LOCAL CONVERGENCE OF MARTINGALES AND THE
LAW OF LARGE NUMBERS

By Y. S. Cuow

Purdue Unaversity

0. Introduction. Let (2, &, P) be a probability space and F, be increasing
Borel subfields of F. (¢, F., » = 1) is said to be a stochastic sequence if ¥,
is extended real valued and &,-measurable for each n. A stochastic sequence
(Yn » Fn,n = 1) is called a submartingale (or martingale), if E(y,) exists (that
is By" < o or By” < ) and E(Yns1 | Fn) = Yn OF BE(Yni1 | Fn) = ¥a) ace.
for each n. A stopping variable ¢ is an extended positive integer valued random
variable such that the set [{ = n] ¢ &, for each positive integer n. For an ex-
tended real number a, define a* = max (0, a) and a~ = max (0, —a). For a
set A, I(A) denotes the characteristic function of the set A.

Recently, Neveu ([8], p. 143) proves a new submartingale convergence
theorem, namely if (s, , F., n = 1) is a submartingale with E(s,*) < o, then
s, has a limit a.e. where ) 5 (E(s," | Fny) — st_1) < o.Neveu’s result suggests
the present paper. In Section 1 we will generalize his result and in Section 2
prove a local convergence theorem of martingales, which extends a result of
Logve [7] and improves a result of Lévy-Doob ([4] p. 320). Section 3 is denoted to
the law of large number and a result due to Lévy-Neveu ([5]; [8], p. 141) is
extended in this section.

1. Local convergence of submartingales.

THEOREM 1. Let (8p, Fn, n = 1) be a submartingale with E(s;”) < «, and
(2o, Fna,n = 2) and (Yn, Fn, n = 2) be two stochastic sequences such that y,
18 finite valued for each n. Let 2, = y; = 0 and

(1) Sn = 20t Yn, nz2
Forb > 0, let t be the first n such that y, > b and let
(2) B(ydlt < »]) < .

Then s, converges a.e. where
(3) sup z, < o, sup ¥ < b.

Proor. For any fixed a > 0, let ¢ be the first n such that z, > @ and w, =
min (¢ — 1, ¢, n). Then w, is a sequence of bounded stopping variables and
W, < Way1 . Hence ([4], p. 303) sy, is a submartingale, since E(s;”) < o« implies
that E(s,”) < « for each n. Now

E(ss,) < E(zs,) + 2 =1 E(y; Tlw. = 1)
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A

a4+ 2rTEWTUY —1zj=0+1I —1=j<4)
+ E(w Il —1>n <)
Sa+b+ D rEWIY —12j=1) Sa+b+ Ew It < «]).

By the standard martingale convergence theorem of Doob ([6], p. 393), su,
converges a.e. Hence s, converges a.e. where ¢ = t = ©,i.e.,a.e. wheresupz, < a
and sup ¥, < b. Since a is arbitrary, the proof is completed.

When z, = 0 for each n, Theorem 1 reduces to a result of ([3], Corollary
6(i)), which in turn implies the standard martingale convergence theorems of
Doob and Snell ([3], p. 344).

CoroLLARY 1. The condition (2) in Theorem 1 can be replaced by

(21) E(supaz: (Ynr — yn+>) < oo.

Proor. Let ¢ be defined as in Theorem 1. Then ¢ = 2 and (2") implies that
E(ydlt < ©]) £ B(sup (Yars — ¥n")) + BE(yiallt < «]) < o.
Hence (2') implies (2).

When 2, = Sp—1, Yn = Sn — Sn_1, and E(sup y.) < oo, Corollary 1 reduces to
a result of Doob ([4], p. 320).

COROLLARY 2. Let (s, , Fn, n = 1) be a submartingale, and let (yn , Fn,n = 1)
be a stochastic sequence such that El|y,| < ©, BE(sup (Yaq1 — ¥n )) < ®, and
Sn < Yn . Then s, converges a.e. where

(4) sup 2.1 (B(Ynga | Fa) — ¥n) < o,
(5) Sup Yo~ < .

