LOCAL AND ASYMPTOTIC MINIMAX PROPERTIES
OF MULTIVARIATE TESTS

By N. Girt! anp J. KiEFER?
Cornell and Stanford Universities

0. Summary. This paper contains details of the results announced in the ab-
stract by the authors (1962). Techniques are developed for proving local minimax
and “type D’ properties and asymptotic (that is, far in distance from the null
hypothesis) minimax properties in complex testing problems where exact mini-
max results seem difficult to obtain. The techniques are illustrated in the settings
where Hotelling’s 7” test and the test based on the squared sample multiple
correlation coefficient R® are customarily employed.

1, Introduction. In almost all of the standard hypothesis testing problems of
multivariate analysis—in particular, in the normal ones—no meaningful non-
asymptotic (in the sample size) optimum properties are known, either for the
classical tests or for any other tests. The property of being a best invariant test
under a group @ of transformations which leave the problem invariart, which is
possessed by some of these tests, is often unsatisfactory because the Hunt-Stein
theorem is not valid; for example, this is the case if G is the real linear group of
nonsingular p X p matrices where p = 2. The only satisfactory properties known
to us at this writing are the admissibility of Hotelling’s T test, proved by Stein
(1956), and the minimax character in a few special cases of Hotelling’s test,
proved recently by the authors and Stein (1963), and of the test based on the
multiple correlation coefficient, proved recently by the authors (1963).

The proof of local or asymptotic (far in distance from the null hypothesis)
properties, for which we herein develop simple techniques, serves two purposes.
Firstly, there is the obvious point of demonstrating such properties for their own
sake. But well known and valid doubts have been raised as to the extent of mean-
ingfulness of such properties. Secondly, then, and in our opinion more important,
local or asymptotic properties can give an indication of what to look for in the
way of genuine minimax or admissibility properties of certain procedures, even
though the latter do not follow from the local or asymptotic properties. For
example, if S; and S; are independent p X p central Wishart matrices (p = 2)
with expectations 2 and 82 per degree of freedom, and if it is desired to test
Ho:6 = 1 against Hy:86 = \ + 1 (specified) > 1 or H1:4 > 1, then Stein showed
(see Lehmann (1959), pp. 231, 338) that the best invariant test of level
a(0 < a < 1) under the real linear group G operating as (S;, S;, 8, Z) — (98:,
98:9', 8, g=¢’), which.is also the likelihood ratio test, is inadmissible and is not
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22 N. GIRI AND J. KIEFER

minimax for Hy . It was possible to obtain this result without much calculation
because the best invariant procedure under the group Gr of nonsingular lower
triangular matrices, which is transitive on {Z} and for which the Hunt-Stein
theorem is valid, is not invariant under the real linear group. But in other ex-
amples such an expeditious demonstration may not be available; we note, there-
fore, that the result in the present example is already indicated in the local
theory (as A — 0), which may thus be expected to indicate the direction of such
results in other cases where (unlike the present case) the nonlocal theory is
much more difficult. Such examples are in fact found in the T” and R’ tests which
are mentioned above and are treated in the paper: the local optimality of these
tests, which will be seen in Section 2 not to be very difficult, was proved at a time
when the T? and R’ tests were not known to be minimax; such a simple local
result, or its negation, lends credence to the genuine minimax property, or its
negation, and thus indicates the direction of proof or disproof which seems most
promising; although the R’ and T” genuine minimax properties are known in
only a few cases, one’s belief is strengthened in the validity of these properties in
general. When, as in the examples of Section 2, the local or asymptotic property
is possessed by only one of the Gr-invariant procedures, it is of course more
indicative than when, as in the example of Section 4, many tests share
the property. '

In the negative direction, the local or asymptotic theory not only indicates,
but says something definite about the genuine minimax result: In the setting of
Section 2 (resp., Section 4), if a level « test ¢* of Hy:d6 = 0 against H,:6 = A
(specified) > 0 maximizes the minimum power under H, for every X > 0, then it
must clearly be locally minimax as A — 0 (resp., asymptotically minimax as
A — ). Thus, the failure of ¢* to possess the local or asymptotic minimax prop-
erty proves that it is not minimax (uniformly) for every A.

One can refine the local and asymptotic notions we consider to versions ob-
tained by including one or more error terms. For example, in Section 2 the local
optimality property (2.4) can be refined to ask that a level « critical region which
satisfies (2.4) with inf, P, ,{R} = a + C\ 4+ o()) as A — 0, also satisfies

inf,, P)",,{R} - a - C])\ —
SUpgeq, Inf, Py ,{¢ rejects Hy} — o — CiA

lim)\-»o

This involves more calculations; typically, in the setting (2.3) of Section 2, two
moments of the a priori distribution £, , rather than just one, become im-
portant. As further refinements are invoked, more moments are brought in. In
the T* and R’ cases mentioned earlier wherein genuine minimax results have been
obtained, the limits of the corresponding a priori distributions as A — 0 are posi-
tive Lebesgue densities f(n) whose moments are determined successively by
further refinements. Thus, in those cases, the first moments of f coincide with
those of £, in Examples 1 and 2 of Section 2. A similar result for the first moment
holds in Example 1 of Section 4 as A — .

