ABSTRACTS OF PAPERS

(Abstracts of papers not connected with any meeting of the Institute.)

1. The number of linearly inducible orderings of points in Euclidean n-space.
Taomas M. Cover, Stanford University.

A collection of k points in E* is ordered by orthogonal projection onto a freely chosen
reference vector w ¢ £”. If o is a permutation of the integers {1, 2, --- , k}, w ¢ E4 induces
the ordering ¢ if w-Zsq) > W Ty > -+ > W-Toay ; and o is said to be linearly inducible
if there exists such a w. In this paper it is demonstrated that there are precisely Q(k, n)
linearly inducible orderings of % points in general position in E», where Q (k, n) = 221 #S;
and rS; is the sum of produects of numbers taken j at a time without repetition from the set
{2,3, -+, k — 1}. Thus Q(k, n) is the number of ways an art judge may rank k paintings,
each having n numerical attributes, by forming weighted averages of the attributes. (Re-
ceived 20 June 1966.)

2. Statistical inference. V. P. GopaMBE, Johns Hopkins University.

Fisherian statistics and for that reason most of the current mathematical statistics deals
with hypothetical populations having no real existance at all. This hypothetical character
of the populations has been emphasized above all by Fisher himself, on several occasions.
On the other hand statisticans often have to deal with real populations, i.e. the populations
consisting of a large number of tdentified individuals each having some variate value.
Clearly, only for such real populations can one use just a random number table to draw a
random sample. Sample-survey populations serve a good illustration. The first indication,
that for such real populations of identified individuals, the results of current mathematical
statistics are inadequate, was provided by the author’s [J. Roy. Statist. Soc. (1955)] demon-
stration of the non-existance of the UMYV estimation for such populations, regardless of
the distribution of the variate values. This point was further emphasized by the author
subsequently [Sankhyd (1960), Rev. Inter. Statist. Inst. (1965), Ann. Math. Statist. (1965),
J. Roy. Statist. Soc. (1966)] several times. Now it is shown that the very basic concepts of
mathematical statistics such as “‘significance level” or ‘‘power’’, need complete revision
before they can be applied to real populations of identified individuals. For instance a test
is constructed for the mean of a population, which has neither ‘‘significance level”’ or
“power’’ and yet looks reasonable enough in terms of some prior knowledge. In other words
just the frequency function of the variate in a real population of identified individuals does
not determine the test criteria for the unknown parameter of the frequency function. (Re-
ceived 13 June 1966.)

3. Bayesian sufficiency in survey-sampling. V. P. Gooamsg, Johns Hopkins
University.

The main constituents of Bayesian inference, in order of their importance are as follows:
(1) Bayes theorem of inverse probability. (2) A specific prior distribution on the parameter
space. (3) A loss function. Now for several problems of inference loss function does not at
all exist or is only very vaguely defined. Next often the prior knowledge about the parameter
in (2) can at best be characterized by a class of prior distributions and not by any specific
prior distribution. Hence the following relaxation of (2) and (3) above is suggested: Prin-
ciple of Baysian Sufficiency. ‘“If Q is the class of prior distributions of the parameter char-
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acterising our prior knowledge and ¢(x) is a statistic (defined for all possible samples z),
such that the posterior distribution of the parameter, given the sample z, for every prior
in Q, depends on z only through ¢, then any inference about the parameter should depend
on the sample only through the statistic ¢.”” In survey-sampling, under the conditions when
simple random sampling is appropriate, @ can be assumed to be the class of all distributions
£, such that the variate values associated with different units of the survey-population, when
jointly distributed as £ are probabilistically independent. It is then shown that the Principle
of Baysian Sufficiency implies that all inference about the population mean, must depend
exclusively on sample mean and the units in the sample. That is the variate values in the
sample should be used only through their mean, for any inference about the population
mean. This provides some justification for the use of ratio and regression estimates which
are functions of sample mean. (Received 17 June 1966.)

4. A table of sums of discrete right triangular random variables (or, alter-
natively, of a measure of rank differences between two particular objects).
Hans K. Ury, California State Department of Public Health and Uni-
versity of California, Berkeley. ’

The table lists the coefficients of z” in the expansion of S = (nx + [n — 1]22 + --- +
2z7~1 4 gm)m for D = m, m + 1, --- , mn. Treating these coefficients as frequencies, it
also gives cumulative probabilities over D for fixed m, n to 3 decimals. Range of the table:
[n=12, (Im<]24; 3, 16; 4, 12; 5, 11; 6-7, 10; 8-9, 9; 10-11, 8; 1213, 7; 14-15, 6; 16-19, 5; 20-24,
4; 25-29, 3. Since (mn)~'8S is the pgf of a sum Sn,, of m iid variates X; with Pr(X; = j) =
pi=m+1—-75/[n+1n/2],j=1,2, ---,n, the coefficients of z° thus give the fre-
quencies with which a sum of m independent discrete right triangular random variables of
this type takes on the values D. The table is applicable to the following m-rankings situa-
tion: n + 1 objects are ranked m times (mutually independent rankings). One is interested
in the sum, over the m rankings, of the absolute rank difference between two particular
objects. (The case of signed rank differences was treated by Whitfield [British J. Statist.
Psych. T (1954) 45-49] and Stuart [ibid., pp. 50-51].) Then for a single ranking, the absolute
rank difference between the two objects is distributed according to p,; under the null hypoth-
esis of equality of all n + 1 objects. (Received 9 June 1966.)

(Abstracts of papers presented at the European Regional meeting, London, England,
September 6-10, 1966. Additional abstracts appeared earlier issues.)

6. On partial sufficiency and partial ancillarity. ERLING BERNHARD ANDERSEN,
Copenhagen School of Economics.

The paper contains a discussion of some implications in probability theory of the use of
conditional procedures in test theory. Given a family of probability measures II indexed
by a product parameterspace ® X E. A o-field ® is called partially sufficient for e if ® is
sufficient for the subfamily Iy = {Ps, | € € E} for all 8 £ ®. It is proved that if II is domi-
nated and the P’s have constant carrier then the compound o-field ®3,®; is sufficient for
(6, €) if ®, is part suff for € and ®; is part suff for 9. The theorem remains true if formulated
in terms of minimal sufficiency. In general there exists no minimal part suff o-field for e.
In fact a construction of a min part suff o-field leads to a class {®s}, each B, min suff for
the corresponding Iy . As a consequence a definition of partial sufficiency in terms of
classes of o-fields is proposed. A definition of partial ancillary o-fields similar to the
definition of part suff is given and some generalizations of a theorem due to Basu [Sankhya
15 377-380] concerning the relationship between part suff, part anc and independency of
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o-fields is proved. As an application of the developed theory the two-dimensional analysis
of variance and related models is considered. (Received 5 July 1966.)

