an integral. As thesample size becomes larger and larger the two kinds of
error become smaller and smaller and tend to zero as n — «. But in small samples both
these errors may assume significant values. Again, there are large sample tests other than
the classical x*-tests which are, asymptotically, equivalent to the latter but may have
more desirable properties in small samples. An attempt has been made in this article to in-
vestigate under the null hypotheses the small sample properties of the various large sample
tests employed in this area bearing in mind only the error of the first kind. The procedure
is as follows. The first two moments of the test criteria, under the null hypotheses are cal-
culated to order n1. If A re;)resents the mean of the particular test-criterion 7' and 2B the
variance of the same then x» = AT/B is used roughly as a chi-square with A2/B degrees
of freedom. The comparisons of these various tests are then equivalent to the comparisons
of these xa .

Details have been worked out for the particular cases of (i) testing homogeneity of &
(assumed large) binomial samples using three different tests viz., the one based on the
classical arc sin transformation, the likelihood ratio test and the classical x2-test and of
(ii) testing independence of two categories with % and ! (both assumed large) classes using
two different tests viz., the likelihood ratio test and the classical contingency x2-test.

In each case the statistic concerned is expanded and proved to be rigorously valid for
appropriate expansions for the first two moments considered.

32. Asymptotically Exact Truncation in Binomial Sequential Analysis (Pre-
liminary report). HErBERT T. Davip and RoporLro M. MENGIDO, Iowa
State University.

When z = In (p1/po)/In (go/¢:) is rational (z = n/m, n and m relatively prime), a Bi-
nomial sequential probability ratio test, when observed only at every (m + n)th sampling
stage, constitutes an irreducible aperiodic Markov chain with two states absorbing and the
remaining states transient. It is shown, for certain values of m and n, that these transient
states S; are geometrically ergodic in the strong sense that there exists a constant A between
zero and one, and a set of positive numbers =; , with lim,,, po.; (¢)/At = =; for all j. This
geometric ergodicity leads to the possibility of constructing truncation rules meeting
various criteria asymptotically; for example, a truncation rule, which, for specified p,
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vields asymptotically the ‘‘accept” and ‘‘reject” probabilities of the untruncated test,
conditionally on no decision up to the point of truncation.

33. Applications of the Factorial Calculus to General Unequal Numbers Analyses.
W. T. FEpERER and M. ZELEN, Mathematics Research Center, University
of Wisconsin; National Institutes of Health.

The necessary elements of the calculus for factorials as developed by Kurkjian and
Zelen are described, modified where necessary, and applied to the analysis of unbalanced
n-way classifications with fixed effects. Estimators for all main effect and interaction effects
parameters are obtained along with the associated variances. The sums of squares for each
effect eliminating all other effects is presented in a form suitable for direct computation.
This form results in considerable computational saving over the method of fitting constants
used in general regression theory. The results are applied to the particular case of propor-
tional frequencies in the subclasses.

34. Poisson Regression: Confidence Limits and Tests of the Model. Jorn J.
Garr, Johns Hopkins University. (By title)

Consider a sequence of mutually independent variates, y:; , each having Poisson dis-
tributions with means, 8x; , where j = 1,2, --+ ,n;and ¢ = 1,2, - -+ , k. The z’s are known
fixed constants and the 8 is to be estimated as in.the usual regression situation. It is well
known that the maximum likelihood estimator of 8is (2 D ¥:;)/ (> nix;), which is both
unbiased and sufficient. An approximation suggested by D. R. Cox (Biometrika 40 (1953)
pp- 354-360) in a closely related situation enables one to find confidence limits for 8 by treat-
ing the fixed quantity 28 Y n.%; as if it were a chi-squared variate with 2030 Dy + k)
degrees of freedom. These are compared to the limits found by using the Fisher-Cornish
correction for skewness of the type considered by Bartlett (Biomeirika 40 (1953) pp. 12-19).
In investigating the test of the hypothesis of linearity against the general alternative, we
find the likelihood ratio test statistic can be identified with Bartlett’s test of homogeneity
of variances by, as before, treating the 28n;x.’s like chi-squared variates. A test of linearity
of regression against the specific alternative of an additional non-zero quadratic term is in-
vestigated using the asymptotic test of composite hypotheses proposed by Neyman (Prob-
ability and Statistics, The Harald Cramér Volume, (1959) pp. 213-234). Finally the various
procedures are illustrated by data from pock counting experiments in virology, where this
model is sometimes useful.

35. Posterior Odds for Multivariate Normal Classifications. SEYMOUR GEISSER,
National Institutes of Health.

It is sometimes of interest to an investigator to assess in some way the posterior odds or
probability that a particular observation z belongs to one of k¥ multivariate normal popu-
lations II;, given the prior probability ¢;,7 = 1, -+- , k. We assume that the parameters of
I0I; are unknown but estimates of them are available, based on samples of size N; . A prior
density, with an adjustable constant, is assigned to the parameters of each of the II’s thus
enabling us to compute the posterior probability that z belongs to any of the II;’s when the
¢s’s are known. This is extended, via a Bayes approach, to the case where the ¢:’s are also
unknown.