The local theory developed in Section 2 uses a slightly refined version of the



MINIMAX PROPERTIES OF MULTIVARIATE TESTS 23

well known result that Bayes procedures with constant risk are minimax. Such
Bayesian techniques can be used also in the classical Neyman-Pearson local
theory; for example, see Kiefer (1959), p. 280, for an application to regions of
type C.

In Section 3 a variant of Isaacson’s type D region is discussed. Somewhat
surprisingly, the T® and R’ tests are not of type D among Gr-invariant tests
(except, of course in the lowest dimension ). This fact can be interpreted, roughly,
in terms of the classical tests having constant (maximin) power on a family of
ellipsoids in a reduced parameter space, while certain other tests with other
ellipsoids as local contours of the power function yield a greater Gaussian curva-
ture for the power function. Unfortunately, the action of G in such problems
destroys symmetry in the coordinates and makes it more difficult to achieve good
intuition.

It is hoped that further, more difficult multivariate examples will be treated
elsewhere.

The reader is referred to Lehmann (1959) and to Anderson (1958) for the
standard nomenclature which we shall use.

2. Locally minimax tests. Let X be a space with associated o-field which,
along with the other obvious measurability considerations, we will not mention
in what follows. For each point (8, ) in the parameter set @ (where & = 0),
suppose that p(-; 8, ) is a probability density function on X with respect to
some o-finite measure p. (The range of 7 may dependon é.) Forfixed 0,0 < a < 1,
we shall be interested in testing, at level a, the hypothesis Hy:6 = 0 against the
alternative Hy:6 = \, where \ is a specified positive value, and in giving a suffi-
cient condition for a test to be approximately minimax in the sense of (2.4)
below. This is a local theory, in the sense that p(z; A, 9) is close to p(z; 0, )
when A is small. Thus, obviously, every test of level a would be locally minimax
in the sense of the trivial criterion obtained by not subtracting « in the numerator
and denominator of (2.4). As indicated in the introduction, our proof of (2.4)
as it stands consists merely of considering local power behavior with sufficient
accuracy to obtain an approximate version of the classical result that a Bayes
procedure with constant risk is minimax. A result of the type obtained can be
proved under various possible sets of conditions, of which we use a form con-
venient in many applications, listing possible generalizations and simplifications
as remarks.

Throughout this section, such expressions as o(1), o(h())), etec., are to be
interpreted as A — O.

For each fixed @, 0 < a < 1, we shall consider critical regions of the form
R = {z:U(x) > C.} where U is bounded and positive and has a continuous d.f.
for each (8, 9), equicontinuous in (8, ) for § < some 4, , and where

(2.1) Po,{B} = a,  Pray{B} = a+ h(A) + q(A, n),
where ¢(A, 1) = o(h(\)) uniformly in 5, withk(A) > OforA > Oandh(A) =
o(1).



24 N. GIRI AND J. KIEFER

We shall also be concerned with probability measures £, and &, on the sets
6 = 0 and & = ), respectively, for which

2.2) jp(x; A mEa (d"’)/f p(z; 0, n)& (dn)
=1+ kM)Ig\) + r(\)U(2)]1 + B(z, \)

where 0 < ¢; < 7(A\) < ¢z < w for \ sufficiently small, and where g(A) = O(1)
and B(z, \) = o(h(\)) uniformly in z. It is clear from the form of (2.1) and
(2.2) that, reparametrizing, there is no loss of generality in letting h(s) = 6,
but we retain the stated forms for use in applications.

REMARKs.

1. In many applications the set {§ = 0} is a single point. Also, the set {§ = A}
is often a convex finite-dimensional Euclidean set wherein each component 7; is
0(h(N)); in this case, if p(x; N, 9)/p(x; 0, n) is of the form

k
(2.3) 1+ hrN)U(x) + iglse(x)aii()\)w + B(z, A, 9)

with S; and a;; bounded and with sup,,, B(x, \, 7) = o(h()\)), and if there exists
any £ ) satisfying (2.2), then the degenerate £1, which assigns measure 1 to the
mean of £, also satisfies (2.2). Both of these simplifications oceur in Examples
1 and 2 below.

2. Another simplification occurs if the £;, can be chosen to be independent of
), as is the case in Examples 1 and 2. The assumptions on B and U can then be
weakened. (See Remark 3.)

3. One can weaken the assumptions on U and B (and, similarly, on the S; and
a;; of Remark 1), which are used only in order to verify (2.8) and (2.9) below.
For example, the assumption on B(z, A\) can be weakened to P, ,{|B(z\)| <
eh(\)} — 0as A\ — 0, uniformly in 5 for each ¢ > 0. If the £;)’s are independent
of A, the uniformity of this last condition is unnecessary. The boundedness of U
and the equicontinuity of its distribution can be weakened similarly.