PrOOF. Putz, = 2 5 (BE(Yn | Fn1) — ¥»). Then (2, ,F, ,n = 2) is a martingale,
and

o = —Yn + 225 (B(Yn | Fact) — tn1) + B(y2|5)
= ym_ + Z;n (E(yn l EFn—l) - yn—l) + E(yz | 571) = ym_ + Um )
say. Then u, is Fn_1-measurable for m = 2. By Corollary 1, 2z, converges a.e.

where SUp,s2 ¥n < % and sup,»2u, < . Since z, + s, is a submartingale and
Zn - Sn £ 20 + Yn = Un, 2o + S, converges a.e. where sup u, < . Hence s,
converges a.e. where (4) and (5) hold.

COROLLARY 3. Let (8, , Fn, n = 1) be a submartingale and p = 1.

(a) If B(s,")” < o, then s, converges a.e. where

(6) 228 (B((s4h) [ Fnt) — (s51)") < 0.
(b) If E|s.]’ < o, then s, converges a.e. where
(7) 2% (E(|saf” | Faa) — [80a”) <

©,

Proor. Since s, < 8,7 £ (s,7)? 4+ 1 and s, < [sa] £ [84)” + 1, Corollary 3
follows immediately from Corollary 2.

For p = 1 or p > 1 and s, being non-negative, Corollary 3(a) has been
recently proved by Neveu ([8], p. 143).
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COROLLARY 4. Let (yn ,Fn,n = 1) be a stochastic sequence such that E|y,| < «
and E(Sup (Ynt1 — Yn )) < . Then y, converges a.e. where
(8) Sup ¥yn < o, DY (E(Yns1 | Fn) — Yn) converges.

Proor. Put 2, and u, as in the proof of Corollary 2. Then 2, converges a.e.
where sup y» < © and sup u, < . Since ¥, = U, — 2» ,Y» CONVeErges a.e. where
(8) holds.

2. Martingale convergence theorems. In this and the next section, we
will assume that (s, , F» , 7 = 1) is a fixed martingale with E|s,| < « and z; = s;,
Tn = Sy — Sp_yform = 2.

THEOREM 2. Let A be the set where

(9) 225 E([ea Tl < an] + [2alIll2n] > aul [ Fam) < o0,

for some constants a, = ¢ > 0. Then s, converges a.e. in A.

Proor. Put ', = ,I[|#.] < a,). By the martingale property,
|B(@s | Fa)| = |E(@alllaal > tn] [ Fos)| < E(|alIl|2a] > an] | Fas)
a.e. Then
(10) D3 |E@ | Far)| < a.e.in A.
Since
25 P(2'n # n | Fnaa) = 228 P(|2a| > n | Fnt)
< ¢ 27 E(|aa|Il|zn| > @n) | Fa1) < ©, ae.in A,

by Corollary 3 or a theorem of Lévy ([5], p. 247 or [4], p. 324), we have
>3 Iwn # 'n] < o a.e.in A. It follows that

(11) P(Alx, # 2'n, i0]) = 0.
Put yp = 21+ -+ + &'n — BE(z2|F) — -+ — E(&'n|Fas). Then (¢, Fu,
n = 1) is a martingale, and
E(ya' | Fn1) — Yoo = B((@2)" | Fact) — E'(a | Foa)
< E((2'2)" | Fne) S E(@nIl|zal < an] | Fnoa).

Hence,
(12) Z;O (E(yn2 | g:n—l)'_ yi—l) < o a.e. iIl A.

By Corollary 3(b), y, converges a.e. in A. From (10) and (11), we have that
s, converges a.e. in A.

Under the condition that D 5 E(x Il[2a] < an] + |allllza] > an]) < oo,
Theorem 2 has been proved by Logve ([7], p. 286).

