A RELATIONSHIP BETWEEN ARBITRARY POSITIVE MATRICES AND
DOUBLY STOCHASTIC MATRICES

BY RICHARD SINKHORN
University of Houston

1. Introduction. Suppose one observes n transitions of a Markov chain with
N states and stochastic matrix P = (p;;). The usual estimate of p;; is t;; = ay/\:
where a;; is the number of transitions from ¢ to j which are observed, and \; =
Ej a;; . (Cf. [1].) This amounts to a normalization of the rows of 4 = (ai;),
and can be expressed as a matrix equation 7 = DA where T = (t;;) and D; =
diag|\y?, - -+, A\V]-

If it is known that the stochastic matrix P is in fact doubly stochastic, (i.e.,

S :pi = 1), what then is a good estimate of T'? The maximum likelihood
equations are difficult to solve. One estimate which has been used (for example,
by Welch [4]) is to alternately normalize the rows and columns of 4, in the
belief that this iterative process converges to a doubly stochastic matrix, T,
which might be, in some sense, a good estimate.

It is not the intent of this paper to obtain properties of this estimate but only
to examine the mechanics of the iteration itself. In the next section we shall
study this in detail and show that it is always convergent if the matrix 4 is
strictly positive (i.e., a; > 0 for all 7, 7), and in fact that there exist diagonal
matrices D; and D, (unique up to a scalar factor) with positive diagonals such
that T = DiAD.. T is the only doubly stochastic matrix expressable in this
form for a given strictly positive A.

For completeness we shall include a corollary to this result due to Marcus
and Newman [3] which states that if A is symmetric and has positive entries,
then there exists a diagonal matrix D with positive main diagonal entries such
that DAD is doubly stochastic.

Finally in the last section we shall show by example that convergence need
not occur at all if some a;; = 0, or even if it does there need exist no associated
diagonal matrices D; and D; as in the strictly positive case. Even the apparently
natural artifice of replacing the zero entries by “small” functions a;j(e) of a
parameter e, getting 7'(e) and letting e — 0 leads to difficulties.

2. The alternating iteration for positive matrices.

TueoreMm 1. To a given strictly positive N X N mairiz A there corresponds
exactly one doubly stochastic matriz T 4 which can be expressed in the form T, =
D1AD; where Dy and D, are diagonal matrices with positive diagonals. The matrices
D, and D, are themselves unique up to a scalar factor.

Proor. We shall establish only the uniqueness part here. The existence will be
demonstrated constructively in the proof of Theorem 2.

If there exist two different pairs of diagonal matrices D, , D, and C;, C; such
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that both D,AD, and C1AC, are doubly stochastic, then this means that there
exists a positive doubly stochastic matrix P and matrices B, = diag[by , by2, - - -,
bi], B; = diag[bs , bz, - - -, bay] which are not multiples of the identity matrix,
for which B1PB; is also doubly stochastic. But this is impossible since by con-
vexity, one obtains

minby; < 1/bi; £ max;by; ; minby; £ 1/by; < maxby;

which leads to a contradiction if bybs; # 1 for some ¢ and j. It follows that
C: = pDy, C; = p'D, for some positive number p.

TuarorEM 2. The dterative process of alternately normalizing the rows and columns
of strictly positive N X N matriz is convergent to a strictly positive doubly stochastic
matrix.

Proor. The iteration produces a sequence of positive matrices which alter-
nately have row and column sums one. We shall show that the two subsequences
which are composed respectively of the matrices with row sums one and the
matrices with column sums one each converge to a positive doubly stochastic
limit of the form DA D, where each D, has a positive diagonal. The uniqueness
part of Theorem 1 will complete the proof. Since the terms of either of the
subsequences are generated in the same way as are the transposes of the terms
of the other, only one convergence proof is required.

Let {A4,} = {(a.i;)} be the sequence with column sums one and let a, be the
minimal element of A, . We shall show that {a,} is bounded away from zero.

Let A, have row sums A\,1, - -, Ay and set

= E anij/>\ni .

