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1. Introduction. In [3] Karlin and McGregor considered random walks on the
non-negative integers of the following type:

(1) PXopu=j+1[X.=7) =p;=31+NG+N)]
PXppu=7—1]Xa=j) =¢=131-NG+N]
j=0,1,2,“',

where \ is a real number greater than —3. Thus po = -1, i.e. the origin is
a reflecting barrier. Using the theory of orthogonal polynomials Karlin and
McGregor were able to obtain integral representations for the n-step transi-
tion probabilities. In particular they showed that

(2) P(Xpim = 7| Xm = 0) = [Lt"Qu0)Qi(t)dy(t)/ [L1 Q. ()dy(2),

where dy(t) = ¢(1 — £)** and the Q/’s are the polynomials, orthogonal on
[—1, 1] with respect to the weight function dy, and ¢ is a normalizing constant.

For random walks of the type (1), Lamperti (see [4]) showed that the limiting
distribution of the random variables X,/n! exists and moreover he gave an
explicit formula for the limiting distribution. For example when A = 3, his result
states that

(3) liMe P(Xa/md < 1) = [of s ds = &(1).

Lamperti proved (3) by using the method of moments. It is the purpose of
this note to prove (3) in another way; by a method which will yield a stronger
result. Our method is to exploit the integral representation (2) in order to obtain
a local limit theorem for X, . This in turn will enable us to conclude the follow-
ing more delicate asymptotic formula:

(4) P(Xa/m 2 1) ~ 1 — &(t)
where t, satisfies the following growth condition:
(5) limyse (t.2/n}) = 0.
A further consequence of (4) is a kind of law of the iterated logarithm for
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X, , ie. we shall show that
(6) lim Sup,.«. [X,/(2n log log n)*] < 1 with probability one.

This is a strengthening of Lamperti’s result (which he obtained for a much
wider class of random walks, however) that

(7 lim SUpnow (X./n't) = 0 with probability one, ¢ > 0.

Finally it should be remarked that the main purpose of this paper is not to
obtain delicate results concerning the random walk X, , but rather to observe
that the Karlin-McGregor integral representations (2) can be exploited to yield
local limit theorems. The particular results in this paper are intended to illus-
trate this point.

2. The local limit theorem. In order to fix our ideas I shall prove the local limit
theorem for the case A = %, in which case the orthogonal polynomials which
appear in (2) are the Legendre polynomials. It will become evident that the
method to be presented below extends to other values of the parameter N\ as

well.
First, some notation: n will denote a non-negative integer and {j.}:" will
denote a sequence of integers satisfying the following condition:

(8) limyae (ju/n) = 0.
We set t;, = 2j./(2n)%, s;, = (27, + 1)/(2n + 1)* and
P3t. = P(Xy = 2, | Xo = 0)
and similarly
Pty = P(Xoupr = 2ju + 1| Xo = 0).
For the case A = %, we have the following local limit theorem:
TaroreM 1. (n/2)'P3}, = t;, [exp (—35)] (1 + @ (t,)) where
iy se an(t5,) = O uniformly if t;, are bounded or even if limy.e £5,/0* = 0.
Proor. The proof requires the following results concerning the Legendre
polynomials (see [1], pp. 170-1):
(9) L@ (0)dt = 2/(44. + 1);
(10)  [Lf"Qu(Ddt = 27 (20) /T + (0 — J))T(F + (n + ),
where T' is of course the gamma function. We recall Stirling’s formula for the
I'-function ([5], p. 97)
(11) I(z) ~ (2r)e 2" (1 + 0(1/2)) as z— + oo,
We now substitute (9) and (10) into (2) and obtain the following explicit
formula for P37, :

(12) P} = 344, + D)2 27" (20) 1/ (n — j)IT(E + (0 + j2)).
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We now use Stirling’s formula (11) to conclude that

(13) P3j, ~ 2ja/n(n/(n = §a))"*(n/(n =+ ja))" .
Our next step is to show that
(14) (n/(n = §a))"(n/(n + )" ~ exp (—3£3,).

This is easily done by taking the logarithm of the left hand side of (14). We ob-
tain as a result that

—(n = ja) log (1 — ju/n) — (n + ja) log (1 + ju/n)
(15) = —ju/n 4 D (K7 — (2k — 1)7)7%
—%t?n + Rn(]n);

where the remainder term tends to zero, provided lim,,.. (j.'/n°) = 0. It is

easily seen that this is equivalent to the condition that lim,.. (¢ /n%) = 0.
Applying these results to (13) we obtain
(16) (n/2)*PE. = t;, exp (—38, )™,

Tt is clear that we can write " as 1 + a,(¢;,) and that lim,.. an(t;,) =0
when lim,,., (/%) = lim nae (£3,/71) = 0.