CoOROLLARY 5. Let 1 < p =< 2. Then s, converges a.e. where

(13) 3% E(|aa|? | Foes) < 0.
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Proor. Since
20 E(alTlea]l < 1] + |@allll@a] > 1]|Fncr) £ Do B(|al’ | Fast) < o,

Corollary 5 follows immediately from Theorem 2.

Under the condition that z;, x», - - - are independent, Corollary 5 has been
proved by Marcinkiewicz and Zygmund ([9], p. 74). When p = 2, Corollary 5
follows from Corollary 3(b) and it improves a result of Lévy-Doob ([4], p. 320)
by removing one of their conditions for the convergence of z, .

THEOREM 3. Let (2,, Fn, n = 1) be a strictly positive stochastic sequence and
p > 2. Let B be the set such that

(14) DT < oo, 22 B(|aa]? | Far)on @ < .

Then D3 E(x,’ | Fn1) < o a.e. in B, and therefore s, converges a.e. in B.
Proor. If E**(|xa|” | Fac1) > 2., then, since p > 2,

E"?(|2a” | Fue1) = E(|2al” | Fact) B (|al” | Fuct) = 25 PP E(|20]” | Faa).
Hence
E(x: | Fna) S EP(|2)7 | Fot) £ max [z, 25 PP E(|2al” | Faor)).

Therefore, D 3 E(z,’ | Fa_1) < ® a.e.in B, and it follows from Corollary 5 that
s, converges a.e. in B.
CoROLLARY 6. Let p > 2 and 8, be a sequence of positive number such that

(15) DT < o, D% Ela, P57 < oo,
Then s, converges a.e. In particular, if
(16) 2% Elan"In(log n) %™ < oo

Sfor some € > 0, then s, converges a.e.

Corollary 6 follows immediately from Theorem 3. The fact that the factor log n
in (16) cannot be dropped is shown by the following example. Let 21, 25, - - - be
independent with P(z, = 0) = P(z, = 1) = 1 and set

aamn tn = (—1)"(nlogn)7? n = 2.

Then a3, a3, --- are independent with Ex, = 0 and D 5 Elz,] =
D> 2 1/nlogn = o. From a result of Doob ([4], p. 339), it follows that s, = 22
+ ..+ 4+ x, diverges a.e., but

(18) 2% Blaa)'nt < o,

Both Corollary 6 and the preceding remark are results of an unpublished paper
by Chow, Mallows, and Robbins [2].

THEOREM 4. Let 2, 21, 22, -+ be independent, identically distributed with
E(z) = 0, and @, be the Borel field generated by z, . Then

(19) E(le| log" [¢]) < e,
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if, and only if, for every sequence ®, of Borel fields such that ®, C @, , we have
(20) P[> nan ‘Bz, | ®,) converges] = 1.

Proor. Let (19) hold. Define f,(t) = £/n’ for || < n and f(¢) = 2[t|/n — 1
for n < |t|. Then f, is convex and monotonically increasing for 0 < ¢t < . Put

Yo = EB(zn|®u). Then E(fu(zn) |®) Z fulB(2a| ®a)] = fulyn). Hence

20 BTyl lyal < 0] A (07 yalIllyal > nD) £ 20T Bfa(ya) £ 27 Efalza),
In ([9], pp. 77-78), it has been proved that (19) implies that
(21) 27 B2 1zal £ 0] 4 [0 zalIlfzn] > n]) < eo.

Hence, D1 Efu(2,) < . Therefore by a result ([7], p. 286) due to Lodve (or
Theorem 2), (20) holds. Conversely, we will prove that E(z" log* 2") < « and
similarly for the negative part. Let ®, be the Borel field generated by the set
[2. = n]. Then

(22) E(Zn l (Bn> = I[Zn = n] f[z,,;n] zn/P[zn = n] + I[Zn < n] f[z”<n]2n/P[2n < n]
Since D1 Plea = n] = 2.1 Plz = n] < o, (20) implies that, by the Borel

Cantelli lemma,

(23) Z;o n f[zn<n] zn/Plen < n] = — Z;o n? f[zngn] 2a/Plen < 0]

converges a.e. Since limy., Plz, < n] = 1, Zf f[zn;n] /N = Zf f[z;nlz/n
converges. Now

Z:.—:l f[z;n] z/n = Z:=1 n”t Z;o=n.7PL7 Sz<j+1]
2125 Glogj)Pli £ 2 <j+ 1)

Hence E(z*log™2*) < o and the proof is completed.