Since 8,; is a convex combination of the 1/ )\,,. and N\,41,; is & convex combination
of the 1/5,;, it follows that

(1) Ma(m) £ 12 MM) = M(m) £ Mp(m) 212 Mp(M) £ M (M)
where the m and M respectively label minimal and maximal quantities relative
to a given A, . Similarly

(2) %u(m) S 15 8.(M)=8.(m) < dppa(m) = 1 = 0pu(M) = 8,(M).
Therefore the maximum and minimum row and column sums are monotone

sequences and hence have limits. To complete the proof, it is necessary to show

that these limits all equal one.
Let z,; = D\lz‘>\2i‘ . ')\m:]—l and Yni = [51,'52," . '5,,,‘]—1. Then if A1 = (a«ij) has

minimal element a,
Yni = 1/ 2 QAij%ni é l/aijxni é l/axmi
for all 7 and j. Thus in particular y,; < 1/ax,(M). Since ¥ Y i TniQiiYni = Ang1,i =
Mr1(m) = M(m) = A, it follows that
Tai Z M 3, Qityni = aNza(M)/N.

i
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AlSO Yn; 2 1/ 35 0iini Z 1/Nua(M) and we see that Guis, i = TniGisyn; = a\/N? =
u; whence a, = u > 0 for all n.

It is clear from (1) that N (M) — 1 4 ¢ where ¢ = 0. For convenience set
M(M) = 1 + ca. Then if yAa; £ 1] = D ani; where the sum is taken over

all 7 for which N\,; < 1, and if u\.; > 1] has a corresponding meaning,

Lt eapmi =11+ cuan
1+ ¢, = 14c¢

1
0 Z pilhas £ 1] + ite wildas > 1] =

Then if )\n+1(M) = >\n+l,io ’
14+¢= )\n-l-l,io = >:4 a’nioj/)‘nioa"i = (]‘ + c”)/(l + c”a”);
J

if ¢ > 0, a, — 0, a contradiction. Thus ¢ = 0 and M\.(M) — 1. It readily follows
that \.(m) — 1.

CororraRrY. (Marcus and Newman [3]) If A ¢s symmetric and has positive
entries there exists a diagonal matriz D with positive main diagonal entries such
that DAD 1s doubly stochastic.

Proor. Let S = D14 D, be doubly stochastic where the D; are as in Theorem 1.
Then 4 = Di'SD:" and A” = A implies that D,D7*SD;'D; = S%, and since
S” is doubly stochastic, D;D7" is a scalar multiple of the identity by the unique-
ness part of Theorem 1. Thus we can take D, = D; = D.

3. Remarks concerning matrices with zero entries. When A contains zero
elements Theorems 1 and 2 need no longer hold. If

0 0 1
A=10 0 1
1 1 0

the iteration oscillates and there certainly exists no D; and D, . If

01 . . 0 1
A = <1 1) the iteration converges to <1 O> ,

but again there is no D; and D, .
One might try to overcome these difficulties by replacing the zero elements in
A by small quantities. But this approach may be questionable. For instance if

0 0 1 e € 1
A=|0 0 1] isapproximatedby A(e) =|e¢ e 1],
1 1 1 1 1 1
the limit of D;(e)A(e)D2(e) is

25 25 5
25 25 5 as e€—0.

S 5 0

e &1
A'(e) =e & 1 s
1 11

If A is approximated by
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the doubly stochastic limit becomes

b5 0 5
b 0 b5} as e—0,
01 0

something quite different. In fact, it is possible to have A(e) — A without
having D;(e)A(e)D:(e) converge at all as e — 0. If

{0 0 (e esin’1/e
A—(l 1) and A(e)—(1 1 )

where e > 0, ¢ £ 1/nmx,

DiA@D = (; %, 1)
- Q¢ Qe
where ;' = 1 + |sin 1/¢|. This has no limit as ¢ — 0.

Whence any attempt to estimate the transition matrix from an observation
matrix by a double normalization or by an alternating row-column iteration
may well result in failure when the observation contains zero entries. It may
also be a poor policy to use a strictly positive approximation for an observation
with zeros in hopes of finding an approximate transition matrix, unless there is
some very good reason for a particular selection.
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