This approach is in contradistinction to the usual classification method which divides
up the observational space into mutually exclusive and exhausitive regions by minimizing
the average loss of misclassification. The latter approach, while useful for classifying large
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numbers of observations subject to fixed error frequencies of misclassification, however,
makes no statement as to the probability of a particular recorded observation belonging to
one or another of the populations.

36. Minimax Character of Hotelling’s 7%-Test in the Simplest Case. N. Giri,
J. Kierer and C. SteIN, Cornell University, Cornell University, Stanford
University. (By title)

Let X1, Xz, ---, Xy be independent normal (column) p-vectors with common mean
vector # and common nonsingular covariance matrix . Write NX = > ¥, X, and

S = D (Xi — X)(Xi — X)’. We need consider only procedures which depend on the
sufficient statistic (X, S). Let 6 > 0 and 0 < a < 1 be specified. For testing the hypothesis
Hy:£'271¢ = 0 against H,:£'271¢ = §, a commonly employed procedure is Hotelling’s T%-test,
which rejects H, if X’S~1X > ¢ where c is chosen to yield a test of level a. This test is well
known to be best invariant under the full linear group, but the Hunt-Stein theorem is not
valid for that group. Reducing the problem instead by the group of lower triangular
matrices, one obtains a p-dimensional maximal invariant and (p — 1)-dimensional reduced
parameter space A. In the first nontrivial case, p = 2, N = 3, a somewhat lengthy calcula-
tion verifies the existence of a prior distribution on A relative to which the 72-test is Bayes;
hence, this test maximizes the minimum power on H; among all level a tests.

37. Minimax Character of the R2-Test in the Simplest Case. N. Girr and J.
Kierer, Cornell University.

Let X:, X3, ---, Xy be independent normal (column) p-vectors with common mean
vector ¢ and common nonsingular covariance matrix =. Write NX = >.¥ . X; and

S =¥, (X:— X)X; — X)" and partition S and = as

Su Se Zu Elz)
and
Ser Sz Za 2o
respectively where Si; and Z;; are 1 X 1. Let 8 > 0 and 0 < « < 1 be specified. For testing
the hypothesis Ho:Z122% Z21/Z1 = 0 against Hy: 21,25 2/2u = 8, a commonly employed
procedure is the R2-test, which rejects Ho if R? = 81287821/ > ¢ where ¢ is chosen so as
to yield a test of level «. Using a development parallel to that of the previous (72) abstract,

it is shown that the R2-test maximizes, among all level « tests, the minimum power under
H, , in the first nontrivial case, p = 3, N = 4, for each possible choice of é and a.

38. A Note on Classical and Bayesian Prediction Intervals for Location, Scale
and Regression Models. W. J. Harr and MeLviN R. Novick, University
of North Carolina.

Consider a random sample from a distribution with location and scale parameters, A and
o, and a prediction is to be made about a future observation Y. It is proved, under certain
conditions, that if A and o are taken to have the prior probability element d\ do /s, then the
Bayesian prediction intervals based on the posterior distribution of Y coincide with the
classical prediction intervals (sometimes called confidence intervals or B-expectation tolerance
intervals). Analogous results obtain if, in addition to location and scale parameters, there
are one or more regression parameters, distributed uniformly a priori. Hence, in these cases,
if one observes a sample of size n, determines a 3-content Bayesian interval based on the
posterior distribution of Y, and predicts that the next observation will fall in it, he will be
correct with long-run frequency equal to 8. These results are consistent with and lend
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credence to the concept that d\ do/o reflects the absence of prior information, and support
Bayesian prediction methods which incorporate prior information through natural conju-
gate methods proposed by the authors. Normal, exponential and uniform examples are
given.

39. Some Results on Estimating the Number of Classes in a Discrete Uniform
Population. Bernarp Harris, Mathematics Research Center, University
of Wisconsin.

Assume that a random sample of size N has been drawn from a multinomial population
with an unknown but finite number of equiprobable classes, 8. We further require that the
classes do not have a natural ordering. Let n, be the number of classes occurring r times
in the sample, 7 = 0,1, --- , N andlet d = >_%_, n, . It is easily seen that d is a complete
sufficient statistic; the insufficiency of d was established by Lewontin and Prout (Bio-
metrics, 1956). It is shown that there is no unbiased estimator of 8, which is a function of d.
However, if 6 can be restricted to a set of N possible values ®* there is a unique unbiased
estimator, which depends however on the N specified choices for 6. If ®* = {1,2, --. , N},
0 = agn/oa, ~+1 Where aq,y are the Stirling Numbers of the Second Kind, and in the case 6
is a consistent estimator. For arbitrary ©* an explicit but complicated expression can be
obtained and in fact, § may be negative. Alternative estimators are investigated, including
an estimator derived from results of Harris (Ann. Math. Statist., 1959) and a suggestion
by David and Johnson (Biometrics, 1952).

