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0. Introduction. This note deals with the limiting values of the averages,
Tw = (Sntsny — Sa)/f(n) where S, = X, + --- + X,,n=1,2,--- ,isa
sum of mutually independent and identically distributed random variables.
The function f takes positive integer values and nondecreasingly tends to in-
finity. We shall determine the almost everywhere constant lim sup 7', in terms
of the moment generating function of X; and the radius of convergence of
>~ 2", denoted r.

If we define N, as the number of consecutive successes beginning at trial n + 1
in a sequence of Bernoulli trials with success probability p, we let U, = N,/f(n).
It is shown that, almost surely, lim sup U, = log,r. This result will be compared
with lim sup T, for the case of Bernoulli trials. The author is indebted to Pro-
fessor D. J. Newman for drawing his attention to this problem.

1. Statement of results. The events {7, > c infinitely often (i.0.)} are tail
events, —o < ¢ < ©,and so T = lim sup T, is constant with probability one
([3], p. 229).

We form the series 2 2/™ = Y A" and determine its radius of conver-
gence 7, 0 < r < 1. The constant 7' = T'(f) will depend only on r, and when
this is to be emphasized, will be denoted 7', .

Let M(t) = Ee¢'* < 4+ be defined for all ¢, and set [1], for any a,
m(a) = min M(t)e™ < M@O) = 1. If M(tf) < o« for some ¢ > 0,
then EXT < «, and so EX; is well defined, —© =< EX; < . Let ess sup
X: = A £ + . We assume X is nonconstant a.s., so EX; < A.

THEOREM 1. If M (&) < « for somet > 0, then

(1.1) T.=A for 0=r = P{X, = A}.

(1.2) T, =a for P{X;=A4} <r<1

where a = a, is the unique solution (inverse) of m(a) = r, EX; < a < A.
(1.3) T,=EX; for r=1.

Moreover, T, decreases strictly and continuously for P{X, = A} = r £ 1.

The consideration of the sequence —X; leads to a similar theorem for lim
inf T, . If f is strictly increasing then r = 1. The existence of lim T', is assured
if and only if » = 1, whence lim 7, = EX; a.s., —o < EX; < «. Proofs of
these assertions are in Section 3. Our methods break down in case M(¢) = o
for all ¢ > 0, and this case is not discussed.
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An immediate corollary of this theorem is that if f; and f; are two functions,
as above, and fi(n) < fo(n),n = 1,2, ---, then T'(f2) = T(f1). A class of f
in central position are f,(n) = 1 + [clog n],¢ > 0, n = 1, 2, --- , whence
r = exp (—1/c).

2. Chernoff’s theorem. It is easily seen that log P{S. = na} is subadditive
in n for fixed a, and hence lim — (1/n) log P{S, = na} exists. Chernoff [1],
has found this limit in terms of m(a). We suppress the subscript of X; in this
discussion.

TaeorREM 2. (Chernoff) We suppose M(t) < o for some t > 0. We have
—® < EX < », and m(a) = min,zo Ee* ™' < 1, if a > EX. Moreover, for
n=12--.

(2.1) P{S, 2z na} = (m(a))”,
and for 0 < ¢ < m(a), and n > ny(e),
(2.2) P{8, = na} > (m(a) — €)™

This is a slight variant of [1], and we should complete the proof in [1] by noting
that for 0 < ¢ < 6, some & > 0, r(t) = M(t)e ** is convex, and so
7 (t) = BE(X — a)e™™®' decreases to E(X — a) < 0 as ¢ decreases to zero
(dominated comvergence). It follows that »'(t) < 0,0 < t < &, some & > 0,
and so r(¢) = r(07) + f¢r (u) du < r(07) = 1,0 < ¢t < &, whence m(a) < 1.
To prove the validity of the statement m(a) = min;zo Ee™ ¢ note that this is
trivial if M(¢) = « for all ¢ < 0, and if M(t) <  for some ¢ < 0
then 7 (0) = EX — a < 0 and so the minimum occurs to the right of zero, by
convexity.

IfA =esssupX = o,set m(o) = 0;if EX = —o, set m(—o) = 1.
The function m(a) is then defined for extended real numbers in the interval
EX =a=A.

(2.3) Lemma. If M(t) < o for some t > 0, then for EX < a £ A, m(a)
s continuous and strictly monotonic. Moreover, m(EX) = 1.

Proor. For h > 0 and EX < a < a + h < A, we have by the first part of
Theorem 2,

(24) m(a + k) = min,so Ee¥ %™ < m(a).

Continuity of m(a) at finite a, EX < a < A is easily shown using the fact that
m(a) = Be™ ™" for0 <t < . IfA < w,e> 0, weset t = ¢}, obtaining

(2.5) m(A — 0) = lim,,o min, BEe® %9 < lim, o E exp [(X — A)} + €'].
It follows that m(4 — 0) < P{X = A} = m(A). However, for ¢ > 0,

(2.6) m(A — €) = mingzo BEe™ ¥ min,s e’ = m(4).

Thus m is continuous at 4, if A < «.If A = w», then for some fixed { > O,

(2.7) 0 £ liMgow m(a) < limgow Be™ ™ =0 = m().
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If EX = — w,wehavel 2 lim,, o, m(a) = limg,_ . P{X Za} =1 =m(— ).
This proves the continuity assertions. If EX > — o, then M'(0") = EX,
and m(EX) = 1 follows. This proves (2.3).

3. Proof of Theorem 1. We shall need the following simple lemma for power
series. Here f is a function of the type described in the introduction.

(3.1) LEMMA. If0 <z <y < 1,b> Oand 22" < o, then 2y ™ = «
where [bf(n)] = 1l and fork = 1,2, ---

(3.2) ey = e + [bf(m)].
Proor. Choose K so that for n = ng
(3.3) (x/y) "f(n) < 1.