4. The following modifications are alse trivial to introduce: consideration of
critical regions of a more complicated form than {U > C.}; consideration of
randomized tests rather than critical regions R; modification (in the absence of
continuity of the power function) of the equality signs in (2.1) to < and = signs,
respectively, with equality on the support of the £;,, . The conclusion of Lemma 1
clearly holds even if @, is modified to include every family {¢)\} of tests of level
a + o(h())). One can similarly consider optimality of a family { U} rather than
of a single U, by replacing R by R\ = {z:Ux(x) > Cap}, Where Py {R\} = o —
an(n) with ga(n) = o(h(N)).

Lemma 1. If U satisfies (2.1) and if for sufficiently small \ there exist & and
£ satisfying (2.2), then U 4s locally minimazx of level o for testing Hy:6 = 0 against
8 = X as A — 0; that s,

inf, P\,{R} — «

(24) limyo - - =1,
SUDg,cq, Inf, Py {éx rejects Ho} — a

where Q. 1s the class of tests of level a.
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Proor. Write
(25) n = 1/{2 + kMN)g(\) + Car(M)]},
so that
(2.6) (1 = n)/mn =14 hN)gA) + Car(N)].

A Bayes critical region relative to the a priori distribution & = (1 — 7n)a
+ na (for 0-1 losses) is, by (2.2) and (2.6),

2.7 B, = {z:U(z) 4+ B(z, \)/r(M)R(N) > Cadf.
Write
PiA} = [ Poalta(@n) and Phi4) = [ Pra4ia(an).

Let V» = R — Byand W), = B, — R. Using the fact that sup, |[B(z, A)/k(N)| =
0(1) and our continuity assumption on the d.f. of U, we have

(2.8) PoM{Vs + Wi} = o(1).
Also, for U, = V) or W),
(2.9) P UM = Poa{UNIL + O(h(N))].

Write ¥ (4) = (1 — n)Po{d} + n(1l — Pi\{A4}). From (2. 5) (2.8), and
(2.9), the integrated Bayes risk relative to & is then

(B = (R) + (1 — n)(Pax{Wh} — ParlV})
+ n(PIAVA} — PhWA))
(2.10) = (R) 4+ (1 — 2n)(PoA{Wh} — PiAVA))
+ Pos{Va + WHJO(R(N))
r(R) + o(R(N)).

If (2.4) were false we could, by (2.1), find a family of tests {¢)} of level « such
that ¢, has power function a + g(A, 1) on the set § = X, with

lim supa..o [inf, g(A, n) — A(N\)]/A(X) > 0.
The integrated risk m of ¢, with respect to & would then satisfy
lim supr.o (7 (R) — m)/h(A) > 0,
contradicting (2.10).

ExampLE 1. (Hotelling’s T? test). Let X;, ---, Xx be independently and
identically distributed normal p-vectors, each with mean vector ¢ and nonsingular
covariance matrix Z. Write NX = > 7 X;and S = X7 (X: — X)(X: — X)".
Let § > 0 be specified. For testing the hypothesis Ho:¥ = 0 against H:

Nt'=7't = b at significancelevel « (0 < a < 1), a commonly employed procedure
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is Hotelling’s T” test, which rejects Hy, when 7° = N(N — 1)X'S7'X > (' or,
equivalently, when U = T%/(T* + N — 1) > C, where C (or C’) is chosen so
as to yield a test of level . We assume N > p, since it is easily shown that the
denominator of (2.4) is zero in the degenerate case N < p.

In our search for a locally minimax test as § — 0, we may restrict attention
to the space of the minimal sufficient statistic (X, S). The full linear group @ of
p X p nonsingular matrices leaves the problem invariant, operating as
(X, 8; ¢ 2) — (9X, 9S¢’; 9§, 92¢'). However, the Hunt-Stein theorem cannot
be applied for this group if p = 2, as Stein has demonstrated in several examples.
(See Stein (1955), Lehmann (1959), pp. 231 and 338, and James and Stein
(1960), p. 376.) However, the theorem does apply for the smaller group Gr of
nonsingular lower triangular matrices (zero above the diagonal), which is
solvable. (See Kiefer (1957), Lehmann (1959), p. 345.) Thus, for each § there
is a level « test which is almost invariant (hence, in the present problem, there
is such a test which is invariant; see Lehmann (1957), p. 225) under Gr and
which maximizes, among all level o tests, the minimum power under H;. In
terms of the local point of view, the denominator in (2.4) is unchanged by the
restriction to Gr-invariant tests, and for any level « test ¢ there is a Gr-invariant
level a test ¢’ for which the expression inf, Py ,{¢  rejects Hy} is at least as large,
so that a procedure which is locally minimax among Gr-invariant level « tests is
locally minimax among all level « tests.

