LOCAL CONVERGENCE OF MARTINGALES AND THE LAW OF LARGE NUMBERS

By Y. S. Chow

Purdue University

0. Introduction. Let $(\Omega, \mathfrak{F}, P)$ be a probability space and \mathfrak{F}_n be increasing Borel subfields of \mathfrak{F} . $(y_n, \mathfrak{F}_n, n \geq 1)$ is said to be a stochastic sequence if y_n is extended real valued and \mathfrak{F}_n -measurable for each n. A stochastic sequence $(y_n, \mathfrak{F}_n, n \geq 1)$ is called a submartingale (or martingale), if $E(y_n)$ exists (that is $Ey^+ < \infty$ or $Ey^- < \infty$) and $E(y_{n+1} \mid \mathfrak{F}_n) \geq y_n$ (or $E(y_{n+1} \mid \mathfrak{F}_n) = y_n$) a.e. for each n. A stopping variable t is an extended positive integer valued random variable such that the set $[t = n] \, \varepsilon \, \mathfrak{F}_n$ for each positive integer n. For an extended real number a, define $a^+ = \max(0, a)$ and $a^- = \max(0, -a)$. For a set A, I(A) denotes the characteristic function of the set A.

Recently, Neveu ([8], p. 143) proves a new submartingale convergence theorem, namely if $(s_n, \mathfrak{F}_n, n \geq 1)$ is a submartingale with $E(s_n^+) < \infty$, then s_n has a limit a.e. where $\sum_{n=0}^{\infty} (E(s_n^+ | \mathfrak{F}_{n-1}) - s_{n-1}^+) < \infty$. Neveu's result suggests the present paper. In Section 1 we will generalize his result and in Section 2 prove a local convergence theorem of martingales, which extends a result of Loève [7] and improves a result of Lévy-Doob ([4] p. 320). Section 3 is denoted to the law of large number and a result due to Lévy-Neveu ([5]; [8], p. 141) is extended in this section.

1. Local convergence of submartingales.

THEOREM 1. Let $(s_n, \mathfrak{F}_n, n \geq 1)$ be a submartingale with $E(s_1^-) < \infty$, and $(z_n, \mathfrak{F}_{n-1}, n \geq 2)$ and $(y_n, \mathfrak{F}_n, n \geq 2)$ be two stochastic sequences such that y_n is finite valued for each n. Let $z_1 = y_1 = 0$ and

$$s_n \le z_n + y_n, \qquad n \ge 2.$$

For b > 0, let t be the first n such that $y_n > b$ and let

$$(2) E(y_t I[t < \infty]) < \infty.$$

Then s_n converges a.e. where

$$\sup z_n < \infty, \quad \sup y_n < b.$$

PROOF. For any fixed a > 0, let t' be the first n such that $z_n > a$ and $w_n = \min(t'-1, t, n)$. Then w_n is a sequence of bounded stopping variables and $w_n \leq w_{n+1}$. Hence ([4], p. 303) s_{w_n} is a submartingale, since $E(s_1^-) < \infty$ implies that $E(s_n^-) < \infty$ for each n. Now

$$E(s_{w_n}^+) \le E(z_{w_n}^+) + \sum_{j=1}^n E(y_j^+ I[w_n = j])$$

Received 16 June 1964.

$$\leq a + \sum_{1}^{n} E(y_{j}^{+}(I[t'-1 \geq j=t] + I[t'-1=j < t]))$$

$$+ E(y_{n}^{+}I[t'-1 > n < t])$$

$$\leq a + b + \sum_{1}^{n} E(y_{j}^{+}I[t'-1 \geq j=t]) \leq a + b + E(y_{t}^{+}I[t < \infty]).$$

By the standard martingale convergence theorem of Doob ([6], p. 393), s_{w_n} converges a.e. Hence s_n converges a.e. where $t = t' = \infty$, i.e., a.e. where $\sup z_n < a$ and $\sup y_n < b$. Since a is arbitrary, the proof is completed.

When $z_n = 0$ for each n, Theorem 1 reduces to a result of ([3], Corollary 6(i)), which in turn implies the standard martingale convergence theorems of Doob and Snell ([3], p. 344).