40. Large Deviations in Multinomial Distributions. WassiLy Horrrping,
University of North Carolina.

Let Nv = N(», -++, wt) have the multinomial distribution Pr {Ny; = N, ---,
Nyi = Ny} = N!(IINil)"lIIpl,-V", 3> N; = N, D p:; = 1. The asymptotic behavior as N —
of Pr {» € A} is considered, where 4 is a fixed set of points £ = (z1, -+, ) with ; = 0
and > 2 =1,kandp = (p1, -+, ps) are fixed, p; > 0, and p is not in the closure of 4.
Sanov (Mat. Sb. 84 (1957)) has shown that under mild restrictions on A, Pr {» ¢ A} =
exp {—N inf,. 4 I (x, p) + o(N)} where I (x,p) = D ; In (x:/p:). Here it is shown that under
certain conditions Pr {v ¢ A} = cyN"exp {—N inf .4 I (z, p)}, where 0 < ¢’ < ey < ¢” < «
and r = (k — 3)/2. In “ordinary” cases r = —3%. In the special case A = {z | I (z, p) = c}
with ¢ positive and not too large r = (k — 3)/2. The results are used to compare the asymp-
totic performance of certain tests such as the chi square test and the likelihood ratio test.

41. The Parametric and Non-Parametric Compound Decision Problems in the
Sequence Case. M. V. Jonns, Jr., Stanford University. (By title)

Consider a compound decision problem consisting of a sequence of finite-action compo-
nent problems having a common loss structure. Nature selects a sequence of sampling dis-
tributions {F,} from a specified (parametric or non-parametric) family &. The unknown
distribution of the observations for the nth component problem is F,. A (compound)
decision rule for the nth component problem may depend on the observations obtained in
the previous » — 1 problems. The loss functions are piecewise polynomials in certain func-
tionals defined on &, and generalize those considered by H. Robbins and E. Samuel in
forthcoming papers and by the author (Ann. Math. Statist. 28 649-669) in connection with
the two-action empirical Bayes problem. For certain problems of this type it is shown that,
under mild restrictions, decision rules analogous to those suggested for the corresponding
empirical Bayes problems produce an average risk for the first » component problems which
is asymptotically (for large n) the same as the Bayes risk for a single hypothetical compo-
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nent problem in which nature selects one of F;, F,, -+, F, randomly with equal proba-
bilities. Generalizations are also discussed.

42. Goodness Criteria for 2-sample Distribution-Free Tests. J. M. MosEr and
C. B. BeLL, San Diego State College.

Using the notation of and extending the work of the preliminary report (4dnn. Math.
Statist. 38 (1962) p. 1486) one redefines a test function 7' to be mono if T((X.),
(Y5) = T((X?), (Y})) whenever X; < X; and ¥; = Y; for all ¢ and j. Theorems 1 and 2
of the preliminary report are valid. Using Chapman’s (1958) one-sample admissibility result
one proves that for Ho:F = G vs Hi:F > G (F, G continuous and strictly increasing)
Theorem 8. A monotone 2-sample DF test is admissible. From invariance considerations one
proves Theorem 4. Each rank test is DF, SDF, and has structure (d).

Using the results of Chernoff and Savage (1958) one finds Theorem §. For statistics S
which are asymptotically normal both under H, and H, , and, in particular, for the statistics
of Fisher-Yates, Van der Waerden, Mann-Whitney, Doksum, and Epstein-Rosenbaum-
Moses, the Chapman-Large-Sample-Power bounds are,

B(a) = @lfo(n1, na, &)} Mol , na)ga + s, n2, A) — n(nr, n2)}]

and 8(A) = inf ®l{o(n1, 72, A, uo)} o (n1, n2)ga + u(n1, n2, 4, w) — p(n1, ns)}] where
@ is the standard normal cpf, ®[5.] = «, the infimum is taken over the set 0 = « < 1 — A;
and the indicated means and standard deviations are those of S when F = U;and G = U,
G, and G(u ; 1), resp.

43. A Class of Procedures With Monotonicity Properties for Four Problems in
Multivariate Normal Statistical Analysis. G. S. MupHOLKAR, University
of North Carolina and University of Rochester.

The problems considered are those of (i) MANOVA, (ii) testing independence between
two sets of variates, (iii) testing equality of two dispersion matrices and (iv) testing
equality of a dispersion matrix with a given matrix, well known in multivariate normal
statistical analysis. It is known that each of these problems can be reduced to an extent
by invariance considerations, characteristic roots of certain matrices being the maximal
invariants. All the known test procedures for these problems are based on these character-
istic roots. Roy and Mikhail (Ann. Math. Statist. 32 (1961) pp. 1145-1151) and Mikhail
(Ann. Math. Statist. 33 (1962) pp. 1463-1465) have shown that the power functions of the
union-intersection procedures, for the above problems, based on the maximum and the
minimum of the aforementioned characteristic roots have certain monotonicity properties.
If M1, A2, -+, A\, denote the characteristic roots and e; , ez, - -+ , e, their elementary sym-
metric function then it is the purpose of this paper to show that the power functions of
procedures characterized by acceptance regions of the form a\1 + -+ + aphu = constant
(@, ", Gu-1 = 0, @y > 0) and aie; + -+ + aue, < constant (a1, -+, au = 0) have the
monotonicity properties similar to those discussed in the papers by Roy and Mikhail and
Mikhail.