7. On the similarity of factor matrices. Frieprica GEBHARDT, Deutsches
Rechenzentrum.

Consider two n X k matrices A and B, n > k. The similarity of A and B is defined by
R = max tr(A’BL)/(tr(A’A) tr (B’B))}, the maximum being taken with respect to all
orthogonal k X k matrices L. Let all elements of 4 and B be normally distributed with
expectations 0 and equal variances. This assumption shall reflect a notion of ‘“‘no similarity
between factor matrices’’ and may not be too realistic. By using a special orthogonal matrix,
one finds E(R) = k/2n; it is also shown that E(R) < (k/n)}. Monte Carlo computations
suggest that the upper limit is closer to the real value than the lower one yield-
ing E(R) = 0.82(k/n)* and var (R) = 0.35/n-k for 4 < k <15, 5 < n/k £ 10. (Received
5 July 1966.)

8. Some efficiency comparisons for normal location problems. J. L. HopaEs,
JR., and E. L. LEamann, University of California, Berkeley.

Asymptotic efficiency comparisons are obtained (i) between one-sided, symmetric two-
sided and asymmetric two-sided ¢-tests; (ii) between Student’s ¢-test and the corresponding
normal test suitable when the variance is known. In the latter case corrections of order
1/n to the asymptotic power functions are used to obtain a closer approximation than the
Pitman efficiency. It is shown that the difference of the sample sizes required to match the
corrected power functions tends to a constant, the asymptotic difference efficiency (ADE),
and that for the usual significance levels the efficiency loss is on the order of 1 to 3 observa-
tions. The ADE is also obtained for Scheffé’s Behrens-Fisher test relative to the ¢-test for
equal variances. Efficiency in terms of the number of observations required to minimize
the maximum difference between the power functions being compared is used to obtain an
alternative approach to Pitman efficiency. (Received 12 July 1966.)

9. Randomized rules for the two-armed bandit with finite memory. S. M.
SamuEgLs, Purdue University.

We are given two coins with unknown probabilities, p; and p: , of heads. At each stage,
based only on the results of the previous r tosses we must decide which coin to toss next.
Our goal is to find the rule which maximizes the limiting proportion of heads. Successively
better non-randomized rules have been proposed by Robbins [Proc. Nat. Acad. Sci 42 920~
933], Isbell [Ann. Math. Statist. 30 606-610], and Smith and Pyke [Ann. Math. Statist. 36
1375-1386]. There is, however, a randomized rule which is much better than these. In par-
ticular, unlike the earlier rules it has the property that as the smaller of the p’s goes to
zero, the proportion of tosses with the better coin diverges. (Received 12 July 1966.)

10. The joint assessment of normality of several independent samples. S. S.
SHAPIRO and M. B. WiLk, General Electric Co. and Bell Telephone
Laboratories.

Statistical methods are presented for the joint assessment of the supposed normality of
a collection of independent (small) samples, which may derive from populations having
differing means and variances. The procedures are based on the use of the W statistic [S. S.
Shapiro and M. B. Wilk (1965). An Analysis of Variance Test for Normality. Biometrika 52
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591-611.] as a measure of departure from normality. Two modes of combination of a collec-
tion of W statistics are considered, namely the standardized mean of the normal transforms
of W and the sum of the x2(2) transforms of the significance levels of W; and these are
proposed for use in conjunction with the probability plotting of the collection of these
transforms. Tables and formulae for practical implementation are provided. Some summary
empirical sampling results are given on the comparative sensitivities of these procedures,
along with detailed consideration of several specific examples which illustrate the additional
informative value of probability plotting. The proposed techniques appear to have sub-
stantial data analysis value as adjuncts to other statistical methodology. (Received 14
July 1966.)

11. Statistical techniques for effective condensation of talker identification
data. M. B. Wik and R. GNANADESIKAN, Bell Telephone Laboratories.

The short-time spectral decomposition of the waveform of speech, yielding a two-way
(Frequency X Time) classification of energies, may be used as a basis for identifying
talkers. The overall problem involves data collection, condensation, specification of dis-
crimination spaces and associated metrics, and development of practical strategies for
classification. The current paper presents statistical analyses and methods for preliminary
condensation of the basic energy data which involves approximately 15,000 observations
per utterance, classified by 57 frequency and 275 time channels. The condensation proce-
dures should take into account the arbitrariness, due to experimental artefacts, of both the
time origin and the overall level of intensity in different utterances. Analysis of variance
methods, including various plotting techniques, are applied to the two-way table of energies
to study nonadditivities and variance heterogeneity. A transformation yielding a more
nearly additive structure and diminished variance heterogeneity is estimated, leading to
an effective summarization of the 57 X 275 table by (57 4+ 275) marginal effects. The latter
are completely determined by the two ‘“‘cumulative functions’” obtained from exponential
transforms of their values. These cumulated functions are themselves effectively sum-
marized by a set of interpolated ‘‘quantiles’’, far fewer in number than the (57 4 275)
effects. Moreover, these quantiles are invariant under multiplicative utterance effects and
contrasts amongst them eliminate the arbitrary time origin. (Received 12 July 1966.)

(Abstracts of papers presented at the Western Regional meeting, Los Angeles, California,
Awugust 16-17, 1966. Additional abstracts appeared in earlier tssues.)

18. On the solution of Bechhofer’s general goal in the indifference zone formula-
tion of the ranking and selection problem (preliminary report). Davip R.
BARR, Aerospace Research Laboratories, Wright-Patterson AFB.

In 1954, Bechhofer proposed the following general goal for the indifference zone formula-
tion of the ranking and selection problem: to partition k distributions into s categories,
containing the k, ‘“best”, the k,_; ‘“second best”, --- , and the k; “worst’’ distributions,
respectively, “bestness’’ being in terms of magnitude of a parameter. A solution is found
for this general goal for a scale parameter family with an absolutely continuous distribu-
tion function by assuming a preference zone of the form 6y < -+« £ Oy S 1(Opkry) <
O] 5 041 = -+ = Otjpn) = Vi Opn1) < Okspn1»J =1, -0+, 8 — 25¢61(Bkg g +11) <
Olkg 1411 = *++ = Os) , and selecting that preference zone of this form in which the infimum
of the probability of a correct selection over the preference zone is easiest to compute.
This preference zone has ¢»(8) = p,8, 7 =1, --- ;s — 1, p, < 1. Extension of the results
to a location parameter family with an absolutely continuous distribution function is
immediate. (Received 20 June 1966.)
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19. Some selection and ranking procedures for multivariate normal populations.
M. R. GNaNADESIKAN, Bell Telephone Laboratories.