COROLLARY 1. The condition (2) in Theorem 1 can be replaced by

$$E(\sup_{n\geq 1} (y_{n+1} - y_n^+)) < \infty.$$

PROOF. Let t be defined as in Theorem 1. Then $t \ge 2$ and (2') implies that $E(y_t I[t < \infty]) \le E(\sup(y_{n+1} - y_n^+)) + E(y_{t-1}^+ I[t < \infty]) < \infty$. Hence (2') implies (2).

When $z_n = s_{n-1}$, $y_n = s_n - s_{n-1}$, and $E(\sup y_n) < \infty$, Corollary 1 reduces to a result of Doob ([4], p. 320).

COROLLARY 2. Let $(s_n, \mathfrak{F}_n, n \geq 1)$ be a submartingale, and let $(y_n, \mathfrak{F}_n, n \geq 1)$ be a stochastic sequence such that $E|y_n| < \infty$, $E(\sup (\bar{y_{n+1}} - \bar{y_n})) < \infty$, and $s_n \leq y_n$. Then s_n converges a.e. where

(4)
$$\sup \sum_{1}^{m} (E(y_{n+1} \mid \mathfrak{F}_n) - y_n) < \infty,$$

$$\sup y_n^- < \infty.$$

PROOF. Put $z_m = \sum_{n=1}^{\infty} (E(y_n \mid \mathfrak{F}_{n-1}) - y_n)$. Then $(z_n, \mathfrak{F}_n, n \ge 2)$ is a martingale, and

$$\begin{split} z_m &= -y_m + \sum_3^m \left(E(y_n \mid \mathfrak{F}_{n-1}) \, - \, y_{n-1} \right) \, + \, E(y_2 \mid \mathfrak{F}_1) \\ &\leq y_m^- + \, \sum_3^m \left(E(y_n \mid \mathfrak{F}_{n-1}) \, - \, y_{n-1} \right) \, + \, E(y_2 \mid \mathfrak{F}_1) \, = \, y_m^- + \, u_m \, , \end{split}$$

say. Then u_m is \mathfrak{F}_{m-1} -measurable for $m \geq 2$. By Corollary 1, z_m converges a.e. where $\sup_{n\geq 2} y_n < \infty$ and $\sup_{n\geq 2} u_n < \infty$. Since $z_n + s_n$ is a submartingale and $z_n + s_n \leq z_n + y_n \leq u_n$, $z_n + s_n$ converges a.e. where $\sup u_n < \infty$. Hence s_n converges a.e. where (4) and (5) hold.

Corollary 3. Let $(s_n, \mathfrak{F}_n, n \geq 1)$ be a submartingale and $p \geq 1$.

(a) If $E(s_n^+)^p < \infty$, then s_n converges a.e. where

(6)
$$\sum_{2}^{\infty} (E((s_{n}^{+})^{p} \mid \mathfrak{F}_{n-1}) - (s_{n-1}^{+})^{p}) < \infty.$$

(b) If $E|s_n|^p < \infty$, then s_n converges a.e. where

(7)
$$\sum_{2}^{\infty} (E(|s_{n}|^{p} | \mathfrak{F}_{n-1}) - |s_{n-1}|^{p}) < \infty.$$

PROOF. Since $s_n \leq s_n^+ \leq (s_n^+)^p + 1$ and $s_n \leq |s_n| \leq |s_n|^p + 1$, Corollary 3 follows immediately from Corollary 2.

For p = 1 or p > 1 and s_n being non-negative, Corollary 3(a) has been recently proved by Neveu ([8], p. 143).

COROLLARY 4. Let $(y_n, \mathfrak{F}_n, n \geq 1)$ be a stochastic sequence such that $E|y_n| < \infty$ and $E(\sup (y_{n+1}^- - y_n^-)) < \infty$. Then y_n converges a.e. where

(8)
$$\sup y_n^- < \infty, \qquad \sum_{1}^{\infty} \left(E(y_{n+1} \mid \mathfrak{F}_n) - y_n \right) \text{ converges.}$$

PROOF. Put z_n and u_n as in the proof of Corollary 2. Then z_n converges a.e. where $\sup y_n^- < \infty$ and $\sup u_n < \infty$. Since $y_n = u_n - z_n$, y_n converges a.e. where (8) holds.

2. Martingale convergence theorems. In this and the next section, we will assume that $(s_n, \mathfrak{F}_n, n \geq 1)$ is a fixed martingale with $E|s_n| < \infty$ and $x_1 = s_1$, $x_n = s_n - s_{n-1}$ for $n \geq 2$.