44. Estimation by Order Statistics When the Censored Minimum of Random
Variables is Observed. CaarRLES DEWITT ROBERTS, University of North
Carolina.

Let X be a random variable with mean m and variance »%. For X;, X, -+, X inde-

pendently distributed as X define ¥ = min (X;,X;, :-- , Xz). Furtherlet Y, Y,, ---, ¥,
be n independent observations on Y and Yy £ Yo < -+ = Y(n their ordered values.
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Best linear estimates are derived for m and » when censored observations Y41y , Yirse)
coty Yin_g where 1 = 7+ s < n — 1 are available. It is shown that for some distributions
of Y (exponential included) the estimates for £ = 1 easily yield estimates if ¥ = 1. Tables
to facilitate estimation if £ = 1 are available for several distributions (for example, ex-
ponential, Sarhan and Greenberg, J. Amer. Statist. Assoc. 62 (1957), 58-87). Consideration
is also given to the estimation problem when the distribution of X is specified.

45. Idemvariant Transformations of a Random Variable (Preliminary report).
Norman C. SEvero and PauL J. ScHILLO, State University of New York
at Buffalo.

Let X be a random variable with distribution function F. If h and %k are transformations
of X such that the distribution functions of the random variables & (X) and k(X) are the
same, then h and k are said to be idemvariant transformations of X (or h is said to be idem-
variant to k with respect to X). We show that a class of transformations, each member of
which is idemvariant to the given transformation h with rsepect to X can be constructed
in two steps: (i) by decomposing the real line, R, , into three sets 4, B, and C, which depend
on three essential features of F (i.e., A is the set of points of discontinuity of F; B is the
set of all points of R; that lie in open intervals over which F is constant; and C = R,
— (4 U B)), and (ii) by distorting h over A, B, and C, separately, in such a way that
the various resulting distributions of the modified transformed random variable is the
same as the distribution of 4(X).

46. Economic Partially Balanced 2» Factorial Fractions. J. N. SrivasTavA and
R. C. Bosg, University of North Carolina.

Partially balanced factorial fractions, defined earlier by Bose and Srivastava, are broadly
those fractions in whose analysis the properties of the linear algebras of PBIB designs are
useful. Such fractions, though irregular, lend themselves to a relatively much easier analy-
sis. In this paper a number of them from the 2» factorials (5 = n < 10), both with and
without blocks, have been considered (for estimating main effects and two factor inter-
actions). They have the following further properties: (i) They are economic; i.e. do not
involve an undesirably large number of assemblies, (ii) the correlations are small, those in-
volving any main effect being negligible. An illustration of the method of construction used
is given by a 2° factorial fraction in 64 assemblies. These are divided into 4 blocks, the 16
assemblies in them being those which respectively satisfy the equations: (i) (U, Uz, Us,
Uy, Un) = (0,0,0,0,0), Gi) (U:,Uz,Us,Us,Us) = (1,1,1,1,1), (i) (U, Uu, Uiz,
U'l ’ US) = (1’ 17 17 1’ 1)7 and (IV) (U5 ) U5 ) U7 ) U8 ) U9) = (0’ 0’ 0’ 0: 0)’ where (l) U, =
2+ @+ 25, Uy = 24+ 2 + @6, Us = 27 4+ 28 + %o, Us = 21+ 25+ 25, Us
To+ s+ 2o, Us = @ + 5 + @7, Ur = @1 4+ @4 + @7, Us =22+ 25 + 5, Us
s+ 2o+ o, Uo=21+ 2+ 29, Unn = 23+ 24+ 25, Urs = 22 + 2 + 27 ; (ii) @ repre-
sents the level (0, and 1) of the sth factor; (iii) all calculations are done (mod 2).

47. The Distribution of the Goodness-of-Fit Statistic Uy. 1. MicHAEL A.
StepaENS, University of Toronto.

The goodness-of-fit statistic W has recently been supplemented (Watson, Biometrika
1961, 1962) by U% defined by Uy = N [°_ {Fn(z) — [*_ [Fx(y) — F(y)]1 dF (y)}* dF (z). In
this expression, F (z) is the cumulative distribution function being tested, and Fy(z) the
sample c.d.f. for a sample of size N. This statistic is of special value in circular problems
where W% cannot be used. The paper gives the first four numbers of the distribution of U
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on the null hypothesis that the sample comes from F (), together with the exact distribu-
tion for N = 2, 3 and some results for higher N. U% is somewhat easier to examine than
W% , and the convergence of the distribution to the asymptotic distribution given by Wat-
son is quite rapid.