In the present paper, some selection procedures following the approach of S. S. Gupta
[University of North Carolina, Inst. of Stat. Mimeo No. 150, (1956)] are proposed for multi-
variate normal populations with respect both to location and to dispersion characteristics.
Firstly, given a single multivariate normal population, with known or unknown covari-
ance matrix and unknown mean vector, procedures are discussed for selecting a subset of
the components of the population to include (with at least a prespecified probability) the
component having the largest population mean. An application of these procedures in
multiple regression is described. Secondly, for a set of k¥ multivariate normal populations,
a procedure is proposed for selecting a subset of these populations which would include
the “‘uniformly best’’ population (i.e., each component mean is largest). Thirdly, a selec-
tion procedure is defined in terms of generalized variances for selecting a subset of the
populations which would include the population with the smallest (largest) generalized
variance. The associated problem of the distribution of the generalized variance and ap-
proximations to it are also studied. Finally, the problem, including the definition of ap-
propriate criteria, of statistically assessing the performance of the procedures is studied.
Some generalizations of the above procedures are also proposed. (Received 13 June 1966.)

20. Further consideration of the distribution of the multiple correlation coeffi-
cient. JouN GURLAND, University of Wisconsin.

The form of the probability density of the multiple correlation coefficient based on a
sample from a multivariate normal population was expressed by R. A. Fisher (1928) in
terms of a hypergeometric function. For N — p an even integer, where N is the sample
size and p the number of components in the random vector, Fisher expressed the proba-
bility integral in terms of a finite series, but the number of terms is too large for this to
be of great practical value. In the present article, the probability density is expressed in
terms of a confluent hypergeometric function which is considerably simpler than Fisher’s
expression based on the hypergeometric function. Further, when N — p is even the proba-
bility integral is expressible as a finite series with only (N — p)/2 + 1 terms, and the co-
efficients are interpretable as binomial probabilities. Finally, an approximation is presented
for the general distribution of the multiple correlation coefficient which for the particular
case p = 2 is evidently more accurate than Fisher’s transform over a large set of values
of the parameters involved. (Received 22 June 1966.)

21. On bias in variance component estimation. Davip A. HARvVILLE, Aerospace
Research Laboratories, Wright-Patterson AFB.

This paper deals with certain aspects of variance component estimation for the un-
balanced one-way random classification where the number (N) of observations per class
is treated as a random variable not necessarily independent of the class effect (4). It is
assumed that in general P{N = 0} > 0. A general expression is derived for the expected
value of that estimator of the between variance component yielded by analysis of variance
of class means. The expectation of the estimator is a function of the between variance
component (05%), the number (I) of classes, P{N = 0}, P{N = 1}, E{A| N = 0},
E{A| N = 1}, E{A?| N = 0}, and E{42| N = 1}. The limit (as I — «) of the expected
value of the estimator is obtained. Sufficient conditions for this limit to be less than 0,2 are
that (1) A be symmetrically distributed about zero and either (2i) P{N = 0| 4 = a}
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+ P{N = 0]|A = —a} be a strictly increasing function of @ for 0 < a < o
or (2ii) PIN =0]A =a}be Zor= P{N =0] A = —a} for 0 < a < » with strict in-
equality holding for a subinterval of nonzero measure and P{N = 0|4 = a}
+ P{N = 0| A = —a} be a monotonic increasing function of a for 0 < @ < «. Condi-

tions (2i) and (2ii) are both satisfied when P{N = n | A = a} is given by a Poisson distri-
bution with parameter ce*s where ¢ and k are constants, ¢ = 1. (Received 21 June 1966.)

22. Factorization of probability measures on locally compact groups. HERBERT K.
HEeyver, University of Washington.

Let 9 be the set of all probability measures (probabilities) on a locally compact group
G having a countable base for its topology. 9 can be made a topological semigroup, if con-
volution is introduced as operation; the topology being the vague topology of measures
(3.) (1) p & 9N is decomposable, if there exist two non degenerate (nd) measures », X € 9N
such that p = » * . Measures in 91 which are not decomposable are called prime. Let @
denote the set of all prime probabilities in 9. Along thelines of the work of Parthasarathy,
Rao and Varadhan [Trans. Amer. Math. Soc. 12 (1961)] as well as Vorobyov [Mat. Sborn.
84 (1954)] prime probabilities are constructed and the category of @ is determined (using
in part a method suggested by Choquet’s representation theorem for compact convex
subsets of locally convex topological vector spaces). (2) p &€ M is called weakly right de-
composable, if there exists a sequence (un)sz1 of nd measures in 9T such that
g = liMlp,eps * -+ # p, , where the limit is meant in the sense of the topology J,. u & I
is said to be weakly divisible, if there exists an nd measure X & 9T such that p = limg., A*".
Using a theorem of the author’s on the characterization of idempotents in N it is possible
to extend results of Stromberg [Trans. Amer. Math. Soc. 94 (1960)] from compact to arbi-
trary locally compact groups: (i) necessary conditions for u & 9T to be weakly right de-
composable; (ii) sufficient conditions for p & 9T to be weakly right decomposable; (iii)
necessary and sufficient conditions for u £ N to be weakly divisible. (Received 24 June
1966.)

23. On degradation of combination locks and the maximum trial time to open
them. Mary D. Lum, Aerospace Research Laboratories, Wright-Patterson
AFB.

This paper describes the comparative performance of combination locks (in five states
ranging from excellent to poor) using the maximum trial time (‘“‘trial and error’ with no
repeats) to arrive at the correct combination, thus opening the lock. The 3-number com-
bination of a 10p-point (p is a positive integer) lock is randomly chosen subject only to
the possibility of one of four increasingly severe restrictions (including unrestricted ran-
domization). Two kinds of trial times are investigated: ‘“L-time” (each 3-number combi-
nation is dialed completely) and ““S-time’’ (all possible third combination numbers are
tried before changing the first two combination numbers). The order in which the combi-
nations are tried has no effect on the uniform distribution of L-time or of S-time with
balanced restrictions. However, for unbalanced restrictions, combination ordering affects
S-time; the optimal (minimum expected S-time) ordering(s) occurs when the rate-of-
change of the first two combination numbers is made monotone nondecreasing. Since the
maximum S-time does not depend on combination ordering, it yields simple calculations
of the maximum L-time, expected L-time, expected S-time (balanced case), and an upper
bound for the (minimum) expected S-time under optimal ordering (unbalanced case).
A numerical example is given for the 100-point (p = 10) lock. (Received 24 June 1966.)
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24. One-order statistic conditional estimators of the shape parameters of the
limited and Pareto distributions and the scale parameters of the Type II
asymptotic distribution of smallest values. ALBERT H. MooRrE and H. LEon
HARTER, Air Force Institute of Technology and Aerospace Research Lab-
oratories, Wright-Patterson AFB.