Theorem 2. Let A be the set where

(9)
$$\sum_{n=0}^{\infty} E(|x_n|^2 I[|x_n| \le a_n] + |x_n| I[|x_n| > a_n] \mid \mathfrak{F}_{n-1}) < \infty,$$

for some constants $a_n \geq c > 0$. Then s_n converges a.e. in A.

PROOF. Put $x'_n = x_n I[|x_n| \le a_n]$. By the martingale property,

$$|E(x'_n \mid \mathfrak{F}_{n-1})| = |E(x_n I[|x_n| > a_n] \mid \mathfrak{F}_{n-1})| \le E(|x_n I[|x_n| > a_n] \mid \mathfrak{F}_{n-1})$$

a.e. Then

(10)
$$\sum_{2}^{\infty} |E(x'_{n} \mid \mathfrak{F}_{n-1})| < \infty \qquad \text{a.e. in} \quad A.$$

Since

$$\sum_{n=0}^{\infty} P(x'_{n} \neq x_{n} \mid \mathfrak{F}_{n-1}) = \sum_{n=0}^{\infty} P(|x_{n}| > a_{n} \mid \mathfrak{F}_{n-1})$$

$$\leq c^{-1} \sum_{n=0}^{\infty} E(|x_{n}| I[|x_{n}| > a_{n}] \mid \mathfrak{F}_{n-1}) < \infty, \text{ a.e. in } A,$$

by Corollary 3 or a theorem of Lévy ([5], p. 247 or [4], p. 324), we have $\sum_{n=0}^{\infty} I[x_n \neq x'_n] < \infty$ a.e. in A. It follows that

(11)
$$P(A[x_n \neq x'_n, i.o.]) = 0.$$

Put $y_n=x_1'+\cdots+x_n'-E(x_2'\mid \mathfrak{F}_1)-\cdots-E(x_n'\mid \mathfrak{F}_{n-1})$. Then $(y_n,\mathfrak{F}_n,n\geq 1)$ is a martingale, and

$$E(y_n^2 \mid \mathfrak{T}_{n-1}) - y_{n-1}^2 = E((x'_n)^2 \mid \mathfrak{T}_{n-1}) - E^2(x_n \mid \mathfrak{T}_{n-1})$$

$$\leq E((x'_n)^2 \mid \mathfrak{T}_{n-1}) \leq E(x_n^2 I[|x_n| \leq a_n] \mid \mathfrak{T}_{n-1}).$$

Hence,

(12)
$$\sum_{n=0}^{\infty} (E(y_n^2 \mid \mathfrak{F}_{n-1}) - y_{n-1}^2) < \infty \quad \text{a.e. in } A.$$

By Corollary 3(b), y_n converges a.e. in A. From (10) and (11), we have that s_n converges a.e. in A.

Under the condition that $\sum_{n=0}^{\infty} E(x_n^2 I[|x_n| \le a_n] + |x_n| I[|x_n| > a_n]) < \infty$, Theorem 2 has been proved by Loève ([7], p. 286).

Corollary 5. Let $1 \leq p \leq 2$. Then s_n converges a.e. where

$$\sum_{2}^{\infty} E(|x_n|^p \mid \mathfrak{F}_{n-1}) < \infty.$$

PROOF. Since

$$\sum_{n=0}^{\infty} E(|x|^2 I[|x_n| \le 1] + |x_n| I[|x_n| > 1] | \mathfrak{F}_{n-1}) \le \sum_{n=0}^{\infty} E(|x_n|^p | \mathfrak{F}_{n-1}) < \infty,$$
Corollary 5 follows immediately from Theorem 2.

Under the condition that x_1 , x_2 , \cdots are independent, Corollary 5 has been proved by Marcinkiewicz and Zygmund ([9], p. 74). When p = 2, Corollary 5 follows from Corollary 3(b) and it improves a result of Lévy-Doob ([4], p. 320) by removing one of their conditions for the convergence of x_n .