48. Unbalanced Limit Theorems (Preliminary report). HENrY TEICHER, Purdue
University.

Let Xo = (Xn1, Xnz, -+, Xam), n = 1, 2, .-+ constitute a sequence of independent
identically distributed random vectors on some probability space with partial sums
8P =3t X;;,1=j<mmn=12 - and suppose that b(n),n = 1,2, -+ is an in-
creasing sequence of positive members tending to infinity such that the distribution of
SL/b(n), -+, 8™ /b(n)) tends to a limiting cumulative distribution function (c.d.f.),
F(@1, -+, %n). The limiting c.d.f. of (Syox/b(Na1), -+ , Ssen/b(Nam)) is given in terms of
F when (i) Nnj,1 £ j<m,n=1,2, - are m increasing sequences of positive integers
satisfying certain conditions, (ii) N»; ,1 = j < m,n = 1,2, --- are m sequences of positive
integer-valued random variables converging in probability to constants a; , 1 < j < m.

49. On Head-of-the-Line Priority Queues. PETer D. WELcH, IBM Thomas J.
Watson Research Center. (By title)

The following queueing process is considered. The input is the superposition of r inde-
pendent Poisson processes, each process corresponding to a priority level. Associated with
each priority level there is a distinet arbitrary service time distribution function Gi(z);
k=1, ---,r. A single server operates under a head-of-the-line priority service discipline.
For this process, with r = 2, Miller (Ann. Math. Statist. 31 (1960) 86-103) characterized the
asymptotic behavior of the number of customers of each priority level in the queue. We
determine the transient and asymptotic behavior of the number of customers of each
priority level in the queue for general 7.

(Abstract of a paper to be presented at the Annual Meeting Amherst, Massachusetts, August 30
to September 4, 1964.)

1. Sequential Life Tests With Piecewise Constant Failure Rates. L. A. Aroian
and D. E. Rosison, Space Technology Laboratories, Redondo Beach,

California.

Sequential life testing involving the Wald sequential probability ratio test (SPR) has
been widely developed for the exponential case. A common prlblem is to test A = Ao against
an alternative A = A1, A1 > Ao . These results are well known.

In the present paper we extend the SPR ideas for the exponential case to include testing
of hypotheses in which A and its alternatives change value a finite number of times during
the test. The operating characteristic functions and the average time to termination of the
test are derived.

Additionally, SPR tests are derived for the normal and Weibull distributions. The OC
function and the average time to termination of the test in these cases are approximated by
applying the previous results, and assuming that the failure function, A (¢), of these dis-
tributions may be approximated in a finite number of intervals in which the failure rate
is constant. Replacement and non-replacement of items are treated. Two numerical ex-

amples illustrate the theory.
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(Abstracts not connected with any meeting of the Institute.)

1. Optimal Asymptotic Tests of Linear Hypotheses. B. R. Baar and S. R.
Kurkarni, Karnatak University.

Reiersgl, Bhapkar, Mitra, and others (Cf. Bhapkar, Ann. Math. Statist. 32 (1961) p. 72)
have applied Neyman’s minimum modified x* method (x? method) to test linear hypotheses
(H) in binomial and multinomial experiments. Neyman has made an assumption (A) that
pij = fi;(61, 62, -+- ) > 0 and > ;i fii(61 --- 6z) = 1 for the whole range of variation of
the parameters 6 , 6z, - - , s , where p;;’s are probabilities of the 7th multinomial experi-
ment and f:;’s are functions of known form. It was not noticed by these authors that (A)
does not hold for testing linear hypotheses. In view of this objection and other optimality
considerations, in this paper, it is proposed to use Neyman’s ideas of Optimal Asymptotic
Tests (OAT) (H. Cramér Volume, Wiley (1959)), to test linear hypotheses in these experi-
ments. OAT criteria to test a linear hypothesis for arbitrary distributions have also been
given. Further, Neyman’s idea of OAT has been extended to test a multi-parametric com-
posite hypotheses.

2. A Non-Parametric Test Based on U-Statistics for Several Samples. JAYANT
V. DesaPANDE, University of Poona. (Introduced by V. P. Bhapkar)

A non-parametric test is offered for testing the equality of location parameters of ¢
populations under the assumption that they are of the same form, given ¢ samples with
ni, Mg, *++ , Me observations rsepectively. c-plets are formed by taking one observation
from each sample. Let v1 be the number of ¢-plets in which the observation from the ith
sample is the least and v; be the number of c-plets in which the observation from the ith
sample is the largest. Let u; = vi/II . The V-test (Bhapkar, Ann. Math. Statist. 32
(1961) 1108-1117) is based on the statistics ui only; the test being proposed now is based on
uiand ub . Let I; = —ui 4+ u¢ . It is then shown that as n — «, with n; = ns; , s; a positive
integer and p; = ni/ > ni, N = >,

b= [ e (529) /2+{(522) - Y] [Eore - £ d]

bas in the limit x? distribution with ¢ — 1 d.f. under the null hypothesis, and non-central
x? under the alternative hypothesis of shift. It is found that this L-test is more efficient
(twice as much, as number of samples tends to infinity) than V-test for all symmetric
distributions. It is more efficient than Kruskal’s test for some distributions and at least
equally efficient for ¢ < 7 for normal distributions.

