BOUNDED LENGTH CONFIDENCE INTERVALS FOR THE p-POINT OF A
DISTRIBUTION FUNCTION, II!

By R. H. FARreELL

Cornell University

1. Introduction. Let 0 < p < 1. A number 7v,,r is a p-point of the distribution
function F if F(yp,r) = p and F(vpr-) < p. Given L > 0and 0 < a < 1,
a L-a bounded length confidence interval procedure operates successfully for F
means that when sampling stops an interval of length not exceeding L is given
which covers v,,» with probability at least 1 — . It is the purpose of this paper
to give the construction of two L-a bounded length confidence interval pro-
cedures which operate successfully for all F ¢ F. F will be the set of all distribution
functions F such that ez > 0. ¢r is defined below in (1.10).

Throughout we let { X, , n = 1} be a sequence of independently and identically
distributed random variables such that F is the distribution function of X; . As
we allow different choices of F, we indicate the choice when computing expecta-
tions by use of “F” as a subscript. ‘

The procedures constructed are measurable functions of the random variables
{X.,n = 1}. Two sets of functions {ui»,n = 1} and {v;.,n = 1},7 = 1, 2,

are constructed. Properties of the procedures are as follows:

(1.1) If7=1,2andifn = 1then u;,and v, are real valued Borel measur-
able functions defined on Euclidean n-space, and w; .(x1, -+, 2Z,) <
Vin(®1, - -+, 2,) forall (z1, -+, z,) in n-space.

(1.2) If7=1,2andif n = 1let random variables be defined by U, =
Uin( X1, -+, Xy) and Vi, = 0:.(Xy, --+, Xn). There exist real
numbers « and 8 such that 0 < o« < 1 and 0 < 8 < 1 and such
that if F ¢ F then

Pp'(all n 2 1, Ui,n 'Yp,F) 1-— B;
Pe(alln =2 1, Vip = vpr) =2 1 — 0.

(1.3) If F is a distribution function and v, r is the unique p-point of F
then if ¢ = 1, 2,

Pe(liMnsw (Vin — Usin) = 0) = 1.
(14) Iff:(— o, ©)— (— o, o) is strictly increasing, then for¢ = 1, 2,
n=l,andallz, ---, 2.,
ui.n(f(xl), e ,f(xn)) = f(u‘,n(xl y T xn))’
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vi,n(f(xl); e ,f(xn)) = f(vi'n(xl y T xn))

(1.5) If7 = 2andn = 1then uin £ Uint1 S Ving1r = Viin -

In this paper we will discuss various stopping variables. An integer valued
random variable N will be called a stopping variable (relative to {X,,n = 1}
if N = 1 and the event {N = 3} is independent of {X., n = 3},7 = 1. A basic
theorem is as follows.

TuaroreM 1.1. Let N be a stopping variable. If F is a distribution function then.
Pe(Uin € vpr = Vix) 2 1 — a — B. If F is a continuous distribution function
then the numbers Pe(all n = 1, Uspn < vp.r) and Pe(alln = 1, Vi Z Yp.r)
do not depend on F. If N is a stopping variable and if G is obtained from F by transla-
tion of the random variables then

PG(Ui,N =< Ype = Vi.N) = PF(Ui,N = Yo = Vi.N)‘
Proor.
1 — Pe(Uin < vpr S Vin) £ Pr(somen = 1, Ui > Vp.r)
4+ Pe(somen = 1, Vi < vpr) < a + 8.

To prove that various probabilities are independent of F, if F has a continuous
distribution function then we may choose a strictly increasing function f such
that if Y, has a uniform distribution on [0, 1] then f(¥1) has F as distribution
function. Then, if {¥,, n = 1} is a sequence of independently and uniformly
distributed random variables, if ¢ = 1, 2,

P(alln = 1, uin(Y1, -+, Y2) = p)
P(alln = 1, wn(f(Y), -+, f(¥a)) = f(p))
= P;'(a;un 2 1, Ui,n é ‘YPJ")'

Similarly for the proofs of the remaining parts of the theorem.
We shall usually choose N to be the least integer n such that Vi, — U:. £ L,
i = 1, 2. By virtue of (1.3), Ps(N < ») = 1 if N is defined in this manner.
The functions ;. and v, ¢ = 1, 2, and n = 1 are constructed from the
order statistics. If {x, ,n = 1} is a real number sequence we let T.,;1 = Zn2 =
. £ Z... be the rearrangement of z;, - -, 2, into ascending order. We will
use integer sequences {a, ,n = 1} and {b, ,n = 1} satisfying
(1.6) if n=1 then a, > bs; liMpow @G/ = liMasw ba/n = p.
As an indication of method, we define u;,, and v1,, , » = 1, as follows:
(1.7) Uta(Z1, ** ) Tn) = Tn,butl ;

vl.n(xl y "y xn) = Tn,ayp -

- The functions so defined clearly satisfy (1.1) and (1.4). (1.3) follows from
Theorem 1.2 below.
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TaeorEM 1.2. Letvp s+ = inf {v| F(y) > p} andy,,r,— = sup {v|F(v) < p}.
Then 1 = Pr(lim infpee Xnspt1 = Yp.r—) = Pr(lim supnse Xne, = Yo, Fot)-