THEOREM 3. Let $(z_n, \mathfrak{F}_n, n \geq 1)$ be a strictly positive stochastic sequence and p > 2. Let B be the set such that

(14)
$$\sum_{1}^{\infty} z_{n} < \infty, \qquad \sum_{2}^{\infty} E(|x_{n}|^{p} | \mathfrak{F}_{n-1}) z_{n}^{1-(p/2)} < \infty.$$

Then $\sum_{n=0}^{\infty} E(x_n^2 \mid \mathfrak{F}_{n-1}) < \infty$ a.e. in B, and therefore s_n converges a.e. in B. Proof. If $E^{2/p}(|x_n|^p \mid \mathfrak{F}_{n-1}) > z_n$, then, since p > 2,

$$E^{2/p}(|x_n|^p \mid \mathfrak{F}_{n-1}) = E(|x_n|^p \mid \mathfrak{F}_{n-1})E^{(2/p)-1}(|x_n|^p \mid \mathfrak{F}_{n-1}) \leq z_n^{1-(p/2)}E(|x_n|^p \mid \mathfrak{F}_{n-1}).$$

Hence

$$E(x_n^2 \mid \mathfrak{F}_{n-1}) \le E^{2/p}(|x_n|^p \mid \mathfrak{F}_{n-1}) \le \max[z_n, z_n^{1-(p/2)}E(|x_n|^p \mid \mathfrak{F}_{n-1})].$$

Therefore, $\sum_{n=0}^{\infty} E(x_n^2 \mid \mathfrak{F}_{n-1}) < \infty$ a.e. in B, and it follows from Corollary 5 that \mathfrak{S}_n converges a.e. in B.

Corollary 6. Let p > 2 and δ_n be a sequence of positive number such that

(15)
$$\sum_{1}^{\infty} \delta_{n} < \infty, \qquad \sum_{1}^{\infty} E|x_{n}|^{p} \delta_{n}^{1-(p/2)} < \infty.$$

Then s_n converges a.e. In particular, if

(16)
$$\sum_{1}^{\infty} E|x_{n}|^{p} [n(\log n)^{1+\epsilon}]^{(p/2)-1} < \infty$$

for some $\epsilon > 0$, then s_n converges a.e.

Corollary 6 follows immediately from Theorem 3. The fact that the factor $\log n$ in (16) cannot be dropped is shown by the following example. Let z_1 , z_2 , \cdots be independent with $P(z_n=0)=P(z_n=1)=\frac{1}{2}$ and set

(17)
$$x_n = (-1)^{z_n} (n \log n)^{-\frac{1}{2}}, \qquad n \ge 2.$$

Then x_2 , x_3 , \cdots are independent with $Ex_n = 0$ and $\sum_{n=1}^{\infty} E|x_n|^2 = \sum_{n=1}^{\infty} 1/n \log n = \infty$. From a result of Doob ([4], p. 339), it follows that $s_n = x_2 + \cdots + x_n$ diverges a.e., but

$$\sum_{2}^{\infty} E|x_{n}|^{3}n^{\frac{1}{2}} < \infty.$$

Both Corollary 6 and the preceding remark are results of an unpublished paper by Chow, Mallows, and Robbins [2].

THEOREM 4. Let z, z_1 , z_2 , \cdots be independent, identically distributed with E(z) = 0, and a_n be the Borel field generated by z_n . Then

$$(19) E(|z|\log^+|z|) < \infty,$$

556 Y. S. CHOW

if, and only if, for every sequence \mathfrak{G}_n of Borel fields such that $\mathfrak{G}_n \subset \mathfrak{G}_n$, we have

(20)
$$P\left[\sum_{n=1}^{\infty} n^{-1} E(z_n \mid \mathfrak{B}_n) \quad converges\right] = 1.$$

PROOF. Let (19) hold. Define $f_n(t) = t^2/n^2$ for $|t| \le n$ and f(t) = 2|t|/n - 1for $n \leq |t|$. Then f_n is convex and monotonically increasing for $0 \leq t < \infty$. Put $y_n = E(z_n \mid \mathfrak{G}_n)$. Then $E(f_n(z_n) \mid \mathfrak{G}_n) \ge f_n[E(z_n \mid \mathfrak{G}_n)] = f_n(y_n)$. Hence $Ef_n(z_n) \geq Ef_n(y_n),$

$$\sum_{1}^{\infty} E(n^{-2}y_{n}^{2}I[|y_{n}| \leq n] + |n^{-1}y_{n}|I[|y_{n}| > n]) \leq \sum_{1}^{\infty} Ef_{n}(y_{n}) \leq \sum_{1}^{\infty} Ef_{n}(z_{n}).$$
 In ([9], pp. 77–78), it has been proved that (19) implies that