3. Some Considerations of Stochastic Processes in Estimating Weibull Param-
eters. Satya D. Dusky, Proctor & Gamble Co., Cincinnati.

Two stochastic models conforming to stochastic processes are formulated to answer some
problems arising from the areas of industrial products, management science, etc. Model I
deals with the aging behavior of industrial products. Let R (¢) be the probability that an
item drawn randomly from a lot at the time point ¢ is in good state. Considering a two-
state irreversible process, a general solution of B (t) is obtained. This approach enables one
to derive several different estimators of the scale and the shape parameters of the Weibull
Law. The asymptotic properties of these estimators are investigated. They are consistent
and asymptotically normal. The covariance matrices of these estimators are derived too.
Model II is concerned with a problem of management science. Here practical considerations
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are made to derive similar estimators of the scale and the shape parameters of the Weibull
Law. Their asymptotic properties are also investigated and essential results are obtained.
Some applications of the results, derived in this paper, are discussed. Finally, the results
applicable to the special cases of these models are given and some new results are obtained
in this situation.

4. Extremal Processes. MEYER Dwass, Northwestern University.

If {X;} is a sequence of independent and identically distributed r.v.’s, M, =
max X1, -+, X, then n.a.s.c.’s are well known for (M, — a.)/bs to converge in law. The
limiting distribution is one of three well-known types. We define a stochastic process Y (¢)
as the “limit” of Yn(?) = (M(ny) — @n)/bn, t = 0, as n — . Specifically, the joint dis-
tribution of (Y (t1), ---, Y (¢)) is for every finite sequence ¢ , --- , & defined to be the
limiting distribution of (Y, (1), -++, Ya(%)). There are three possible types of processes
Y (¢) which we call extremal processes of types I, II, III; our purpose is to determine their
structure. For 0 < a <t < b < o, Y (¢) is with probability 1 a step function with a finite
number of jumps. This number is Poisson distributed with parameter log (b/a). If (c, d) is
in the range of Y (¢) then the number of jumps of Y (¢) necessary to bring it from a height
below ¢ to one above d (¢ < d) is also Poisson distributed. The parameter of this distribution
depends of the type of process. Y (f) is Markovian and a simple explicit representation is
given for each of the three types.

5. Uniform Approximation for Minimax Point Estimates (Preliminary report).
M. N. GaosH, Institute of Agricultural Research Statistics, New Delhi.

The problem of estimation of a bounded function g(8) of the parameter 6, for a class of
distributions F(x, 6) is considered in this paper, when the loss function has the form
W (u, ) = [u(z) — 6]2(p > 1) and sufficient conditions are given so that a minimax se-
quence of estimates converges with respect to the metric

p(ur; us) = sups {Ellur(z) — we(z)|? | O1}*/7.

This in many cases will imply that no almost subminimax (e-minimax) estimates can exist
for sufficiently small ¢, which would give a sizable reduction in risk for some value of 6.
Sufficient conditions are also given under which the minimax estimate « (x) in the function
space L® (F) can be approximated to any extent by minimax estimates %, (z) in a finite
dimensional linear space spanned by basis vectors u; (z), «-- , un(z) of L@ (F).

6. On the Complex Analogues of 7% and R?-Tests (Preliminary report). N. C.
Giri, Cornell University.

Let X be a p-variate complex Gaussian random variable with mean « and positive definite
Hermitian covariance matrix Z. Let = be partitioned as

<Eu En)

2;2 2o ’

where Zzisa (p — 1) X (p — 1) submatrix of = and =1218 the adjoint of =, . The maximum
likelihood estimates of = and =1,25,212/Z1 and their distributions for « = 0 have been
obtained by Goodman (1963). In this paper the complex analogues of 72- and R2-tests of

the real multivariate case have been obtained. Some optimum properties of these tests
which are counterparts of the real case are also discussed.
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7. A Condition for Optimality in Sequential Signal Detection (Preliminary
report). K. B. Gray, Hughes Research Laboratories, Malibu, California.

A received signal has the form X, = 6s(¢) + N., where s(t) is a known function of
time and ¢ = 1,2, --- . Assume that N, is a “white,” gaussian noise process, i.e., the ele-
ments of any finite subset of Ny, N., --- are normal, independent, and identically dis-
tributed with mean zero. We consider sequential procedures for testing between the alterna-
tive hypotheses Ho:6 = 6, and H,:0 = 6, . It is shown that the condition

lim inf,_, o n—lz exp [—1/s2(t)]1 > 0
t=1

is sufficient to insure that the sequential probability ratio test is optimal in the sense of
the Wald-Wolfowitz theorem.

8. A New Method for Estimation of the Correlation Coefficient in Contingency
Tables With Non-Metrical Characters. H. O. LancasTer and M. A.
Hampan, University of Sydney.