In place of the one-dimensional maximal invariant T° obtained under G, one
now obtains a p-dimensional maximal invariant Z = (Z,, --- , Z,) defined by

Z; = X(a(Sw) " X1

where we write C; for the upper left-hand 7 X ¢ submatrix of a matrix C and
by for the i-vector copsisting of the first ¢ components of a vector b. Z; is es-
sentially Hotelling’s statistic based on the first ¢ coordinates. (This and the
other straightforward computations which follow will be found in detail in Giri,
Kiefer, and Stein (1963).) We shall find it more convenient to work with the
equivalent statistic ¥ = (¥y, ---, ¥,) where

Y;=NZ;/(1+ NZ:) — NZ.,/(1 + NZ:) (Z = 0).

It is easilyseenthat Y, = 0, > 7 Y; < l,and D . V.= U = T*/(N — 1 + T%).
A corresponding maximal invariant A = (8, : -+, 8,) in the parameter space
of (u, ) under Gr when H, is true is easily seen to be given by

8 = Ntta(Zta) ta — NEn(Ztn) ey (8 = N£1/Zu).

Here 6; = 0 and 2.7 8; = b. The nuisance parameter in this reduced setup is
n=(m,- - ,ny) where 5; = 8;/86 = 0, D7 n; = 1. The corresponding maximal
invariant under H, takes on the single value 0 = (0, ---, 0); we may for con-
venience also write = O in that case.
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A straightforward but slightly tedious computation yields for the Lebesgue
density of Y on H = {y:y; > 0,1 < 7 < p; D> P y; < 1} the function

b (N—p—2)/2 bJ
@ = rwm (1-Sw) /e - a2
(2.11)

X exp{—% + g Yi 2 g—'} fIltb((N — 1+ 1)/2,1/2;y:8:/2),

>7 t=

where ¢ is the confluent hypergeometric function (sometimes denoted by F;),

0

(2.12) $(a,b;2) = X[T(a + )T (®)/T(@T(b + jlla’

‘We now verify the assumptions of Lemma 1 for U = > PY;. Those just pre-
ceding (2.1) are obvious. In (2.1) we can take A(X) = b\ with b a positive
constant. Of course, Py ,{R} does not depend on 5. From (2.11) and (2.12), we
have

b
(2.13) ’;*'"(y) =1+ 5{—1 + 2. y,-[Z 7+ (N —j+ l)m]} + B(y,, M),
0.0(y) 2 =7 LT

where B(y, 7, A\) = o(\) uniformly in y and 7. We have the setup of Remark 1
above, and (2.2) is satisfied by letting % give measure one to the single point
n = 0, while £, gives measure one to the single point n* (say) whose jth co-
ordinate is (N — ) (N —j + 1) "p 'N(N — p),sothat 2o nf + (N —j +
1)nf = N/p for all j. Applying Lemma 1, we have

THEOREM 1. For every p, N, and a, Hotelling’s T” test s locally minimax for
testing 6 = 0 against 6 = N as A — 0.

ExampLE 2. (The R’ test) With X, , - -+, Xy as in Example 1, partition = as

Zn 2
Za Zp

where Sy is (p — 1) X (p — 1). Write p* = 21225 221/ Zy; . It is desired to test
the hypothesis Ho:p> = 0 that the first component is independent of the others,
against the alternative H,:p’ = 8, where 8 is specified, 0 < § < 1. It is clear that
the transformations (¢, =, X, 8) — (¢ + b, 2, X + b, S) leave the problem in-
variant and, along with the group Gz considered below, generate a group
which satisfies the Hunt-Stein conditions and in which these transformations
form a normal subgroup; the action of these transformations is to reduce the
problem to that where # = 0 (known) and 8 = Y1 X.X: is sufficient, where N
has been reduced by one from what it was originally. We therefore treat this
latter formulation, considering X;, ---, Xy to have zero mean. We assume
N = p = 2, the case N < p now being degenerate.

We now consider the group G of nonsingular lower triangular matrices whose
first column contains only zeros except for the first element. It is easily seen that
this group, operating as (S; =) — (¢S¢’, g=¢’), leaves the problem invariant.
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The development now parallels that of Example 1. A maximal invariant
R = (R., ---, R,) is defined by

25 R; = Sura (Seera) Suta/Su , 2=¢=0p
Thus, R, = 0, 2.8 R; < 1, and )_f R, = U is the squared sample multiple

correlation coefficient between first and other components (usually denoted by
R?). The corresponding maximal invariant in the parameter space, A =

(62, -+, 8p), Is given by

228 = Zu(Zem)  Zaw/2u, 2<i=0p.
Thus, 8; = 0, D% 8; = p°, the squared population multiple correlation coefficient.
We write n = (92, -+ -, 9,) With 9; = §.,/8 as before, and (8, n) = (0, 0) under
H, . The Lebesgue density of R when p* = X\ can be computed (see Giri and
Kiefer (1963) for details) to be