(21)
$$\sum_{1}^{\infty} E(n^{-2}z_{n}^{2}I[|z_{n}| \leq n] + |n^{-1}z_{n}|I[|z_{n}| > n]) < \infty.$$

Hence, $\sum_{1}^{\infty} Ef_n(z_n) < \infty$. Therefore by a result ([7], p. 286) due to Loève (or Theorem 2), (20) holds. Conversely, we will prove that $E(z^+ \log^+ z^+) < \infty$ and similarly for the negative part. Let \mathcal{B}_n be the Borel field generated by the set $[z_n \geq n]$. Then

(22)
$$E(z_n \mid \mathfrak{G}_n) = I[z_n \ge n] \int_{[z_n \ge n]} z_n / P[z_n \ge n] + I[z_n < n] \int_{[z_n < n]} z_n / P[z_n < n]$$

Since $\sum_{1}^{\infty} P[z_n \ge n] = \sum_{1}^{\infty} P[z \ge n] < \infty$, (20) implies that, by the Borel Cantelli lemma,

$$(23) \quad \sum_{1}^{\infty} n^{-1} \int_{[z_{n} \leq n]} z_{n} / P[z_{n} < n] = -\sum_{1}^{\infty} n^{-1} \int_{[z_{n} \geq n]} z_{n} / P[z_{n} < n]$$

converges a.e. Since $\lim_{n\to\infty} P[z_n < n] = 1$, $\sum_{1}^{\infty} \int_{[z_n \geq n]} z_n/n = \sum_{1}^{\infty} \int_{[z \geq n]} z/n$ converges.

$$\sum_{n=1}^{\infty} \int_{[z \ge n]} z/n \ge \sum_{n=1}^{\infty} n^{-1} \sum_{j=n}^{\infty} j P[j \le z < j+1]$$
$$\ge \frac{1}{4} \sum_{j=1}^{\infty} (j \log j) P[j \le z < j+1].$$

Hence $E(z^{+}\log^{+}z^{+}) < \infty$ and the proof is completed.

It is interesting to compare Theorem 4 with a result [1] due to Burkholder, which states that under the assumption of Theorem 4, $E(|z|\log^+|z|) < \infty$ if, and only if, for every sequence \mathfrak{G}_n of Borel fields such that $\mathfrak{G}_n \subset \mathfrak{A}_n$, we have

(24)
$$P[\lim n^{-1} \sum_{1}^{n} E(z_{m} \mid \mathfrak{G}_{m}) = 0] = 1,$$

provided that z has a continuous distribution.

3. Law of large numbers. We now turn to the law of large numbers.

Theorem 5. Let $(y_n, \mathfrak{F}_{n-1}, n \geq 2)$ be strictly positive stochastic sequence such that

$$(25) E(x_n y_n^{-1}) < \infty.$$

(a) If $1 \leq p \leq 2$, then

$$\lim s_n/y_n = 0$$

a.e. where

(27)
$$\sum_{n=0}^{\infty} E(|x_n|^p \mid \mathfrak{F}_{n-1}) y_n^{-p} < \infty, \qquad y_n \uparrow \infty.$$

(b) If p > 2, then (26) holds a.e. where

(28)
$$\sum_{n=1}^{\infty} E(|x_n|^p \mid \mathfrak{F}_{n-1}) y_n^{-1-(p/2)} < \infty, \qquad y_n \uparrow \infty, \sum_{n=1}^{\infty} y_n^{-1} < \infty.$$

PROOF. Put $v_n = x_n/y_n$ and $u_n = v_2 + \cdots + v_n$. Then $(u_n, \mathfrak{F}_n, n \geq 2)$ is a martingale. From Theorem 2, u_n converges a.e. where (27) holds if $1 \leq p \leq 2$. Now let $z_n = y_n^{-1}$. Then (14) is satisfied wherever (28) holds. By Theorem 3, u_n converges a.e. where (28) holds. From the Kronecker lemma ([7], p. 238), (26) holds a.e. where (27) and (28) holds.