One-order-statistic estimators are derived for the shape parameter K of the limited
distribution function F;(z, w, K) = 1 — (v — z)X and the Pareto distribution function
Fy(y, e, K) =1 — (y — €¢)~K, given the location parameters w and e, respectively. A similar
estimator is derived for the scale parameter v of the Type II asymptotic distribution of
smallest values, Fs(z, v, K) = 1 — exp [— (2/v)~X], given the shape parameter K. The
one-order-statistic estimators are K | @ = —1/¢mn In(w — Zmy) for the limited distribution,
K| € = 1/¢nnIn(¢mn — €) for the Pareto distribution, and 5| K = ¢pe/Fzmn for the Type
IT asymptotic distribution of smallest values, where Zmn , Ymn , and 2z, are the mth order
statistics of samples of size n from the respective distributions and cm. is the coefficient
for a one-order-statistic estimator of the scale parameter of an exponential distribution,
which has been tabled in an earlier paper. It is shown that _exact confidence bounds can
be easily derived for the above parameters, using exact confidence bounds for the scale
parameter of the exponential distribution. Use of the above estimators is illustrated by
numerical examples. (Received 24 June 1966.)

25. Conditional maximum-likelihood estimation, from singly censored samples,
of the shape parameters of the limited and Pareto distributions and the
scale parameter of the Type II asymptotic distribution of smallest values.
ArBERT H. Moore and H. Leon HARTER, Air Force Institute of Tech-
nology and Aerospace Research Laboratories, Wright-Patterson AFB.

Use of the functional relationships between the exponential and the limited, Pareto,
and Type II extreme-value distributions enables one to obtain conditional maximum-
likelihood estimators, from singly censored samples, of the shape parameters of the limited
distribution, F;(z, w, K) = 1 — (w — z)X, and the Pareto distribution, Fy(y, ¢, K) =1
— (y — €)~K, and the scale parameter of the Type II asymptotic distribution of smallest
values, Fi(z, v, K) = 1 — exp [— (2/v)~X], by a simple transformation of the corresponding
estimator, based on the first m order statistics of a sample of size n, of the scale parameter
6 of the exponential distribution. Use is made of the fact that Kun | @ = 1/6mn, Knn | ¢
= 1/bmn , and Dy | K = —651/%, where 2mby,/60 has the chi-square distribution with 2m
degrees of freedom, to set confidence bounds on the shape parameter K of the limited
and Pareto distributions and the scale parameter v of the Type II asymptotic distribution
of smallest values. The probability densities of Knn | w, Kmn | €, and #mn | K, which for
given m are the same for any n = m, are obtained by a simple transformation of 6,, . (Re-
ceived 24 June 1966.)

26. Bayesian confidence limits for the réliability of cascaded exponential sub-
systems. MeLviN D. SpringER and WiLniam E. TroMpson, General
Motors Corporation Defense Research Laboratories.

The problem treated here is that of deriving exact Bayesian confidence intervals for the
reliability of a cascade system consisting of independent subsystems whose failure proba-
bilities are estimated from life test data. The posterior probability density function of
the reliability of N independent cascaded exponential subsystems is derived in closed form,
using the method of the Mellin integral transform. The posterior distribution function is
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obtained, which yields Bayesian confidence limits on the total system reliability. These
results, which are believed to be new for N > 3, have an immediate application to problems
of reliability evaluation and test planning. (Received 27 June 1966.)

27. Some rules for a combinatorial method for multiple products of generalized
k-statistics. DErrick S. TrACY, University of Windsor.

Dwyer and Tracy [Ann. Math. Statist. 35 (1964) 1174-1185] gave some rules for pattern
functions useful in obtaining formulae for products of two generalized k-statistics in terms
of linear combinations of such statistics. All these can be generalized to give rules for
pattern functions when taking products of more than two generalized k-statistics. This
paper indicates the generalization of the four rules of Dwyer and Tracy and gives four
further rules, some of which involve interesting algebraic identities. (Received 27 June
1966.)

(Abstracts of papers presented at the Annual meeting, New Brunswick, New Jersey,
August 30-September 2, 1966. Additional abstracts appeared in earlier issues.)

10. The distribution of the smallest sample spacing (preliminary report).
Lee R. ABramson, Columbia University Electronics Research Lab-
oratories.

Let X, .-+, X, be independent random variables with a common distribution func-
tion F(x) and let Yy £ --- = Y, be their ordered values. Then U, = min {V;,; — ¥,
© =1,.--, n — 1} is the smallest sample spacing, with distribution function G, (u).
(If X1, --+, Xn are the arrival times of n customers at a single-server counter with a
fixed service time of 7, then 1 — G, (r) is the probability that no customer waits for ser-
vice.) Suppose that F(z) is absolutely continuous with density f(z) and ¢ = f f2(z) dx
is finite. Let 6 = n(n — 1)u be fixed. Then G,(u) = 1 — ¢ 4+ O (n~1). (The error term
vanishes if F is the exponential distribution.) This asymptotic result is a generalization
of one obtained by Lionel Weiss (Ann. Math. Statist. 30 590-593). (Received 5 July 1966.)

11, Likelihood ratio test for equal correlation. MurrAaY A. ArTriN and W. C.
NeLson, University of North Carolina and Virginia Polytechnic Institute.

Tests for the equality of the correlations in a p-variate normal distribution have been
proposed by Anderson (Ann. Math. Statist. 84 122-148) and Lawley (Ann. Math. Statist
34 149-151). These tests depend on the equality of p — 1 characteristic roots of the corre-
lation matrix. The likelihood ratio test for equality is somewhat complicated and difficult
to evaluate; however, a simple approximation to it is easily evaluated, has the same asymp-
totic x? distribution, and is slightly more powerful than the above tests. (Received 5 July
1966.)

12. Minimax unbiased estimator of mixing distribution for finite mixtures.
Duane C. Bogs, Colorado State University.

Let 3¢ = {Hy(z):Ho(x) = > o510 F:(x), 0. > 0,5 =1,---, k+ 1, > 6, = 1} be
the family of finite mixtures of any fixed set of ¥ + 1 (distinet) distribution funections
Fy, -+, Fry . The minimax unbiased estimator of the parameter = (6;, --- , 6z) for

identifiable families JC is derived. An estimator is called minimax unbiased if it is un-
biased and if it is minimax (minimizes the maximum risk) within the family of all un-
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biased estimators. > 4. a; Var (§:), a; > 0, was used as the risk function. Here,
the weighted sum (weighted with respect to the a;’s) of the diagonal elements of the inverse
of the information matrix is a concave function that provides a greatest lower bound for
the risk function of unbiased estimators; and, the unbiased estimator that is best (smallest
risk) at the point where this greatest lower bound for the risk is maximal is minimax un-
biased. (Received 8 July 1966.)