(2.14) fan(r)
P $(N—p—1)
(1 _ A)i(p—l) 1 — Z -
? < iN : )
[l + Zz: (1 — N) /v — 1):| Tli(N — p + 1)}

p—1

X II (G + DMV — i+ 2))

xﬁ; i P(Zﬁ,+ N)

fI {I‘[%(N — i+ 2) + 8 [ 4r:(1 — N) /v:(1 + 7) }"}
X %

(26:)! 1+ ; rl(1 = N) /v — 1]

where ;i = 1 — 2 38; =1 — X 2sn;, m = 8;/yi = Ms(1 — X 223 1,). (The
expression 1/(1 + #7') means 0 if §; = 0.) From this we obtain

(215) )y g { 1 +Er,[2m +V -+ 2)n,]} + Blr,1, )
fO ( ) =2 i>7

where B(r, 7, \) = o()\) uniformly in r and 7. We see that the assumptions of
Lemma 1 are again satisfied for U = > Py (=“R™), with h(\) = b\ again.
In fact, (2.15) becomes (2.13) if we replace NXin (2.15) by A, pby p — 1, and
the index range 2 < j < pby1 <5 =j — 1 = p — 1; thus, Ennowglves
measure one to the point whose jth coordinate (2 < j < p) sWNVN-j+1D7

(N -7+ 27 p — 1)7'N(N — p + 1). (Of course, it is no coincidence that
(2.13) and (2.15) correspond: (2.11) involves ratios of noncentral to central
chi-square variables, while (2.14) involves similar ratios with random non-
centrality parameters; the first order terms in the expansions, which involve
only expectations of these quantities, correspond to each other.) We conclude
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TuEOREM 2. For every p, N, and «, the critical region which consists of large
values of the squared sample multiple correlation coefficient R? is locally minimaz for
testing p> = 0 against p* = X as A — 0.

3. Type D and E regions. The notion of a type D or E region is due to Isaacson
(1951). Kiefer (1958) showed that the usual F-test of the univariate linear
hypothesis has this property. Lehmann (1959a) showed that, in finding regions
which are of type D, invariance could be invoked in the manner of the Hunt-
Stein theorem; and that this could also be done for type E regions (if they exist)
provided that one works with a group which operates as the identity on the
nujsance parameter set (H of the next paragraph).

Suppose, for a parameter set @ = {(8, 7):0 € ©, n & H} with associated dis-
tributions, with ® a Euclidean set, that every test function ¢ has a power func-
tion B4(6, n) which, for each 7, is twice continuously differentiable in the com-
ponents of 8 at § = 0, an interior point of @. Let Q. be the class of locally strictly
unbiased level « tests of Hy:0 = 0 against H;:6 = 0; our assumption on 8, implies
that all tests in @, are similar and that d8:/96; | 90 = O for ¢ in Q. . Let A,(n)
be the determinant of the matrix B4(n) of second derivatives of 84(6, ) with
respect to the components of § (that is, the Gaussian curvature) at 6 = 0. We
assume the parametrization to be such that A4 () > 0 for all  for at least one
¢’ in Q. . A test ¢* is said to be of type E if ¢* £ Qo and Ags(1) = maxyo, As(n)
for all 4. If H is a single point, ¢* is said to be of type D.

In the examples which interest us, such as those treated in the previous
section, it seems doubtful that type E regions exist. (In terms of Lehmann’s
development, H is not left fixed by many transformations.) Without pursuing
the question of when such regions exist, we introduce two possible optimality
criteria, in the same spirit as the type D and E criteria, which will always be
fulfilled by some test under minimum regularity assumptions: Write A(y) =
maxg o, As(n). A test ¢* will be said to be of type D4 if ¢ € Q, and

max, [A(n) — A¢+(n)] = mingq, max,[A(n) — Ay(7)]
and of type Dy if
max, [A(7n)/Aq(1)] = ming. o, max, [A(n)/Ay(n)].

These criteria resemble stringency and regret criteria employed elsewhere in
statistics; the subscripts “A”’ and “M”’ stand for ‘‘additive’” and ‘“‘multiplica-
tive’’ regret principles. The possession of these properties is invariant under the
product of any transformation on ® (acting trivially on H) of the same general
type as those for which type D regions retain their property, and an arbitrary
1-1 transformation on H (acting trivially on @), but, of course, not under more
general transformations on €'. Obviously, a type E test automatically satisfies
these weaker criteria.

Suppose now that a problem is invariant under a group of transformations G
for which the Hunt-Stein theorem holds and which acts trivially on ©; that is,
such that g(8, n) = (6, gn) for g in G, in a usual abuse of notation. If ¢g is, as
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usual, the test function defined by ¢g(z) = ¢(gz), a trivial computation then
shows that Agy(n) = As(gn) and hence that A(n) = A(gn). Also, if ¢ is better
than ¢’ in the sense of either of the above criteria, then ¢g is clearly better than
¢'g. All of the requirements of Lehmann’s development are easily seen to be
satisfied, so that we can conclude that there is an almost invariant (hence, in
our examples, an invariant) test which is of type D4 or Dy . (This differs from
the way in which invariance is used in the application of (b), p. 883, of Lehmann
(1959a), where it is used to reduce © rather than H, as here.)

