SOME TESTS FOR THE INTRACLASS CORRELATION MODEL

By M. S. Srivastava

University of Toronto

1. Introduction. Let $X^{(i)}$ $(i = 1, 2, \dots, k)$ be independent normal random p-vectors with mean vectors μ_i and nonsingular covariance matrices Σ_i . The problems with which we are concerned here are related to the comparison of dispersion matrices Σ_i 's, when each dispersion matrix takes the intraclass correlation form, i.e.,

(1)
$$\Sigma_i = \sigma_i^2 [(1 - \rho_i)I + \rho_i ee'],$$

where $e' = (1, 1, \dots, 1)$, and I is an identity matrix of order $p \times p$. For this model, the problem of comparing dispersion matrices Σ_i reduces to that of comparing σ_i 's and ρ_i 's of k populations. For some related results on this model, refer to Wilks [8], Geisser [1], Votaw [7], and Selliah [6].

- 2. Problems. With the help of Roy's union-intersection principle [4], we propose in this paper test procedures for the following problems:
- (i) To test the hypothesis $H: \rho_1 = \cdots = \rho_k$; $\sigma_1 = \cdots = \sigma_k$, against the alternative $A: \rho_i \neq \rho_j$; $\sigma_i \neq \sigma_j$, $i, j = 1, 2, \cdots, k, i \neq j$.
- (ii) To test the hypothesis $H: \rho_i = 0, i = 1, 2, \dots, k$, against the alternative $A: \rho_i \neq 0, i = 1, 2, \dots, k$.
- (iii) To test the hypothesis $H: \rho_1 = \cdots = \rho_k$, against the alternative $A: \rho_i \neq \rho_j$, $i, j = 1, 2, \cdots, k, i \neq j$.
- 3. Reduction to canonical form. Let S, a $p \times p$ matrix, have the Wishart distribution with mean $n\Sigma$ and degrees of freedom n, n=N-1, and let X be a normal random p-vector with mean vector μ and covariance matrix Σ . In addition, let S be independent of X. For the intraclass correlation model Σ , there exists an orthogonal matrix Γ with first row $e'/p^{\frac{1}{2}}$ such that $\Gamma\Sigma\Gamma'=\mathrm{diag}(\alpha,\beta,\cdots,\beta)$, where

(2)
$$\alpha = \sigma^2[1 + (p-1)\rho], \quad \beta = \sigma^2(1-\rho).$$

Let $W = \Gamma S \Gamma'$. Then the pdf of W is

(3)
$$p(W) = \text{Const. } \alpha^{-n/2} \beta^{-m/2} |W|^{(n-p-1)/2} \exp \left\{ -\frac{1}{2} w_{11} / \alpha - \frac{1}{2} \sum_{r=2}^{p} w_{rr} / \beta \right\},$$

where m = n(p-1). Let $Z = \Gamma X$, $\eta = \Gamma \mu$. Then z_1 is $N(\eta_1, \alpha)$, and z_r is $N(\eta_r, \beta)$, $r = 2, \dots, p$. The z_r 's are independently distributed for all $r = 1, 2, \dots, p$.

Following Olkin and Pratt [3], we can obtain statistics u and v sufficient for α and β and distributed independently as $\alpha \chi_{\alpha}^{2}$ and $\beta \chi_{b}^{2}$ where the degrees of freedom a and b depend on our knowledge of μ . For μ completely unknown,

Received 1 July 1964; revised 29 June 1965.

(4)
$$u = w_{11}, \qquad v = \sum_{r=2}^{p} w_{rr},$$

(5)
$$\mathfrak{L}(u) = \mathfrak{L}(\alpha \chi_n^2), \qquad \mathfrak{L}(v) = \mathfrak{L}(\beta \chi_m^2).$$

In the subsequent investigation we assume that the set of sufficient statistics $(Z^{(i)}, u_i, v_i)$ based on N_i observations are given for the set of unknown parameters $(\mu_i, \alpha_i, \beta_i)$.

4. Solution of Problem (i).

4.1. Test criterion (equal numbers of observations). By reduction of the covariance matrix in the canonical form, the problem of testing H against A is equivalent to:

$$H': \alpha_1 = \alpha_2 = \cdots = \alpha_k;$$
 $\beta_1 = \beta_2 = \cdots = \beta_k,$ $A': \alpha_i \neq \alpha_j;$ $\beta_i \neq \beta_j,$ $i, j = 1, 2, \cdots, k, i \neq j.$

Let G be the group of transformations $(u_i, v_i) \to (au_i, bv_i)$, a > 0, b > 0, $i = 1, 2, \dots, k$. This group leaves the problem invariant, since the induced transformation of the parameter space is $(\alpha_i, \beta_i) \to (a\alpha_i, b\beta_i)$, $i = 1, 2, \dots, k$. It is easily seen that $(u_i/u_j, v_i/v_j)$, $i \neq j = 1, 2, \dots, k$, is a maximal invariant.