13. Strongly consistent estimator for mixtures of distribution functions.
KeewnaaN Cuor, Cornell University.

Let {F (z, 6); 6 € ©} be a known family of distribution functions and @ an (unknown)
probability measure on @. Assume F (z, 9) is continuous and strictly increasing in z for
each 6 and continuous in 6 for each z. The correspondence between G and Pg(-)
= f F (-, 8) dG(6) is assumed to be one-to-one. The problem is to estimate G from n inde-
pendent observations on Pg . Denoting the empirical distribution by F,., we prove that
Gty which minimizes f [Pa(,y (&) — Pg(x)]? dF,(x) is a strongly consistent estimator of
G, i.e. Gin) converges weakly to @ with probability one. We show that when ® consists
of a finite number of points, Gy, is asymptotically normal (multivariate) and give its co-
variance matrix. It turns out that the minimization for G has to be carried out only
among all those discrete probability measures which put all their mass at (n + 1) or less
points in ®. (Received 13 June 1966.)

14. On a class of matrices arising in the study of Markov renewal processes.
ErHAN CINLAR, Northwestern University.

A square matrix A(s) of elements A;;(s) is called a semi-Markov matrix if A.;(s) is
a completely monotonic function for 0 < s < «, (5,7 =1, ---, n) and if > ; 4;;(0) = 1
for all 2. To every semi-Markov matrix there corresponds a semi-Markov process (and a
Markov renewal process). Let A(s) be a semi-Markov matrix. Every eigenvalue of A(s)
is an analytic function of s (s = 0). A(s) is irreducible if and only if A(0) is irreducible.
If A(s) is irreducible, then there exists a simple eigenvalue A(s) which is positive and is
such that no other eigenvalue exceeds it in absolute value. Further, A (s) is a non-increasing
function of s, A(0) = 1, and A’ (0) = aA’(0)e, where ¢ = [1 --- 1], aA(0) = a, ae = 1.
I — A(s) is non-singular for s > 0; and if A(s) is irreducible, then lim,,o s(I — A(s))™!
= (—\’(0))"lea. These results are generalized to reducible semi-Markov matrices. The
theorems of Smith (1955) and Pyke (1961) on the classification of states and on the limiting
probabilities for semi-Markov processes with finitely many states can be obtained by using
these results. (Received 27 June 1966.)

15. Some characterizations of normality. T. Cacourros, New York University.

Normality is characterized by the property of constant regression of the square of a
linear statistic V on another linear statistic U. MaiN THEOREM. Let Xy, --- , X, be inde-
pendent and identically distributed scalar random variables with df F (x) and suppose that
F(z) has moments of every order. Consider the linear forms U = aiX:1 + -+ + axXn, V
= b X; + -+ + baXn , where the constants a; , b; satisfy the conditions: aiby + -+ + anbn =0
and ajar > 0 for all j, k = 1, --- , n. Then V? has constant regression on U, i.e., E(V2/U)
= E(V?) if, and only if, F is the normal df. The same conclusion holds if the condition a;ar > 0
is replaced by the assumption that F s symmetric. Multivariate analogues of these theorems
are also given. Two other characterizations of multinormality are based on corresponding
univariate results due to Laha [Lukaecs-Laha, Applications of Characteristic Funcitions,
p. 117, Griffin (1964) and C. R. Rao (Le Calcul des probabilities et ses applications, Paris
(1959)]. (Received 11 July 1966.)
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16. Some results related to the Darmois-Koopman problem. J. L. DEnNy,
University of California, Riverside.

Let {P,} be a family of probabilities with the same support Q. For fixed ¢, the Darmois-
Koopman problem is concerned with sufficient conditions that a minimal real linear space
containing versions of f(¢,-) = In dP,/dPt, has finite dimension. We fix z £ @ and consider
local versions of f(¢,-) and distinguish two cases: for some open set containing x the essen-
tial linear dimension (smallest dimension of the minimal linear spaces containing versions)
of the f(¢,-) on the open set equals the essential linear dimension of the f({,-) on each
positive (P.) subset of the open set; inequality is the other case. Equality of linear dimen-
sions is related to sufficient statistics 7" which are not reducible: T is sufficient for {P,}
and moreover on each positive (P;) set A C @ no proper subcollection of the real-valued
components of 7T is sufficient for the family Q; 4(-) = P:(4 n -)/P.;(A). When Q is locally
Euclidean we obtain conditions that {P,} be an exponential family, conditions that there
are versions of the f(¢,-) which are continuous almost everywhere, conditions that there
are versions of the f(¢,-) which are continuous, etc. Some of these results extend and use
the methods of L. Brown, Ann. Math. Statist. 35 (1964) 1456-1474, and employ the existence
of a sufficient statistic which is not reducible. (Received 20 June 1966.)

17. A property of positive random variables (preliminary report). S. W. DuAR-
MADHIKARI, University of Arizona.

Let X be a positive random variable. For k = 0, let g(k) = E (¢ *X). TuroreM For any
5> 0, [g() — g0)]/g’(8) is not less than [g(26) — g(8)1/g’(28). Let Z = ¢™*%X A = E(Z),
B=EXZ),U= (1-2)/Q0— A)and V = (XZ)/B. Then the assertion of the theorem
is equivalent to: the coefficient of regression of ¥V on Z is not less than the coefficient of
regression of U on Z. This observation, followed by a geometrical argument, leads to the
desired result. Generalizations of this result are under investigation. (Received 8 July
1966.)

18. Moments of some rank order measures of correlation (preliminary report).
Warter J. Dick, and Bryant Cuow, Rutgers—The State University.

Pitman [J. Roy. Statist. Soc. Suppl. 4 (1937), 225-232] presents the lower moments and
the corresponding approximate distribution for rank correlation coefficients when the
sample pairings are uncorrelated. Using the generalized correlation coefficient of Daniels
[Biometrika 33 (1944), 129-135] some numerical results are given for the lower moments
of the Fisher-Yates correlation coefficient (a measure of association based on the expected
value of normal order statistics) in the case of correlated pairings from a bivariate normal
parent population. From these results the corresponding approximate distributions are
found using Pearson’s method of moments. A comparison is made of the numerical moments
to the empirical findings of Fieller and Pearson [Biometrika 48 (1961), 29-40]. A natural
extension of the method of Spearman’s p and Kendall’s 7 is also included. (Received 11 July
1966.)

19. Matric-variate generalizations of the multivarite ¢ distributions and the
inverted multivariate ¢ distribution. JamEs M. Dickey, Yale University.