In the same way it can be shown that
(16") 3@ + 1Pl ~ s, exp (—1sf,).

Let us recall the following simple inequality:

If (@:;)i=1 and (b;)i= are two sequences of non-negative numbers, then
(17) minjcica (ae/b)) £ (@0 + - + an)/(bi+ -+ +b,) <

maxi <i<n (@:/b:).

82/2

Using this result and setting ¢(s) = se ", we conclude that

(18) Dwnsti,som (0/2)'P3, ~ P cti <o 8(Li),
or equivalently,
(18)  P(un = Xau/(20)' < 02) = Duzt; 500 P3f ~
(2/n) unsts <on(lin),s

provided of course that lim,,. (#,"/n!) = liMu.e (v.2/n}) = 0. It is easy to
verify (e.g. see [2], pp. 171-2) that the right hand side is a Riemann sum ap-
proximating the Riemann integral ff{;, ¢(t)dt. We have thus obtained the fol-
lowing stronger form of Lamperti’s limit theorem for Xa,/(2n)*.

TEEOREM 2. Let u, and v, be sequences of non-negative numbers satisfying the
condition limpse (Un/0?) = liMpae (0,2/0}) = 0, uy < v.. Then

P(un = Xon/(2n) < 0,) ~ [ o(t)dl.
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It can be shown, in a similar way, that
limy e P(tn < Xonga/(2n + 1) < 00) ~ [in0(0)dt,
where u, and v, satisfy the same conditions as before.

3. A theorem on large deviations. We are now in a position to prove the fol-
lowing important result:

THEOREM 3. If t, is a sequence of numbers tending to +  and such that
My (t.7/n}) = 0, then
(19) P(Xo/nt 2 ta) ~1 — ®(t).

Proor. A similar theorem for the Bernoulli trials process is well known (see
[2], pp. 178-179) and the proof given here is in the same spirit. First we form
the ratio
(20) pn(k) = Pairo/Pi .

Using formula (12) we can show, after some elementary algebraic manipulations,
that

(21) pu(k) = 201 + 4/(4k + D)])(n — k)/(2(n + k) + 1).

It is also easily seen that (i) p.(k) is monotone decreasing as k increases for fixed
n and (ii) pa(k) < 1if k = =, this last inequality is easily verified by a direct
computation. Thus we conclude that for 7 = ",

(22) P(Xon Z 2) = 2ozt Pifram = 2ommd P2}pa"(5) = P3}{1 — pa(4)} 7.

More algebraic computations of a simple kind show that {1 — p.(j)} " =
(45 + )(n + j + 3/ — 3§ — 5n). If we now assume that j, — 4+ and
also that limg.. (j.°/n°) = 0, then it follows from Theorem 2 that
(23)  (2n)'PIL20)HL — pu(Gu)} T ~ 26(t5,)2L,/ (465, — 5) ~ é(t) [t
because we are assuming that lim,.. t;, = + . Moreover, as is easily verified,
1 — ®(t) = ¢(t)/t. Hence we have shown that
(24) P(Xon Z 2n) = P(Xa/(20)" Z 1;,) = O(1 — &(t3,)),

where lim,.. (t?,,/n%) = 0 and limp,ewt;, = + .

The proof of Theorem 3 is now completed as follows: if limy.e (t/n}) = 0
then limue [(tn + log tx)%/n'] = 0 also. Set u, = ¢, + log t, . Then by Theorem
2 we have

(25) P(ty < X/ (20)" S un) ~ 1 — 2(t) — (1 — 2(ua)).

Moreover, by direct computation, we have limy., (1 — ®(us))/(1 — 2(¢a))
= 0. Also by (24) we have that P(Xs,/(2n)} = u,) = O(1 — ®(u,)). Putting
these results together we conclude that

(26) P(Xa/(2n) 2 1) ~1 — ®(t,),  lima.e (LY/n}) = 0.
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In a similar way we can show that
(26") P(Xony/(2n + 1) 2 8,) ~1 — &(t,), limu.e (L2/n') = 0.

We now conclude this paper with a few remarks concerning the so-called “law
of the iterated logarithm.”

In order to prove that lim sup,.. [X./(2n log log n)¥ < 1 with probability
one it is sufficient to show that for any A > 1 the event {X, > A. (2n log log n)*
occurs infinitely often with probability zero. This can be done in almost the
same way that Feller proves the law of the iterated logarithm for a Bernoulli
trials process (see [2], pp. 192-195). In this proof the asymptotic result (26)
plays a crucial role. We omit the details.
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