COROLLARY 7. Let $1 \leq p \leq 2$ and $a_n = \sum_{n=1}^{\infty} E(|x_n|^p \mid \mathfrak{F}_{n-1}) < \infty$ a.e. for $n \geq 2$. Let $f(t) \geq 1$ be a non-decreasing finite function on $(0, \infty)$ such that

$$(29) \qquad \qquad \int_0^\infty |f(t)|^{-p} dt < \infty.$$

Then

$$\lim s_n/f(a_n) = 0$$

a.e. where

$$\lim a_n = \infty.$$

PROOF. Put $a_1 = 0$ and $y_n = f(a_n)$. Then y_n is \mathfrak{F}_{n-1} -measurable and

$$\sum_{n=0}^{\infty} E(|x_n|^p \mid \mathfrak{F}_{n-1}) y_n^{-p} = \sum_{n=0}^{\infty} (a_n - a_{n-1}) [f(a_n)]^{-p} \le \sum_{n=0}^{\infty} \int_{a_{n-1}}^{a_n} [f(t)]^{-p} dt$$
$$= \int_{0}^{\infty} [f(t)]^{-p} dt < \infty.$$

By Theorem 5(a), we have that (30) holds a.e. where (31) is valid.

When p = 2, Corollary 7 reduces to a result of Lévy [5]. In ([8], p. 141) Neveu has derived Lévy's result from the law of large number for non-negative submartingales.

THEOREM 6. Let $(y_n, \mathfrak{F}_{n-1}, n \geq 2)$ be a strictly positive stochastic sequence such that $y_n \uparrow \infty$ a.e. Then $\lim s_n/y_n = 0$ a.e. where

(32)
$$\sum_{n=0}^{\infty} y_n^{-2} E(x_n^2 I[|x_n| < y_n] | \mathfrak{F}_{n-1}) < \infty,$$

(33)
$$\lim y_n^{-1} \sum_{1}^{n} E(x_m I[|x_m| \ge y_m] \mid \mathfrak{F}_{m-1}) = 0,$$

$$(34) \qquad \qquad \lim \sup |x_n/y_n| < 1.$$

PROOF. Put $t_n = \sum_{n=1}^{n} y_m^{-1} \{x_m I[|x_m| < y_m] - E(x_m I[|x_m| < y_m] | \mathfrak{F}_{m-1})\}$. Then $(t_n, \mathfrak{F}_n, n \ge 1)$ is a martingale, and

$$\sum\nolimits_{2}^{\infty} E|(t_{n}\ -\ t_{n-1})^{2}\ |\ \mathfrak{F}_{n-1}|\ \leqq\ \sum\nolimits_{2}^{\infty} \,y_{m}^{\ -2} E(x_{m}^{\ 2} I[|x_{m}|\ <\ y_{m}]\ |\ \mathfrak{F}_{m-1})\ <\ \infty$$

a.e. where (32) holds. By Corollary 5, t_n converges and then

$$\lim y_n^{-1} \sum_{m=2}^n \{x_m I[|x_m| < y_m] - E(x_m I[|x_m| < y_m] | \mathfrak{F}_{m-1})\} = 0$$

558 Y. S. CHOW

a.e. where (32) holds. Hence $\lim y_n^{-1} \sum_{m=2}^n x_m I[|x_m| < y_m] = 0$ a.e. where (32) and (33) hold. Therefore $\lim s_n/y_n = 0$ a.e. where (32)–(34) hold.

When x_1 , x_2 , \cdots are independent, identically distributed with $E(x_1) = 0$ and $y_n = n$, Theorem 6 reduces to the usual proof ([6], p. 239) of Kolmogorov's strong law of large numbers.

REFERENCES

- Burkholder, D. L. (1962). Successive conditional expectations of an integrable function. Ann. Math. Statist. 33 887-893.
- [2] CHOW, Y. S., MALLOWS, C. L., and ROBBINS, H. E. (1962). A martingale convergence theorem with application to the strong law of large numbers. NSF Report, Columbia Univ.
- [3] CHOW, Y. S. (1963). Convergence theorems of martingales. Z. Wahrschinlichkeitstheorie und Verw. Gebiete 1 340-346.
- [4] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [5] Lévy, P. (1937). Theorie de l'addition des variables aléatoires. Gauthier-Villars, Paris.
- [6] Loève, M. (1955). Probability Theory. Van Nostrand, Princeton.
- [7] LOÈVE, M. (1950). On almost sure convergence. Proc. Second Berkeley Symp. Math. Statist. Prob. 279-303. Univ. of California Press.
- [8] Neveu, J. (1964). Bases Mathematiques du Calcul des Probabilités. Masson, Paris
- [9] MARCINKIEWICZ, J. et ZYGMUND, A. (1937). Sur les fonctions indépendants. Fund. Math. 29 60-90.