Consider the p X ¢ random matrix Ty = (UH)"'X, U¥{Ut) = U~ WE, m — ¢), U
distributed independently of the column p-vectors of X, which are identically and inde-
pendently N (0, =) distributed. T = (P¥)1TQY ~ (V¥)1Y, V ~ WP, m — q), the
row vectors of Y being N (0, Q). The density of T is k |P|e2|Q|»»2|Q + T'PT|-™72,
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k™t = w027, (5 (m — q)]/Tp(3m). To'To is multivariate beta distributed (the generalization
of F). Consider, also, Ry = [(I + ToTy )Ty = [(XX' + U)X. R = (PY)"1RQ} ~
[(P}Y'Q'YPY + V)¥']7'Y and has density k|P|o2 |Q|~(m—a=b12|Q — R’'PR|(m—r-t-Dlz,
I — R/Ry > 0, k as above. Ry'R, is multivariate beta distributed (the generalization of
beta). The density of T’ (of R’) can be written in the T form (R form), implying further
representations for 7 (for R). The marginal and conditional distributions of submatrices
of T (of R) are of the T' 4+ C form (R + C form), C constant. A posterior distribution
for several unknown normal-mean vectors, corresponding to scale-proportional unknown
covariance matrices, is of the form T' + C. The usual estimate of a matrix g8 of regression
coefficients has a distribution of the form 7 + g (Kshirsagar, Proc. Camb. Phil. Soc.,
57 (1961) 80-85).

20. On the asymptotic representation of sample quantiles. FrRiepaELM EICKER,
Columbia University.

R. R. Bahadur recently has proved an asymptotically almost surely valid linear repre-
sentation for sample quantiles in terms of the sample distribution function (df) at a fixed
point, and has provided an asymptotic bound for the error term involved. The bound
was shown to be O(n~t(log n)t(log log n)i) where n is the size of the random sample
and the constant involved in 0 depends on the sample. Bahadur stated, however, that
his proof did not provide a satisfactory explanation of the bound. Based on a different,
in principal very simple method of proof such an explanation is given in the paper abstracted
here. The proof utilizes the well known conditional probability distribution of the sample
df given an order statistic and standard normal approximation methods. The explanation
given consists in showing that Bahadur’s bound cannot be improved upon as long as the
Borel-Cantelli lemma is used to establish a.s. convergence. It is shown, moreover, that the
sequence of (random) error terms tends to zero in probability like N,n~t with an arbitrary
sequence of constants N, — . This result is optimal, since the assertion is false if N, does
not tend to infinity. (Received 15 July 1966.)

21. Sequential evaluation of graded preferences for two treatments. W. J. HaL,
University of North Carolina.

Suppose a sequence of subjects each in turn indicates a graded preference for one of
two treatments, A and B; for example, a strong or weak preference may be registered for
either of the treatments, or no preference registered. A sequential test of the hypothesis
that, in each preference grade, A is just as likely to be preferred as B, is presented. OC
and ASN functions are derived. Allowance is made for certain subject-to-subject dif-
ferences. The test is a conditional sequential probability ratio test and may be considered
as a simple extension of Wald’s sequential test for double dichotomies, applicable in this
context if only one preference grade (and a no preference grade) were considered. Two-
sided alternative versions and analogous non-sequential tests are also described. Possible
applications include various kinds of consumer testing, psychological testing, and sub-
jective aspects of clinical trials. (Received 11 July 1966.)

22. Testing the homogeneity of a set of correlated variances. CHIEN-PAT HAN,
Harvard University.

To test 012 = o2 = - -+ = ¢,2 from a p-variate normal distribution with common (known
or unknown) pairwise correlation coefficient, four test criteria are constructed and their
asymptotic distributions are compared. (1) Approximations to the maximum likelihood
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estimators of loge2, ¢ = 1, 2, --. | p, are obtained and a corresponding test criterion is
found which is asymptotically equivalent to the likelihood ratio criterion. (2) Bartlett
test is well known when the variates are uncorrelated. A modification of it is the statistic
M/ (1 — p?) which has an asymptotic x%p_1) distribution, where p is known and M; is the
logarithm of the ratio of the arithmetic mean and the geometric mean of the sample
variances. When p is unknown, it can be replaced by the average of all sample correlation
coefficients. (3) When p = 2, Pitman (Btometrika 31 (1939) 9-12) has found that the null
hypothesis is equivalent to the simple correlation coefficient of two transformed variates
being zero. An extension is to test the multiple correlation coefficient of w =
=@m+tat - +a)/ponu; =2, — &1 =2,3,---, p. (4) A short-cut test statistic
when p = 0is S%.x/S%in and may be used in large samples for general p. (Received 20 June
1966.)

23. Infinite product Markov processes. T. E. Harris, University of Southern
California.

Xi= (zd, My, Pii),i=1,2, --. , are standard nonterminating Markov-Feller processes
(E. B. Dynkin terminology) on compact separable metric spaces E* with Borel fields Bt in
Ei. Let X = (%, Miso, Pa), 2. = (xd, z2, -++), be a product process corresponding to
independence of z¢, z2, --- , with M, = Md X M#& X -+ ; B = B! X B*X .- ; and
B, = Na(B™ X B X ...). Then X is standard. Let H ¢ B be SC (stochastically closed;
ie., Py(zs e H,t 2 0) = 1, x ¢ H). Suppose z', 2" e H, T ¢ B, , P(t, ', T') = 1for a.e. ¢
(Lebesgue), and P (¢, 2", T') = 0 for a.e. t. Then H = H' y H”, H' and H” disjoint and
SC, z' e H', 2" ¢ H". If each E‘’ is R, compactified by addition of an absorbing point, if
the part of X¢ on R, is an infinitely divisible process (same law for each X?), if H ¢ B is
a SC subset of Ry X R; X ---, and if 2’ and 2” are points of H such that =(z;’ — z,”)?
= o, then H can be decomposed as above. (Received 11 July 1966.)

24. A Tchebycheff type of inequality. Davip B. Hirr, University of Vermont.

In this paper we establish an inequality similar in form to the Tchebycheff inequality
but involving statistics rather than the population mean and variance. The inequality
is particularly applicable in biological experimentation where often times many ‘pre-
treatment’’ measurements can be made but due to the nature of the procedure only a
single ““post-treatment’’ reading can be obtained. Given a density function f(t), fors =1,

-, n,let X;be a random variable with mean u; , variance o2, and with density function
f(¢ — npi). Further let P[X; < w;] = ¢, P[S? < ¢%2] = II where S? is the sample variance
for random samples of size m. Suppose further that a random sample of size m is chosen
from each of the n populations and let 6 = [max; S;2]* and A, = max; z,; where z,; is the
Jth observation from the pth population. Let an additional observation y be chosen from
one of the populations, which without loss of generality can be taken to be the first. Then
the following theorems hold: THEorEM 1. Prly > p1 + ké] < 1/k% + ¢™ + O™ — gmIIn—1,
TaeoreM 2. If f(z) = f(—x) (and hence ¢ = 3), Pr [y > p + ké] < 1/2k2 + 1/2» + 1O
— r/2m», (Received 8 July 1966.)