To test the hypothesis H' against A', we notice that H' is equivalent to the totality of all the sub-hypotheses $H'_{ij}: \alpha_i = \alpha_j$; $\beta_i = \beta_j$ (against $H'_{ij} \neq A_{ij}$), $i \neq j$. For testing $\alpha_i = \alpha_j$, the likelihood ratio criterion (LRC) is a monotone function of (u_i/u_j) , and for testing $\beta_i = \beta_j$, the LRC is a monotone function of (v_i/v_j) . It seems reasonable to use $(u_i/u_j)(v_i/v_j)$ for testing H'_{ij} . Hence, accept H'_{ij} iff (if and only if) for any given i and j, $i \neq j$,

(6)
$$K_{\epsilon_1} < (u_i/u_j)(v_i/v_j) < K_{\epsilon_2},$$

where K_{ϵ_1} and K_{ϵ_2} are so chosen that the probability of (6) under H'_{ij} is $1 - \epsilon_1 - \epsilon_2$. But, since H' is equivalent to the totality of all sub-hypotheses H'_{ij} ($i \neq j = 1, 2, \dots, k$), we accept H' iff for all i and j, $K_{\epsilon_1} < (u_i/u_j)(v_i/v_j) < K_{\epsilon_2}$, i.e., iff

(7)
$$K_{\epsilon_1} < \max_{i,j,i\neq j} (u_i/u_j)(v_i/v_j) < K_{\epsilon_2}.$$

Hence, if equal numbers of observations are taken from each population, the test statistic is $F_{\max}^{(n)}F_{\max}^{(m)}$, which is the product of two Hartley's F_{\max} statistics [2]; one based on n degrees of freedom and the other on m degrees of freedom (the superscript of F has been used to indicate this).

4.2. Asymptotic distribution of $F_{\max}^{(n)} F_{\max}^{(m)}$. We have

$$F_{\max}^{(n)}F_{\max}^{(m)} = \max_{i \neq j} (u_i/u_j)(v_i/v_j).$$

Taking the logarithm of both sides, we get

$$\log F_{\max}^{(n)} F_{\max}^{(m)} = \max_{i \neq j} [(\log u_i + \log v_i) - (\log u_j + \log v_j)].$$

We know that $\log u_i$ and $\log v_i$ are independently and asymptotically normally distributed with variances 2/n and 2/m respectively. If $w_i = \log u_i + \log v_i$,

then w_1 , \cdots , w_k are independently and asymptotically normally distributed with variance 2(m+n)/mn and $\log F_{\max}^{(n)}F_{\max}^{(m)} = \max_{i\neq j}(w_i-w_j)$. Therefore, the approximate distribution of $\log F_{\max}^{(n)}F_{\max}^{(m)}$ is that of a range of k independent samples from a normal population with variance 2(m+n)/mn. Hence, Hartley's table can be used for a test of significance.

However, for unequal sample sizes, there do not exist functions $c_i u_i$ and $d_i v_i$ such that the variances of the asymptotic distributions of $\log c_i u_i$ and $\log d_i v_i$ are independent of n_i ; c_i and d_i are functions of n_i . Hence, for unequal sample sizes, we propose another test.

4.3. Test criterion (unequal sample sizes). We know that $\log (u_i/n_i) \sim N(\log \alpha_i, 2/n_i)$, and $\log (v_i/m_i) \sim N(\log \beta_i, 2/m_i)$. Hence for testing $\alpha_1 = \alpha_2 = \cdots = \alpha_k$, we get approximately a χ_1^2 (chi-square) statistic on k-1 degrees of freedom. Similarly for testing $\beta_1 = \beta_2 = \cdots = \beta_k$, we get a χ_2^2 (chi-square) statistic on k-1 degrees of freedom. Thus for testing H', we can take as the test criterion, either the sum of χ_1^2 amd χ_2^2 , or the product of χ_1^2 and χ_2^2 . In the latter case, we need the distribution and the percentage points of the product of two chi-squares, which will be given elsewhere.