Since f is nondecreasing, we have fork = 1,2, --- |

LS bk

B4 2 Y+ ) £ Y (e — ) /1) S by

=0

Using (3.3) and the fact that n, — o (since [bf(n:)] = 1 in (3.2)), we get

X 0

ngp1—1l
35) TSV VY Sy 2T A= w,
k=K k=K j=nj ) nZng
proving (3.1).
To prove Theorem 1, let A,(a) be the event {7, = a}. Since we are dealing
with identically distributed random variables, we have

(3.6) P{4.(a)} = P{S;m) 2 of(n)}.

In proving (1.1), we assume first A < «. If r < m(4), then for A > 0, suffi-
ciently small, m(4 — h) > r and we choose ¢ > 0 so that a = m(A — h)
— 2¢> r.Since 2o’ = o, wemay apply (3.1) withb =1,z = 0,y = a +
For the sequence 7 of (3.1), we have ). 3™ = . By (2.2) and (3.6),
P{A,(A — h)} = ¥, for n sufficiently large. It follows that ) P{4,,(4 — k)}
= oo, Since 4,, depends only on that segment of { X, } for which n, < n < n, +
f(m) = me41, and these segments are disjoint, the events A,, are independent,
k=1,2 ---.By Borel’s lemma ([3], p. 228), P{4,,(4 — h)i.o} = 1 and so
T =2 A — h.Since T, = A, a.s. for each n, we obtain 7 = A. If now 4 = =
and r < m(A4), then r = 0. Since m(a) > 0 for finite a > EX; we have for
2¢ < m(a), 2 P{d.(a)} = D (m(a) — ¢’ = o and arguing as above,
P{A,.(a) i.0} = 1. Hence T = a for every a, and T = « = A. This proves
(1.1).

If m(A) < r < 1, then there is a unique a, EX; < a < 4, for which m(a) = r
by (2.3). We shall show T, = a. Let b > 0 be sufficiently small in the following.
Using (2.1) we have, since m(a + k) < m(a) = 7,

(3.7) 3 PlAa(a+ b} £ X (mla 4+ )™ < .
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By Cantelli’s lemma ([3], p. 228) we have T, < a + h so T, < a. On the other
hand, by (2.2), P{A.(a — h)} = (m(a — k) — &)’” for 0 < ¢ < m(a — h).
If ¢ is so small that m(a — h) — 2¢ > m(a) = r,then D (m(a — h) — 2¢)’™
= o. By (3.1), again with b = 1, we obtain a sequence n; for which
> P{A., (A — h)} = > (m(a — h) — &’™ = . As before we conclude
that T, =2 a — h and so T, = a and (1.2) is proved. To prove (1.3) assume
that y > EX,;. By Theorem 2, m(y) < 1 and so

(3.8) 2 P{A.(y)} = m(y)’™ < o,

since r = 1. It follows that T; < EX,. The weak law of large numbers, ([2],
p. 228) shows that for E|X;| < « and € > 0, P{S, > (EX; — ¢)n} — 1. Thus
P{A.(EX, — ¢)} > landsofor0 = r =<1,T, =2 EX,. We have T, = EX,
in any case and (1.3) is proved. In this last case we have lim 7, existing, since

(39) lminfT, = —limsup — T, = —E(—X,) = EX, = limsup T,

almost surely. In (3.9) we have tacitly assumed that M () < « also for some
t < 0 and so E|X,| < « here. Thus Theorem 1 and the assertions following are
proved.

4. An example. As an illustration of Theorem 1 we consider the Bernoulli
case, P{X; =1} =p=1—P{X; =0} for0 <p <1.Wehaveforp <a £ 1,

(4.1) m(a) = (p/a)*((1 — p)/(1 — a))"™"
and thus, forp < r = 1, T, = a where m(a) = r,andfor0 < r =< p, T, = 1.

b. A related problem on success runs. If we set N, = k if X,n =

= Xpph1=land X,y = 0;k = 1,2, - - -, in the example, then N, counts
the waiting time until the first failure following the nth Bernoulli trial (success
runs [2] p. 197, Example 5, D. J. Newman). If f is a function of the type con-
sidered above, we set U, = N,/f(n),n = 1,2,--- and U = lim sup U, . It
will be shown that U is a constant a.s., depending on f only through r, the radius
of convergence of Y a’™.

(5.1) CoroLLARY. For0 < r =<1, U = limsup U, = log, r.

Proor. Let B,(b) denote the event {U, > b},0 < bandn = 1,2, ---. We
have P{B,(b)} = p""1* and if p* < r,
(5.2) 2 P{By(b)} = 229" < w.

It follows that P{B,(b) i.0} = 0 and that U < log, r. If p* > r, then finding
an € > 0 for which p’** > r, > p®*’"™ = w. Using (3.1) with z = p"*,
y = p’ we obtain a sequence n; for which

(5-3) Zpbf(”k) = o
(54) meq1 = e + [bf ()]
The event B, (b) refers to the section of { X} for n, < n = ny + [bf(n)] = M
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and thus B,,(b) are independent, k = 1, 2, --- . Moreover, ) P{B,,(b)} =
p2_p”"™ = o by (5.3). It follows that U = b and so U = log, . This proves
(5.1).

Comparing T' and U in the Bernoulli case, it is easily seen that whenever
U< 1l,wehave U, < T, eventuallyand so U S T = 1.If T =aand U = b
we have the relationship, from (4.1) and (5.1)

(5.5) (/@) (1 —p)/(1 —a)) " =p"=r
forp=a=<land0 =b=1.
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