It is interesting to compare Theorem 4 with a result [1] due to Burkholder,
which states that under the assumption of Theorem 4, E(|z| log* |2|) < o if, and
only if, for every sequence ®, of Borel fields such that ®, C @&, , we have

(24) Plimn™ D7 E(zm| ®n) = 0] = 1,

\Y

provided that z has a continuous distribution.

3. Law of large numbers. We now turn to the law of large numbers.
TurEorREM 5. Let (Yo, Fur, n = 2) be strictly positive stochastic sequence such
that

(25) E(xnyn—l) < o0,
(a) If 1 = p < 2, then
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a.e. where

(27) 2.7 B([ea]” [ Fat)yn * < 0, Yn T .
(b) If p > 2, then (26) holds a.e. where

(28) 225 B(|zal” | Faa)yn 7P < o, Un 1 @, 2oy < oo,

Proor. Put v, = z,/ynand u, = vo + -+ + v, . Then (u,,Fn,n = 2) is a
martingale. From Theorem 2, u, converges a.e. where (27) holdsif 1 < p < 2.
Now let z, = %, " Then (14) is satisfied wherever (28) holds. By Theorem 3,
U, converges a.e. where (28) holds. From the Kronecker lemma, ([7], p. 238), (26)
holds a.e. where (27) and (28) holds.

COROLLARY 7. Let 1 £ p £ 2 and an = 23 E([2a]” | Fur) < © ae. forn = 2.
Let f(t) = 1 be a non-decreasing finite function on (0, ) such that

(29) Jo @I a < o.
Then

(30) lim s,/f(an) = 0
a.e. where

(31) lim a, = .

Proor. Put a; = 0 and y, = f(a,). Then y, is F,_1-measurable and

Z;o E(|z.|” I Fn1)Yn © = Z;’ (@n — Gua)[f(@a)]™® 22 fan_ [f(O1"dt
= [CIOI"dt < .

By Theorem 5(a), we have that (30) holds a.e. where (31) is valid.

When p = 2, Corollary 7 reduces to a result of Lévy [5]. In ([8], p. 141) Neveu
has derived Lévy’s result from the law of large number for non-negative sub-
martingales.

THEOREM 6. Let (Yn , Fua, n = 2) be a strictly positive stochastic sequence such
that y, T o« a.e. Then lim s,/y, = 0 a.e. where

(32) Dy Yn B2 I n| < Y] | Fam1) < 0,
(33) lim y,, - 22 E(xnl Ixml Yunl l Fn1) = 0,
(34) lim sup |z./ya| < 1.

PrOOF. Put t, = 23 ym Haml[tm| < Y] — E(@nll|Tm| < Yn)| Fn-)}. Then
(ta, Fn, n = 1) is a martingale, and

Z;o El(tn - tn—1)2 l gn—li é Z;O ym—2E(xm2[”xml < ym] l s-F‘m—l) < @

a.e. where (32) holds. By Corollary 5, ¢, converges and then

lim yn—l Z::F? {xml[lxml < Ym] — E(xml[lxml < Ynl l €Fm—-l)} =
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a.e. where (32) holds. Hence lim y, " D mes Znl[|Zn| < ¥n] = 0 a.e. where (32)
and (33) hold. Therefore lim s,/y, = 0 a.e. where (32)—(34) hold.

When z, , 22, - - - are independent, identically distributed with E(z;) = 0 and
Yn = n, Theorem 6 reduces to the usual proof ([6], p. 239) of Kolmogorov’s
strong law of large numbers.
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