5. Solution of Problem (ii). The problem we are concerned with here is:

$$H: \rho_1 = \rho_2 = \cdots = \rho_k = 0,$$

 $A: \rho_i \neq 0,$ $i = 1, 2, \cdots, k.$

The group of transformations $(u_i, v_i) \to a_i(u_i, v_i)$; $a_i > 0$, $i = 1, 2, \dots, k$ leaves the problem invariant since the group of induced transformations of the parameter space is $(\alpha_i, \beta_i) \to a_i(\alpha_i, \beta_i)$. Hence it is easily seen that $(Y_1, \dots, Y_k) \equiv (u_1/v_1, \dots, u_k/v_k)$ is a maximal invariant.

If we define $\tau_i = [1 + (p-1)\rho_i]/(1-\rho_i)$ then $\mathfrak{L}\{(p-1)Y_i\} = \mathfrak{L}(\tau_i F_{n_i,m_i})$. Hence, the hypothesis H and the alternative A are equivalent to:

$$H': \tau_1 = \tau_2 = \cdots = \tau_k = 1,$$

 $A': \tau_i \neq 1.$

To test the hypothesis H': $(\tau_1 = \cdots = \tau_k = 1)$, we notice that H' is equivalent to the totality of all sub-hypotheses H_i' : $\tau_i = 1$ $(i = 1, 2, \dots, k)$ (against $A_i' \neq H_i'$). The test procedure for testing H_i' is as follows: Accept H_i' iff (if and only if) for any given $i, K_{\epsilon_1} < F_i = (p-1)Y_i < K_{\epsilon_2}$, where $\epsilon_1 + \epsilon_2 = \epsilon$ is the probability of an error of the first kind. Equivalently, accept H_i' against A_i' iff for any given $i, K_{\epsilon_1}' < F_i^{n_i \dagger} < K_{\epsilon_2}'$. But since H' is equivalent to the totality of all sub-hypotheses H_i' $(i = 1, 2, \dots, k)$, we accept H' iff

(8)
$$K'_{\epsilon_1} < \max_i F_i^{n_i \cdot i} < K'_{\epsilon_2}.$$

¹ The author notes that the distribution of the product of two chi-squares is given by Wells, Anderson and Cell, "The distribution of the product of two central or non-central chi-square variates," Ann. Math. Statist. 33 (1962) 1016-1020.

The asymptotic distribution of $\max_{1 \le i \le k} (n_i)^{\frac{1}{2}} \log F_i$ under the null hypothesis is that of the largest observation of a sample of k independent observations from a normal distribution with mean 0 and variance 2p/(p-1); for the hypothesis H', $n_i^{\frac{1}{2}} \log \tau_i = 0$.

For equal numbers of observations, the above test statistic is replaced by

(9)
$$\max_{i} F_{i}.$$

The distribution of $\max F$ is that of the maximum of the k independent samples from an F distribution with n and m degrees of freedom. It can be shown that this test is uniformly most powerful amongst all the tests based on $\max F$, and its power function has the monotonicity property.

Note. Suppose we are testing the hypothesis that $\mu_1 = \cdots = \mu_k = \gamma e$, γ unknown against the alternative that $\mu_i \neq \gamma e$, $i = 1, 2, \cdots, k$. If we define $F_i = n_i \sum_{r=2}^p z_r^{(i)^2} / \sum_{r=2}^p w_{rr}^{(i)} = n_i \sum_{r=2}^p z_r^{(i)^2} / v_i$, we obtain the test statistic to be $\max_i F_i^{i}$ for unequal numbers of observations and $\max_i F_i$ for equal numbers of observations; F_i is distributed like an F-distribution with p-1 and $n_i(p-1)$ degrees of freedom.

6. Solution of Problem (iii).

6.1. Test criterion (equal sample sizes). The problem of testing H against A is equivalent to the problem of testing

$$H'$$
: $\tau_1 = \tau_2 = \cdots = \tau_k = \tau$ (say)

against the alternative A': $\tau_i \neq \tau_j$, $i, j = 1, 2, \dots, k, i \neq j$, where $\tau_i = [1 + \overline{p-1}\rho_i]/(1-\rho_i)$.