Proor. The following notation will be used throughout the paper:

(1.8) If¢isareal number and if n = 1, then Sa(¢) is the number of integers
isuchthatl £ ¢ < nand X; = ¢.

Then {X, 5,41 < t} is the same event as {S.(¢) > b.} and {Xn,qa, > t} is the same
event as {Sn(f) < @n}. Therefore Pr(lim infrre X1 = 1) 2 Pr(all but a
finite number of 7, Sx(¢) < b,).S.(t) is a sum of n independently and identically
distributed Bernoulli random variables such that Pr(Si(¢) = 1) = F(?).
Therefore, if ¢ < vp,r.—, then F(¢) < p, and since lima.e b./n = p, it follows
from the law of large numbers that Pr(all but a finite number of n, S.(f) =
b.) = 1. Since this holds for all t < v,r,—, the first half of Theorem 1.2 follows.
A similar argument proves the other half.

As observed earlier, if N is the least integer n such that Vi. — U. 2L
then Px(N < ») = 1 will follow if (1.6) holds and if vp,r+ — Yp.r— < L.

In our introduction to methods, the last item is verification of (1.2). This has
to do with proper choice of the integer sequences {a. , n = 1} and {b,,n = 1}.
The basic discussion is contained in Farrell [2] and [3]. It has been shown there
that it is possible to choose sequences satisfying (1.6) such that for all distribu-
tions F,

(1.9) if F({) £p then Pr(somen = 1,8.(1) 2 an) = ;
if F(t) = p then Pg(somen = 1,8,(t) =bx) =8B

All that is needed in the sequel is (1.9). Therefore we refer the reader to Farrell
[2] and [3] for method.
For method 1 we may now calculate that

v

Pe(somen = 1, Uin > vpr) = Pr(somen = 1, Xnbor1 > YouF)

17 Sn(7p,F) é bn)

Ii

v

Pr(some n

B.

A

~ Similarly,

Pe(somen 2 1, Vi < ¥p,r) = Pr(somen = 1, X0, < Vp,r)

I

Pp(some n = 1, Sn('Yp.F) = an)

a.

IA

Therefore (1.2) follows.

The discussion shows that the first method will always give an interval cover-
ing v,.r With probability not less than 1 — (e + B). But closure of the stopping
rule and more generally the expected sample size, depends on the flatness of F
about its p-points. In Farrell [3] we have defined
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(1.10) er = supocy<imin (F(vpr + pL) — p, p — F(vpr + (p — 1)L)).

The following theorem was proven there:

TrEOREM 1.3. Suppose F contains all F having bimodal density functions which
are continuous and everywhere positive. Suppose L > 0 and 0 < a < 1, and a
L-a bounded length confidence interval procedure for v, r ts given which works
successfully for all F ¢ F. If N is the stopping variable for the confidence interval
procedure then

lim Supep-so rex (er)’(log (log (er)™))EN Z 2(1 — 2a)p(1 — p).

In Section 2 we detail the construction of the second procedure. In Section 3
we examine the question of the expected sample size. In particular we prove the
following result.

TaEOREM 1.4. There exist choices of the sequences {a, ,n = 1} and {b, ,n = 1}
such that if F = {F | ez > 0 and F s continuous}, then

lim supep-or (er)’(log (log (e2)™))TE:N = 4(1 — a)p(1 — p).

It should be noted that the discrepancy between the constants in Theorems
1.3 and 1.4 is between 2(1 — 2«) and 2(2 — 2a). Therefore, the method of
Section 2 is close to being minimax.

The author wishes to thank D. L. Burkholder for suggesting this problem and
for many helpful discussions. We wish to thank J. Kiefer for helpful discussions
and to acknowledge unpublished work of J. Kiefer and L. Weiss in which they
construct yet another (sequential) L-a bounded length confidence interval
procedure.

2. The second procedure. We begin by considering tests of v,,» < ¢ against
the alternative v, r > t. Let the sequences {a, ,n = 1} and {b, , n = 1} satisfy
(1.6). Take for a sequential procedure the following: Let N, be the least integer
n such that S,(f) = b, or S.(f) = a., S.(¢) asin (1.8). If Sy,(f) < by, decide
t < vp,r;if Sy, (t) = an, decide t > v,,r . By the law of large numbers,

limpe Sn(8)/@n = liMpsss Sa()/ba = F(2)/p.