If, furthermore, G is transitive on H, then A(#n) is constant, as is A4(n) for
an invariant ¢ (which we therefore write simply as A4). In this case we conclude
that ¢f ¢* is tnvariant and if ¢* is of type D among invariant ¢ (that is, if Ag
maximizes Ay over all invariant ¢), then ¢~ is of type D4 and Dy among all ¢.

Our main tool for verifying optimality in these senses is a trivial one:

LemMma 0. Let L be a class of non-negative definite symmetric m X m matrices,
and suppose J is a fixed nonsingular member of L. If tr J ~'B is maximized (over
Bin L) by B = J, then det B is also maxzimized by J. Conversely, if L is convex
and J mazimizes det B, then tr J B is maximized by B = J.

Proor. Write J B = A. If A = I maximizes tr 4, we have (det 4)"™ =
tr A/m < 1 = det I. Conversely, if I maximizes det 4, it also maximizes tr 4,
since tr B > tr I implies det (aB + (1 — a)I) > 1 for a small and positive.

Of course, the usefulness of this tool lies in the fact that the generalized
Neyman-Pearson lemma allows us to maximize tr @B, (for fixed @) more easily
than to maximize A, = det By, among similar level « tests. We can find, for
each Q, a ¢¢ which maximizes tr @Bs ; a ¢* which maximizes A, is then obtained
by finding a ¢ ¢ for which By, = Q.

In examples of the type which interest us, the reduction by invariance under
a group G which is transitive on H often results in a reduced problem wherein
the maximal invariant is a vector ¥ = (Y1, ---, ¥») whose distribution de-
pends only ony = (y1, - -, Ym) Wherey; = 6% (where 6 = (6, -+, 0m)), and
such that the density f, of ¥ with respect to a o-finite measure p is of the form

B L) = AN+ v+ T awd) + 0w )

where the h; and a;; are constants and Q(y, v) = 0(D_v:) as ¥ — 0,and where
we can differentiate under the integral sign to obtain, for invariant test func-

tions ¢ of level
Bs(6,n) = @ (1 + 21: 'Yihi>

(3.2)
+ 2% 3 as [ iAW) + ol %)

as 6 (or v, where y; = 67) — 0. We shall call this the symmetric reduced regular

(SRR) case.
In the SRR case, every invariant ¢ has a diagonal B, whose ith diagonal entry,
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by (3.2), is 2 + Eof D ;a:;;Y#(Y)}]. By the Neyman-Pearson lemma,
tr @B, is maximized over such ¢ by a ¢" of the form

(33) ¢*(y) = {(1)} if ; ai:’qiyj{z} c

where C is a constant and g¢; is the 7th diagonal element of @ (we need only con-
sider diagonal @’s at this point). From this and the previous remarks, we con-
clude

LemMA 2. In the SRR case, an invariant test ¢* of level a is of type D among
invariant ¢ (and, hence, of type D4 and Dy among all ¢) if and only if ¢* is of
the form (3.3) with q;' = const bys;, where bys; is the ith diagonal element of
By (that is, ¢i* = const [hia + E,{ D, a:;Y 0" (Y)}]).

ExampLE 1. In the setting of Example 1 of Section 2, we let § = N’ Yt where
F is the (unique) member of G'r with positive diagonal elements and such that
FF' = 2. Then 0 is Euclidean p-space, Gr operates transitively on H = {positive
definite symmetric =} but trivially on ©, and we have the SRR case with Y; as
in (2.11) and v; = &; of (2.11). We thus have (3.2) with &, = —3, a;; = 1
(resp., 0, N — 7 + 1) if ¢ > 7 (resp., 2 < j, ¢ = j). Hotelling’s T” test has a
power function which depends only on > ., so that, with the above para-
metrization for 9, we have Br: a multiple of the identity. Also, Hotelling’s critical
region is of the form >~ y: > C. But, when all g; are equal, the critical region cor-
responding to (3.3) is of the form > i (N +p+1— 2)y; > C, which is not
Hotelling’s region if p > 1. We conclude, perhaps somewhat surprisingly in
view of Theorem 1,

THEOREM 3. For 0 < a < 1 < p < N, Hotelling’s T*-test is not of type D
among Gr-invariant tests, and hence is not of type D 4 or Dy (nor of type E) among
all tests.

The actual computation of a ¢* of type D among Gr-invariant tests appears
difficult in view of the fact that we must (by (2.11)) compute an integral of the
form

B _ 1,‘51’1"(]\7/2)3/,'_*(1 — Z yj)l(N-P_2>
(34) EO{ Y'¢(Y)} - -/(‘Zc,'u,'>Cl F[%(N - p)] H yg

1#r

I dy:

for h = 0 or 1 for various choices of the c¢;’s and C. When « is close to 0 or 1,
one can carry out approximate computations, as illustrated by the discussion of
the next paragraph.