Pearson (Philos. Trans. Roy. Soc. London 195A (1900) 1-47) estimated the coefficient of
correlation by the tetrachoric series in the fourfold table. Pearson (Drapers Company
Research Memoirs, Biomeiric Series No. 1 (1904)) equated ¢?> = x2/N to the series
3¢ p% = p?/(1 — p?), a special case of the Parseval equation, and in (Biometrika 9 (1913)
116-139) modified the method by subtracting the degrees of freedom, namely (m — 1) (n — 1)
from the x? of the m X n table. It has never been clear how the broadness of the partition
of the marginal distributions affects the estimate. An approach to this problem has been
made as follows: orthonormal bases have been defined on the two marginal distributions,
for convenience, using functions obtained from Helmert matrices. Then the orthogonal
functions have been expanded in terms of the Hermite-Chebyshev polynomials. It is now
possible to determine, under the hypothesis that p is not null, the parameter of non-
centrality of each of the (m — 1) (n — 1) variables, which are asymptotically normal (0, 1)
and mutually independent under the null hypothesis. Then N¢? = x2 — (m — 1)(n — 1)
is equated to the sum of these parameters, giving an equation in p? which can be arbitrarily
terminated (at p®say). It is now evident that this method is superior to the usual Pearson
method. For example, in Table XXV of Pearson and Lee (Biometrika 2 (1903) 357-462) the
coefficient of correlation is 0.5157. In contingency tables constructed from this table, the
estimates by the present method are given below with the Pearsonian estimates in brackets:
for an 18 X 18 table 0.5170 (0.5062); for an 8 X 8 table 0.5041 (0.4735); for a 3 X 3 table
0.4973 (0.3814); for a 2 X 8 table 0.5382 (0.3854). In the case of pooling non-adjacent classes
the difference is much wider.

9. On the Axioms of Information Theory. P. M. Leg, University of Cambridge.
(Introduced by David G. Kendall)

In this paper it is proved under less restrictive conditions than previously,
that Shannon’s measure of information is unique. More exactly, it is shown that if the re-
quirement of symmetry and the usual relation between the functions Hy and H}41 measur-
ing the information provided by the performance of experiments with, respectively, ¥ and
k -+ 1 possible outcomes, is assumed, and if h(t) = H.(¢, 1 — ¢t) is assumed measurable,
then the Hy’s are uniquely determined by the resulting functional equations for A (-). This
result improves on various previous papers which assumed in addition continuity, integra-
bility, or monotony of A(:).
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10. Spacing Problems in Minimum Variance Extrapolation. ArNoLD LEVINE,
University of California, Los Angeles. (Introduced by Paul G. Hoel)

When the variables ¥, , Y5, **+, ¥s, in polynomial regression are uncorrelated, the
predicted value of E (y;) for ¢ beyond the interval of observations is shown to possess mini-
mum variance among all Markov predictors when the & points at which observations are
to be taken in the interval (—1, 1) are the points at which the Chebychev polynomial
assumes its maximum and minimum values in that interval and when the number of ob-
servations to be taken at each such point is made proportional to the value of the corre-
sponding Lagrange interpolation polynomial at the selected extrapolation point. The
weighting of observations depends upon the selected ¢ value but the spacing does not.

11. The Distribution of the Ranges in Multi-Variate Normal Samples in Terms
of the Probability Contents of Regions Under Spherical Normal Dis-
tribution (Preliminary report). K. V. Marpia, University of Rajasthan.
(Introduced by B. D. Tikkiwal)

Harold Ruben (Ann! Math. Statist. 31 (1960) 1113-1121) has expressed the distribution
of range in normal samples as the product of the sample size and the probability contents of
a certain parallelotope relative to a hyperspherical normal distribution. We know the
exact distribution function of ranges from k-variate normal population (Mardia, a paper
under consideration in Ann. Math. Statist.). In this paper, it is expressed as
Zf,l fn(n — 1) --- (n — ¢ + 1)}P(R:) where P (R;) is the probability contents of region
R; in k(n — 1)-Euclidean space relative to a hyperspherical normal distribution and R; is
a parallelotope bounded by 2k (n — 1)-flats where each flat is of dimensionality & (n — 1)— 1.
For k& = 2, the flats in B; make angle either cos™ == %, cos™! =% p/2 or cos™! == p while the
angles between flats in R, are complicated expressions.

12. On the Extremities of One-Sided Distribution Functions Having Analytic
Characteristic Functions. B. RaAMAcHANDRAN, Institute of Mathematical
Sciences, Madras.

It is known (see, for instance, E. Lukacs (1960), Characteristic Functions, Griffin, Lon-
don) that, if F (z) is a distribution function (d.f.) having an analytic characteristic function
(c.f.), f(¢), and is, further, bounded to the left, then its left extremity is given by: lext
F = —lim sup,._,» [In f(sy)/y]. We wish to point out here that, in this formula, “lim sup”
can be replaced by “lim”; for ¢(y) = In f({y) is a convex function of y in ¥y = 0 such
that ¢ (0) = 0, and, consequently, [¢ (y)/y] is a nondecreasing function in y > 0, so that its
limit as y — o exists. Similarly, if F (z) be a d.f., having an analytic c.f. f(t) and bounded
to the right, then its right extremity is given by: rext F = lim,_, ,[In f(—4y)/y]. In par-
ticular, if F (z) be a “finite” d.f. (i.e., bounded both above and below), then, since its c.f.
is an entire function, its two extremities are given by the above formulas. The sharpened
form of the result on the left extremity finds application in the establishing of a ‘‘denu-
merable a-decomposition” theorem for the Poisson law, for which purpose the less precise
form is found inadequate. Details are published elsewhere.