25. Strict efficiency excludes superefficiency. PeTteEr J. HUBER, Swiss Federal
Institute of Technology.

Let Py be a real-parameter family of probability measures having densities ps; with
respect to some fixed o-finite measure. Assume that (pss — ps)/ (psd) has a limit ps’/ps in
the L,(Pj)-sense for § — 0, and that the information I(8) = Es(ps’/ps)? is continuous
and = 0 at 6, . Let X, , X, --- be a sequence of independent random variables with com-
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mon distribution Py . TurorEM. If a sequence of estimates T = Th(Xy, -+, X») of 68 is
“strictly efficient” at 6y, i.e. if for some ¢ > 0 limp., lim SUPp.w SUP (90| <ckn—? I (6)E)p-
min (n (T, — 0)2, k%) < 1, then n} (T — 6o) ts asymptotically normal with mean 0 and variance
I(60)7* at 6o . In particular, T» cannot be superefiicient at 6, . This result supplements a
theorem of Stein and Rubin (Theorem 1 on p. 12 of Chernoff, Ann. Math. Statist. 27 (1956)
1-22). (Received 5 July 1966.)

26. A note on the asymptotic form of a posterior: distributions (preliminary
report). RicuarRp A. JounsoN, University of Minnesota.

Let X, , Xa, -+- be iid each having density ps(x) = C(¢) exp [¢pR (z)] with respect to
a o-finite measure p. Suppose that p(¢) is an a priori probability density defined on the
parameter space. Let ¢ be the unobserved value of the parameter ¢, let ¢ be the maximum
likelihood estimate of ¢ (assumed to be interior to the parameter space), and let b2(¢) be
the Fisher information evaluated at ¢. Denote the a posterior: distribution of ntl¢ — $1b($)

given (21, -+, Z.) by Fn . If p(¢0) > 0 and p is continuous in some neighborhood of ¢, ,
then F, converges in law to the standard normal distribution &(-) for almost all sequences
z =(x1, 2, ---) where the measure is generated by Hkp¢0 (zr). Our results show that,

subject to further restrictions on p, there exists an asymptotic expansion for F,(-) in powers
of n~* for almost all sequences. In particular, using only one correction term, we have
almost surely F.(£) ~ & (&) + ¢(€)[a1($) (& + 2) + o' @) /p )1/ @)nt + O(n™?) (n > N.)
where ¢(-) is the standard normal density, N, depends on z, and a;(¢) is a continuous
function of ¢ determined by C(-). The result is uniform in £ This shows clearly how the
a priort distribution influences the a posteriori distribution through the term of order
n~t. Related results of LeCam [Publ. Inst. Statist. Univ. Paris T (1958) 17 and Univ. Calzf.
Pybl. Statist. 1 (1953) 277] assume a more general likelihood, but give only the first (i.e.
0(1)) term. (Received 11 July 1966.)

27. Asymptotic expansions associated with nth power of a density. RicHARD A.
JouNsoN, University of Minnesota. (By title)

Let k(-)f(-) be the density function of an absolutely continuous variate X. Then kf?,
kf3, - - can be normalized to define a sequence of random variables X, , X5, --- . Suppose
that f(-) has a unique mode at m. Buehler [Ann. Math. Statist. 36 (1965) 1878] has shown
that, under mild regularity conditions, Z, = n#(X, — m) converges in law to a normal
distribution. In the present work it is shown that, subject to differentiability conditions,
the distribution function F.(-) of Z, possesses an asymptotic expansion in powers of n%.
More specifically, Fn(£) ~ ®(£) + ¢(£) 2 70v;(§)n* where &(-) is the limiting normal
distribution, ¢(-) the corresponding density, and the v;(-) are polynomials. Denote the
a-percentiles of F, and ® by £ and &, respectively. The expansion above has also been
inverted to furnish an asymptotic expansion for ¢ in powers of n~# with coefficients which
are polynomials in £, . Examples of specific distributions are given. (Received 11 July 1966.)

28. An example in which the preliminary test of significance leads to a uni-
formly better estimator. B. K. KaLg, Iowa State University.

In case of estimation subsequent to a preliminary test of significance in the theory of
incompletely specified models, we have several examples in which the resulting estimator
has smaller mean square error than that of the usual estimators in the certain ranges of
the parameter space. We give here an example in which the estimator subsequent to the
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preliminary test has smaller mean square error than that of the maximum likelihood esti-
mator (or the minimum variance unbiased estimator) through out the natural range of the
parameters involved. (Received 5 July 1966.)

29. Some aspects of the statistical analysis of the “mixed model” (preliminary
report). GArRY G. Kocu and P. K. Sen, University of North Carolina.

In this paper, the authors discuss the statistical analysis (both parametric and non-
parametric) of ‘“mixed model”’ experiments. The general structure of such experiments
involves n randomly chosen subjects who respond to each of p distinct treatments. Let
the joint distribution of the responses of the ¢th subject be

) Fi(y, 22, , %) = Gi(@ + ma, &2 + msz, -+, Tp + Mip)

where m;; = b; + t;, i + ts + -+ + ¢, = 0. Together with (1), the basic assumption is
(A.1) the joint distribution of any linearly independent set of contrasts among the obser-
vations on any particular subject is diagonally symmetric. Two additional conditions
which may or may not be assumed are: (A.2) the subject effects are purely ‘“‘additive’’;
(A.3) the compound symmetry of the error vectors. Thus, the four cases of interest are
described as follows:

Not A.2. A.2.
Not A.3. Case 1 Case 11
A3. Case 111 Case IV

For each of the above cases, the hypothesis
(2) Hyty =g = -+ = tp

is considered, and appropriate test procedures are given. For Case II and Case IV, these
results are compared with those obtained for the corresponding parametric situations in
which the error vectors is assumed to be normally distributed. (Received 29 June 1966.)

30. A unified treatement of various representations of the distribution of
positive definite quadratic forms in normal variables. S. Kotz, N. L.
Jounson and D. W. Boyp, University of Toronto, University of North
Carolina, and University of Alberta.