As a — 1, one can see that the complement R of the critical region becomes a
simplex with one corner at 0. When p = 2, if we write p = 1 — « and consider
critical regions of level a of the form by, + y2 > C where 0 < L7'<b=LL
being fixed but large (this keeps R close to the origin), we obtain easily from
(84) that p = E¢(1 — ¢(Y)) = (N — 2)C/2b’ + 0o(C) as C — 0. Similarly,
E{(1 — (Y)Y} = (N — 2)C /8 + o(C) = p 7} /2(N — 2) + o(p) as
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p — 0, while EY; = 1/N. We therefore obtain, from (2.13), for the power
near H, ,

a+£{‘n [1 _ Np+0(p)]

(3.5) 2 2(N — 2)b
)
p+o(p) (N —1)pb* + o(p)
tw [1 TN — 2% 2N — 2) ]} + 0 (22 7),

where the o(p) and o(Y_ v:) terms are uniform in v and p, respectively. The
product A, of the coeflicients of 41 and 7, is easily seen to be maximized when

= (N +1)/(N — 1) + o(1), as p — 0; with more care, one can obtain further
terms in an expansion in p for the type D choice of . The argument is completed
by showing that b < L™ implies that R lies in a strip so close to the y;-axis as
to make Eo{(1 — ¢(Y))Y3} toolarge and Eo{ (1 — ¢(Y)) Y3} too small to yield
a ¢ as good as that with b = (N 4+ 1)/(N — 1), with a similar argument if
b> L.

When p is very close to 0, we see that all choices of b > 0 give substantially
the same power, & + p(v1 + 72)/2 4 O(p), so that the relative departure from
being of type D, of the T” test or any other critical region of the form
bY, + Y, > C, (b fixed and positive),. approaches 0 as @ — 1. We do not
know how great the departure of Ar: from A can be for arbitrary a.

One can treat similarly the case p > 2 and also the case a — 0.

ExampLE 2. We have already noted the correspondence between (2.13) and
(2.15). Thus, for the setting of Example 2 of Section 2, we obtain by an argu-
ment like that used for Theorem 3,

THEOREM 4. For0 < a < 1,p > 2,and N = p or N > p depending on whether
or not the mean & is known, the critical region consisting of large values of the squared
sample multiple correlation coefficient R® is not of type D among Gr-invariant
tests, and hence is not of type D4 or Dy (nor of type E) amonyg all tests.

Approximate computations of Gr-invariant type D tests can be carried out
when « is close to 0 or 1, as in Example 1.

4. Asymptotically minimax tests. In this section we treat the setting of Section
2 when A — «, and expressions such as 0(1), o(H(X)), etc., are to be interpreted
in this light. We are now interested in minimaxing a probability of error which is
going to zero. Readers who are familiar with asymptotically large sample size
theory (referred to in the remark below) will recall that, in that setting, it is
difficult directly to compare approximations to such small probabilities for
different families of tests, and one instead compares their logarithms. While our
considerations are asymptotic in a sense not involving sample sizes (although
some examples, such as that of testing whether the mean of a normal variate
with unit variance is 0 or A, fall equivalently into either framework), we en-
counter the same difficulty, which accounts for the form of (4.4).

As in Section 2, various possible sets of assumptions could be used. We choose
one which differs slightly from the form used in Section 2. Modifications are re-
marked on, below.
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Suppose then that the region R = {z:U(x) = C,} satisfies (in place of (2.1))
(4.1) Poy{R} = @,  Prs{R} =1 — exp{—H\)[1 + o(1)]},

where H(\) — =+« with X and the o(1) term is uniform in 5. Suppose, replacing
(2.2), that

[ p@nmaaan / [ o0, Deatan

= exp {H(N)IG(N) + RN U(2)] + B(z, N)}

where sup; |B(x, \)| = o(H(\)) and 0 < ¢; < R(\) < ¢; < . Our only other
regularity assumption is that C, is a point of increase from the left of the d.f.
of U, when é = 0, uniformly in »; that is,

(4.3) inf, Poy{U 2 Co — ¢ > a

for every e > 0.

REMARK. The reader will find no difficulty in giving analogues here of the
specializations and generalizations remarked upon in Section 2. One further
variation, which is more relevant here (where 1 — Py ,{R} — 0 as A\ — ) than
it would be in the setting of Section 2, is to let « — 0 as A — o« in such a way
that both Po,{R} and 1 — P, ,{R} go to zero, perhaps at different rates. One
obtains asymptotic minimax results which have some formal resemblance to
familiar results which are asymptotic (in the sense that the sample size n — o)
for testing between simple hypotheses, as considered by Chernoff, Bahadur,
Hodges and Lehmann, and others.