13. On Selecting a Subset of Normal Populations Containing the Population
Whose Mean Has the Largest Absolute Value. M. Hasees Rizvi, Uni-
versity of Minnesota and Aerospace Research Laboratories, Wright-
Patterson Air Force Base, Ohio.

Let pi(s = 1,2, --- , k) be the means of k& = 2 normal populations all having a common
unit variance and let 6; = |u;|. The problem of selecting a small non-empty subset con-
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taining the population whose mean has the largest absolute value is considered here. With
correct selection (CS) defined in an obvious manner, a procedure R is required to satisfy
the condition P{CS | R} = P* for a pre-assigned P* and regardless of true unknown 6-
values. Let Z; be the ith sample mean based on a common number n of independent observa-
tions and let w; = |&| ({ = 1,2, --- , k). The proposed procedure R is: Retain the ith
population in the selected subset if and only if w; 2 Wmax — d, where d = 0 is determined
subject to R satisfying the probability condition. The solution § = nid of the probability
condition is tabulated in Bechhofer (Ann. Math. Statist. 26 (1954) 16-39). The expected
size of the selected subset is derived and its supremum obtained. Two secondary problems
of determining n are discussed. The related problems of unknown common variance and
the one of selecting the population with the smallest absolute value of the mean are also
treated and directions for generalizations indicated.

14. Ranking Normal Populations by the Absolute Values of Their Means:
Fixed Sample Size Case. M. Hasees Rizvi, University of Minnesota.

Consider ¥ = 2 normal populations with unknown means y; (: = 1,2, --- , k) and a com-
mon unit variance;let 6y < 6z < -+ < 0y be the ordered values of §; = |u;|. This paper
studies the problem of selecting ¢ (<k) populations with ¢ largest §-values. With the obvious
definition of a correct selection (CS) a procedure R; is required so as to satisfy the condi-
tion P{CS | R: , Op—t41] — Ou—y 2 8%} = P*, where P* and 6* > 0 are specified constants.
Define w; = |%;| (6 = 1,2, --- , k), where #; is the ith sample mean based on a common
pre-determined number 7 of independent observations. The proposed procedure R: ranks
w; and selects the populations with ¢ largest w; as populations with ¢ largest f-values. Then
n is determined so that R satisfies the probability condition. Certain bounds on P{CS | R:}
are obtained. Tables for special cases, t = 1 and ¢ = k — 1, give values of the infimum of
P{CS | R} for k = 2(1)10 and A = n}§* = 0(0.1)7-0. In addition the values of X are given
for k = 2(1)10 and several P*s. Finally the decision rule R is shown to be most economical
by demonstrating its minimax and admissible nature respective to a simple loss function.

15. A Test for “Instrinsic” Correlation in the Theory of Accident Proneness
(Preliminary report). K. SuBrauMaNniaM, Johns Hopkins University.

In “Contributions to the theory of accident proneness. I. An optimistic model of the
correlation between light and severe accidents,” Bates and Neyman (Univ. California,
1952) have studied the correlation between the pair (X, Y) of light and heavy accidents.
This correlation is the outcome of the model used; viz., that the average number x and A
of light and heavy accidents for any individual are perfectly correlated and have a Pearson
Type III distribution. This we refer to as the extrinsic correlation between X and Y. They
do not, however, consider the possibility of X and Y being ‘‘intrinsically” correlated i.e.,
X and Y for any given individual being correlated. In this paper a test for the “intrinsic”
independence of X and Y under the assumption of X and Y having a bivariate Poisson
distribution is given; i.e., the p.g.f. of (X, Y) for a given individual is I (1, 22)
= exp {a1(z1 — 1) + a2(22 — 1) + b(e1ze — 1)} with a1 = X\, a3 = 71, and b = y2\. Under
this assumption, the coefficient of correlation, p, between X and Y for any given individual
is p = v2/{( + v2) (v1 + v2)}* and is independent of A; i.e., the coefficient of ‘‘intrinsic”
correlation between X and Y is the same for all the individuals in the population. If we
assume for A a gamma distribution {r/m; r}, we obtain for the unconditional distribution
of (X, Y) a bivariate negative binomial distribution with p.g.f.

[1— m/r){( — 1) +vilez — 1) + va(zza — 1}

A test for p = 0 is developed and the properties of this distribution are studied.
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CORRECTION TO ABSTRACT

Professor Seiden has informed the Editor that the proof of the result she an-
nounced in the Abstract “On the Non-Existence of Balanced Incomplete Block
Designs BIBD, With Parameters (46, 69, 9, 6, 1) and (51, 85, 10, 6, 1),” these
Annals 34 685, is false, and that the problem remains open.