Therefore, if F(t) % p, Pr(N; < o) = 1.

We now consider performing simultaneously for all ¢, — o < { < oo, the tests
described above. Asis easily seen, if w < tand if Sy,(¢) = by, then Sy, (w) = by, ;
if Sy, (w) = ay, then Sy,(t) = ay, . We define random variables

(2.1) Uzn = sup {¢| N: < n, Sy,(t) < by,};
V2,n inf {t l Nz _S_ n, SN‘(t) g a)v‘}.

It is clear that the definitions (2.1) can be given in terms of a real number se-
quence {z,, n = 1}. Consequently explicit definitions of us , v2n, n = 1 can
be given by a parallel construction.

TuEOREM 2. Let the sequences {a, , n = 1} and {b,, n = 1} satisfy (1.6).
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Using the above definitions,
(22) if m =1 then U, and Vi, are random variables;
(283) if n=1 then Usp = Usup1 = Voup1 S Vo s
(24) if n=1 then Usyuw < Vi if and only if
Upn = maxicicn Xippn < Miicicn Xio; = Vo ;
(2.5) f the p-point of F is unique then Pr(liMnsw (Vo — Uzn) =0) = 1;

(2.6) giwen0 < a < land0 < B < 1, %f in addition to (1.6) the sequences
{an,n = 1} and {b, , n = 1} satisfy (1.9), then

Pp(alln g 1, U2,n é 'Yp,F) Z 1 - B;
Pe(alln 2 1, Vo Z 1pr) 2 1 — @

(27) Iff: (—w, ©) > (— o, ©) is a strictly increasing function, if for
nz 1, X,* = f(X,), and if forn = 1, Us, and Vi, are defined by
(2.1) using {X,*, n = 1} instead of {X,,n = 1}, then if n = 1,
Usn = f(Usn) and Vin = f(Va,n).

Proor or THEOREM 2. We prove (2.3) first. By the definitions it is immediate
that Va,n 2 Ve and Usn = Us nqa . Suppose that Ny < n and that Sy, (£) < by, .
Then if 7 £ N, it follows that S;(¢) < a:. Since S;(-) is a nondecreasing func-
tion, if w < ¢ then Si(w) < @a:;,7 =1, ---, N;, and Sy,(w) = by, . Therefore
ifw <t Ny =N, =nand Sy, (w) < by, . Similarly if N; < n and w > ¢
then N, = N; and Sy,(w) = aw, . Therefore Us,, < Va,n .

To prove (2.2), that is, the measurability of Us,, and V.., let A:(f) =
{sample points | N; = n, Sy,(t) < by,}. In the preceding paragraph we have
shown that if w < ¢ then 4;(w) D Ay(¢). Then

{sample points | Uz, > a}
= {sample points | some { > a, Ny < n and Sx,(¢) = by,}
= Ut>a,t rationalAl(t)~

Since this holds for all real numbers a, it follows U.,, is measurable, n = 1. By a
similar argument, V., is measurable, n = 1.

To prove (2.4) it is first shown that U,, < maxici<n Xip+1 and Vapn =
ming <i<n Xi,0; - Suppose ¢ < Us,, . Then for some ¢ < n, S;(¢) < b; . Therefore,
for some ¢ = n, X410 > ¢, i€, maxicicn Xip41 > ¢ Since this holds for all
t < U, , the first inequality follows. Suppose ¢ > V,,, . Then for some ¢ < n,
S8:(t) = a:, and X, ,; = t. Therefore min;<i<n X:,0; = t. As this holds for all
t > Va,., the second inequality follows. Suppose Us,n < ¢ < V3, . Then, if
1 = 7 = nitfollows that b; < S:(f) < a., therefore that X p+1 = ¢ < Xi; ,
and therefore that maxi<i<a Xip;31 £ ¢ £ minj<ica Xio; - Since this holds
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for all ¢ satisfying Usn < t < Va,, it follows that maxici<a Xipo1 S Uzn <
Vi < minigi<a Xia; - That completes the proof of (2.4).

To prove (2.5) assume vy, is unique. If Uz ; = V,,; for some 7 then for all
n 2 4, Usn = Van.On the complementary event, for alln = 1, Usn < Vau -
Conditional on U,, < Vi, forallm = 1 we have for 1 £ ¢ < n by (2.4) that
Xipn < Usn < Vin = Xig . By Theorem 1.2, with probability one,
limise Xip;41 = limi,e Xie; = vp,r. Therefore conditional on Us,» < Van
for all n = 1, with probability one, limu.x (Ve,n — Us,n) = 0.