Lemma 3. If U satisfies (4.1) and (4.3), and if for sufficiently large \ there exist
fon and &\ satisfying (4.2), then U s asymptotically logarithmically minimazx of
level a for testing Hy:6 = 0 against 8 = \ so A\ — = ; that s,

inf, {—log [1 — P»,{R}]}

(4.4) lim)\.,oo " n = 1
SUPgcq, inf, { —log [1 — P\ ,{¢\ rejects Hy}l}

(4.2)

Proor. Suppose, contrary to (4.4), that there is an ¢ > 0 and an unbounded
sequence I' of values A with corresponding tests ¢, in Q. for which

(4.5) Pr{R} > 1 — exp { —H(\)(1 + 5e)}
for all ».
There are two cases, (4.6) and (4.9). If A e T and
(4.6) =1 —G(\) = R(\)Cq + 2,
consider the a priori distribution given by the £, and by 7, satisfying
(4.7) n/(1 — n) = exp {H(N)(1 + 4e)}.

The integrated risk of any Bayes procedure By must satisfy
"B =) = (1 — n)a+ nexp{—HAN1 +5¢))

(4.8)
= (1 = n)la + exp {—eH(M)}],
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by (4.5) and (4.7). But, according to (4.2), a Bayes critical region is
By = {z:U(z) + B(z, \)/R(NH) Z [—(1 + 4¢) — G(N)I/R(M)}.
Hence, if A is so large that sup. |B(z, A\)/H(A)R(N\)| < ¢/cz, we have, from (4.6),
B, D {z:U(xz) > Co — €¢/ci} = Bx (say).

The assumption (4.3) implies that Po,{Bx} > « + ¢ with € > 0, contradicting
(4.8) for sufficiently large A.
On the other hand, if A ¢ T and

(4.9) —1 = G(\) > R(A\)Cq + 2¢,
let
(4.10) n/(1 — n) = exp {HN\) (1 +-€)}.

Then, by (4.2),
By = {z:U(z) + B(z,\)/R(NH() 2 [—(1 + ¢) — GNI/R(N)}-

Hence, if sup: |[B(z, \)/H(A\)R(\)| < ¢/2c;, we conclude from (4.9) that
B, C R, so that, by (4.1) and (4.10),

(4.11) r(B)) > nexp {—HM)[1 + o(ll)]} = (1 —7n)exp{HQA)(e—0(1))}.
But
™(B) £ () £ (1 = n)a+ nexp {(—HM\)(1 + 5¢))
= (1 — n)la + exp { —4eH(M)}],
which contradicts (4.11) for sufficiently large A.
ExampLE 1. In the setting of Example 1 of Section 2, with
P
U=T/(N—-14+T)= DY,
1
again, (2.11) and (2.12) yield (since¢(a, b; z) = exp {x(1 + o(1))} asz — =)

Haly) A >

(12) Bl o N1 S T |1+ Bl
Joo(y) 2 ia iz

with supy., |[B(y, m, A)| = o(1) as A — . From this and the smoothness of

foo (or from the well known form of the density of 77) we see (for example,

putting 5, = 1, the density of U being independent of %) that

(4.13) PafU < Cof = exp (3M(Ca — 1)[1 + o(1)]}
as A — o ; thus, (4.1) is satisfied with H(\) = (1 — C,)/2. Next, letting & » as-
sign measure one to the point 7, = --- = n,; = 0, 9, = 1, and %, assign

measure one to (0, 0), we obtain (4.2). Finally, (4.3) is trivial. We conclude,
from Lemma 3,
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TaEOREM 5. For every a, p, N, Hotelling’s test s asymptotically minimazx for
testing 6 = 0 against 6 = A as A — .

Although no critical region of the form ) 7 a;¥; > C other than Hotelling’s
would have been locally minimax in the considerations of Section 2, many
regions of this form are asymptotically minimax (which, of course, makes
Theorem 5 less of an argument in support of the use of the T” test):

Taeorem 6. If C < land 1 = by £ by = --- = by, then the critical region
{D°Pb;Y; > C} is asymplotically minimax (among lests of the same size) as
A— o0,

Proor. Since the maximum of D7 y; D.:»;7; subject to D P by; < C is
clearly achieved at s = C, y» = --- = y, = 0, integration of f, ,(y) over a small
region near that point yields (4.13) with C, replaced by C. Since the b;’s are
nondecreasing in j, it is obvious from (4.12) that & . _can be chosen to yield
(4.2) with U = X b,Y;. Again, (4.3) is trivial.

The reader may find it interesting, in the case p = 2, to note geometrically
what happens to (4.13) if C > 1, and to note the dependence of the power on
nif by < by .

The result of Theorem 5 is obviously related, in the underlying structure which
yields it, to Stein’s (1956) admissibility result, although neither implies the other.
It is interesting to note also that the same departure from this structure (in the
behavior as p° — 1) which prevents Stein’s method from proving the admissi-
bility of the R’ test, also prevents us from applying Lemma 3 to Example 2 of
Section 2 as p* — 1.
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