The hypothesis H' can be split up into p_{c_2} hypotheses $H'_{ij}: \tau_i = \tau_j = \tau$ (say) against the alternative $A'_{ij}: \tau_i \neq \tau_j$. We have shown in Section 5 that (Y_1, \dots, Y_k) is a maximal invariant statistic and that $\mathfrak{L}\{(p-1)Y_i\} = \mathfrak{L}(\tau_i F_{n,m})$. The maximum likelihood estimate of τ_i is $\hat{\tau}_i = (p-1)Y_i$ and that of τ (under H'_{ij}) is given by

(10) $\hat{\tau} = [(p-2)(Y_i + Y_j)/4] + [\{(p-2)(Y_i + Y_j)/4\}^2 + (p-1)Y_iY_j]^{\frac{1}{2}},$ which for large p can be approximated by $\frac{1}{2}p(Y_i + Y_j)$. For large p, $\hat{\tau}_i = pY_i$. The likelihood ratio statistic for testing H'_{ij} against A'_{ij} , for large p, is

(11)
$$C Y_i^{n/2-1} Y_j^{n/2-1} / (Y_i + Y_j)^n = C Q_{ij}^{n/2-1} / (1 + Q_{ij})^n,$$

where $Q_{ij} = Y_i/Y_j$, the ratio of two F variables.

Hence we accept H'_{ij} iff, $K_{\epsilon_1} < Q_{ij} < K_{\epsilon_2}$, where K_{ϵ_1} , K_{ϵ_2} are so chosen as to make the probability of an error of the first kind $= \epsilon_1 + \epsilon_2$. Since H' is equivalent to the totality of all sub-hypotheses H'_{ij} , we accept H' iff for all $i, j \ (i \neq j)$, $K_{\epsilon_1} < Q_{ij} < K_{\epsilon_2}$.

Hence the test statistic is

$$Q_{\text{max}} = Y_{\text{max}}/Y_{\text{min}}.$$

Note. An alternative test procedure can be obtained if we view H' as equivalent to the totality of all the subhypotheses H'_{ik} : $\tau_i = \tau_k$. The test statistic is

$$(13) Y_{\max}/Y_k = \max_{1 \le i \le k-1} (Y_i/Y_k).$$

The distribution and percentage points of this distribution will be given elsewhere.

6.2. Asymptotic distribution of Q_{max} . We have

$$\log_e Q_{\max} = \log_e Y_{\max} - \log_e Y_{\min}.$$

For large n, $\log_e(p-1)Y_i$, $i=1,2,\cdots k$, are independently and asymptotically normally distributed with mean $\log_e \tau_i$ and variance 2p/n(p-1). Hence, under the hypothesis H', the approximate distribution of $\log_e Q_{\max}$ is that of the range of k independent samples from a normal population with mean 0 and variance 2p/n(p-1). The percentage points can therefore be obtained from Hartley's table.

- 6.3. Test criterion (unequal sample sizes). We know from above that $\log_e(p-1)Y_i$'s are independently and asymptotically normally distributed with means $\log \tau_i$ and variances $2p/n_i(p-1)$. Hence, we apply the χ^2 test for testing H'.
- 6.4. Two populations case. For k=2, the problem is that of testing $H: \tau_1 = \tau_2$ against $A: \tau_1 \neq \tau_2$. The likelihood ratio statistic is, for large p, a monotone function of $Q = Y_1/Y_2$. The pdf of Q and its percentage points are given by Schumann and Bradley [5], for equal sample size case $(n_1 = n_2, m_1 = m_2)$.

However, for large n_1 , and n_2 , we may make use of the log-transformation given in Section 6.3. For large and equal numbers of observations, we may make use of the log-transformation given in Section 6.2.

Remark. For the general alternative A: not H, the same tests are obtained.

Acknowledgment. The author wishes to thank the referee for his kind suggestions and for providing a number of references, particularly [5] which helped in deleting some expressions from this paper.

REFERENCES

- Geisser, S. (1963). Multivariate analysis of variance for a special covariance case.
 J. Amer. Statist. Assoc. 58 660-669.
- [2] HARTLEY, H. O. (1950). The maximum F-ratio as a shortcut test for heterogeneity of variance. Biometrika 37 308-312.
- [3] OLKIN, I. and PRATT, J. W. (1958). Unbiased estimation of certain correlation coefficients. Ann. Math. Statist. 29 201-211.
- [4] Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis. Ann. Math. Statist. 24 220-238.
- [5] SCHUMANN, D. E. W. and Bradley, R. A. (1957). The comparison of sensitivities of similar experiments: theory. Ann. Math. Statist. 28 902-920.
- [6] Selliah, J. B. (1964). Estimation and testing problems in a Wishart distribution. Technical Report No. 10, Stanford University.
- [7] VOTAW, D. F. (1948). Testing compound symmetry in a normal multivariate distribution. Ann. Math. Statist. 19 447-473.
- [8] WILKS, S. S. (1946). Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution. Ann. Math. Statist. 17 257-281.