To prove (2.6), observe that Pr(for alln = 1, Us,n < vp,r) = 1 — Pr(some
n =1, Upn > vpr). Since if n = 1, Uz ny1, 2 Us,n we find Pr(some n 2 1,

Usn > vpp) = litpaw Pe(Usn > Ypr). Next,
PF(Uz,n > 'Yp,F) = Pp(some t > vp,r, N, = n, SN,(t) = b)v,)

< Pr(some t > vp,r, N: < o, Sy,(t) = by,)
= limt_..,p_,,+ Pp(Nt < 0, SNg(t) é bN;)
< liMyoy, z+ Pr(some n = 1, 8.(¢) = ba).

Using (1.9), we see that if ¢ = v,,» then F(f) = p and Pr(some n 2 1, Sa(t)
<b,) = B. Therefore limy,e Pr(Uzn > vp.r) = B.
By a similar argument,

Pr(somen = 1, Vo < ¥p,p) = liMiay, - Pr(somen = 1, Su(?) 2 ax) = a.

The proof of (2.7) is obvious and details are omitted.

" 3. The expected sample size. In this section it will be convenient to dis-
tinguish between the two methods, method one of Section 1 and method two of
Section 2. We suppose for the discussion that the same pair of sequences {a, .
n = 1} and {b, , n = 1} are used satisfying (1.6) and (1.9). We let V',
be the least integer m such that X.., — Xap,sn =L, and N be the
least integer n such that V,, — Uz, < L. From (2.4) it follows at once that if
N: = n then either Us,, = Vi, or minycicn Xy — MaXi<izn X1 = Xnjap —
X, 41 = L. Therefore N; < N;.

A basic theorem is

TureoreM 3.1. Suppose there exists a number 5, 0 < & < 1, such that if {1 =
vor — 8L and ty = v, r + (1 — 8)L, then F(t_1) < p and F(t) > p. Then Ny
has a moment generating function in a neighborhood of 0.

Proor.

PF(Nl = n) = Pp(all 1:, 1=1:= n, X.',b,+1 s t,or Xi,a; > to)
é PF(Xn,b,,-}-l é {_io0r Xn,a,, > to)
=< PF(Sn(t-—l) > bn) + PF(Sn(tO) < an)-

. Under the hypothesis made, since S.({ 1) is a sum of independently and iden-
tically distributed Bernculli random variables, P(81(f-1) = 1) = F(t.1) < p,
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and since similarly Pz(Si(t) = 1) = F(&) > p, and since (1.6) holds, the
sequences {Pr(S,(t_1) > bs),n = 1} and {Pr(S.(t) < @.),n = 1} decrease at
least geometrically. Therefore {Pr(N1 = n), n = 1} decreases at least geomet-
rically which implies the existence of a moment generating function near zero.

In the remainder of this section we will suppose F is a continuous distribution
function. Then from the definition of ez in (1.10) it follows that for some po
satisfying 0 < po < 1,

(3.1) er = F(vpr + pl) — p = p — F(vpr + (po — 1)L).
We will define numbers

(3.2) to = Ypr + poL, t1 = Ypr + (po — 1)L.
Theevent N, > nistheevent Vs, — U,,» > Land this implies the event Us,, < {1
or Vi, > t, . Therefore
Pr(Ny > n) £ Pp(Usn < Vo, Usn < ty0r Vo > )
(3.3) = Pr(maxicicn Xip41 = t1) + Pr(minicica Xia; > )
= Pe(all 4, 1 < ¢ < n, Si(t1) > bs)

+ Pe(alli, 1 =7 = n, S:(b) < a:).

Therefore, if N, is the least integer n such that S.(%) = a., and N is the least
integer n such that S, (t_1) =< b, , we find

(3.4) Pr(Ny > n) £ Pr(Ny > n) + Pe(Ny > n).
Summing this expression on n gives
(3.5) EeN; < EvNo + EfNy .

Ifn = 1,8.(t) is a sum of n independently and identically distributed Bernoulli
random variables such that P(S1(¢) = 1) = F(¢). We bring to bear the results
of Farrell [3]. The sequences {a,, n = 1} and {b,, n = 1} are chosen so that
(1.6) and (1.9) hold.

By Theorem 1 of Farrell, op. cit., the sequences may be chosen in such a way
that

(3.6) limep.o (er)’(log (log (er)™))"EN, = 2p(1 — p)(1L — a);
limepoo (ex)’(log (log (er)™))"ENs, = 2p(1 — p)(1 — B).
Therefore the conclusion of Theorem 1.4, Section 1 follows by taking a = 8.
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