The probability density function (pdf) of a positive definite quadratic form in (central
or non-central) normal variables can be represented as a series expansion in a number of
different ways. Among these, one of the most important is that of a series of pdf’s of non-
central 2%’s or of central z?’s with increasing degrees of freedom. These expansions have
been discussed by Ruben [Ann. Math. Statist. 38 (1962) 542-570] [Ann. Math. Statist. 34
(1963) 1582-1584] who has given convenient recurrence formulae for determining the co-
efficients. Expansion in terms of Laguerre series and Maclaurin series (powers of the argu-
ment) have been discussed for central variables by Gurland [Ann. Math. Statist. 24 (1953)
416-427] and Pachares [Ann. Math. Statist. 26 (1955) 128-131] respectively, and in the gen-
eral (non-central) case by Shah [Ann. Math. Statist. 3¢ (1963) 186-190] and Shah and Khatri
[Ann. Math. Statist. 32 (1961) 883-887], but the coefficients in their series are not presented
in a very convenient form for calculations. It is the purpose of this paper to show how
all three kinds of expansion can be derived in a similar way, and incidentally, to obtain
convenient recurrence formulae for determining the coefficients in the Laguerre and Mac-
laurin expansions. (Received 13 June 1966.)



1428 ABSTRACTS

31. A note on confidence bounds for certain ratios of characteristic roots of
covariance matrices. P. R. Krisana1an and P. K. PaTHAK, Aerospace
Research Laboratories, and Indian Statistical Institute. (By title)

Let 21, 22, --- , =k be the covariance matrices of k p-variate normal populations. Let
\ij be the jth largest characteristic root of =; (j =1, ---, p;2 = 1, --- , k). We obtain
herein simultaneous confidence bounds on (i) Niy1,p/Aa and Nij1,1/Aip G =1, -+- , &k — 1)
and (ii) Aa/Njp and Nip/Aj1 (T 5% j =1, -+ -, k) by using methods similar to those of Khatri
[Ann. Inst. Statist. Math. 17 (1965) 175-184]; in case (ii) the confidence bounds are obtained
under the assumption of equal sample sizes. (Received 1 July 1966.)

32. Simultaneous test procedures under intraclass and other correlation
models. P. R. Krisunaian and P. K. Patuak, Aerospace Research
Laboratories and Indian Statistical Institute. (By title)

Consider k multivariate normal populations with covariance matrices =;, 2z, --- , 2z
where ’

2 = 0'12[(1 - Pi)I + Piee’]’ e = (1’ ) 1)

and [ is an identity matrix. Recently Srivastava [Ann. Math. Statist. 36 (1965) 1802-1806]
has proposed a test procedure to test for the equality of covariance matrices against the
alternative that =; ¢ Z; for ¢ % j = 1, --- , k when the sample sizes are equal. In this
paper we propose an alternative test procedure for the above problem. Also we consider
the problem of testing for the equality of covariance matrices against different alternatives
when the sample sizes are unequal. We further extend our results by indicating how the
hypothesis of the equality of covariance matrices against different alternatives can be
tested under circular and successive correlation models. Finally we point out a procedure
for testing the significance of the mean vector of a multivariate normal population under
successive and circular correlation models. (Received 1 July 1966.)

33. Inverse least squares estimators used in calibration. Ricaarp G. KRUTCH-
KOFF, Virginia Polytechnic Institute.

Assume a linear response of the form y = « 4 Bz + ¢ where ¢ is a normal error. In a
calibration problem it is often possible to design an experiment, using known values of z,
to obtain estimates of « and B, which are used to calibrate the system. One then observes
a y and, using the calibration, estimates the x which gave rise to it. The usual estimates
for @ and B are simply the least squares estimates. The principal conclusion of the study
is that the least squares estimates of parameters in the inverse model z = v + 8y + ¢ give
estimators for z which have uniformly smaller average squared error. (Received 11 July
1966.)

34. Extension of the SPRT to 3 decisions (preliminary report). JAMES A.
Lecuner, Westinghouse Defense & Space Center.

One way to characterize the Wald SPRT is as follows: Sample until the posterior proba-
bility of one of the two hypotheses reaches its preassigned (high) value; then stop and
accept that hypothesis. Therefore, one possible generalization to more than 2 alternative
decisions is: Sample until one of the n hypotheses has posterior probability exceeding its
preassigned (high) value; then accept that hypothesis. This procedure is being investi-
gated, for n = 3. Some results have been obtained, and will be presented. Calculation of
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the stopping boundaries is straightforward. Certain bounds on the various error rates.
analogous to Wald’s bounds, are obvious, but analytic determination of the OC and ASN
functions has not yet been achieved. (Received 11 July 1966.)

3b. Two properties of a subset selection procedure (preliminary report). D.
M. MamamuNuLy, State University of New York, Buffalo.

We have at our disposal k(= 2) populations Iy , - - - , II; . The distribution function of
a single observation z; from II; is F(- | 6;) where 6; is an unknown scalar parameter, ¢ =
1, .-+, k. From the available set of populations we wish to select a fixed size subset which
contains as far as possible the best ones (those with largest 6-values). We assume that a.
random sample u; = (z;1, --+ , Tin) 18 available from II; , 2 = 1, --- | k. A commonly used
procedure, designated here as R, , based on u, , --- , ux for the selection of such a subset
of size s(< k) is the following: consider suitable statistics Ty , -+- , Tk , where T; = T (u;).
Select the populations corresponding to the s largest T-values. We prove two properties
of the procedure R, : (i) When T'; is absolutely continuous and its distribution function
Gr (- | 6:) is stochastically increasing in 6; , the procedure R, possesses a property of multi-
variate unbiasedness; (ii) it is the uniformly best decision rule in the class of impartial
decision rules based on T'; for a class of loss functions when T'; is continuous and has a
density with a monotone likelihood ratio. (Received 11 July 1966.)

36. Some sharp Tchebycheff inequalities. Govinp S. MupHOLKAR and Popur:
S. R. S. Rao, University of Rochester.

Let Y = (Y1,7Y,, --,Y,) be a random vector with EY = u and ¢ = 0 be a homo-
geneous concave function on the nonnegative orthant of R». It is shown that the inequality
Plo(Y) = €] = ¢(u)/eis sharp. Using this result a number of multivariate generalizations
of one and two sided Tchebycheff inequalities, when only variances are known, are ob-
tained. These contain the corresponding results due to Marshall and Olkin (Ann. Math.
Statist. 31, 1001-1014) as particular cases. More specifically, if X; , X», --- , X. be n jointly
distributed random variables with EX; = 0O and var X; = 0,2, 7 = 1,2, -+ , n,and a; = 0
are n reals > a; = 1, then it is shown that the inequalities P{(ZazX 2yl > €] <
(ZaiXi’”')””/e, r <1, and P[(EQXZT)”T = e Xi20] = (Za o)1 fle + (Za,o’,”)”’]
r < %, are sharp. It is observed that as r tends, respectively, to —w, —1, 0, 1, (2 aut")V"
tends respectively to min (f;), the weighted harmonic mean, geometric mean, and arith-
metic mean of ¢; . (Received 14 July 1966.)

37. An extension of the birthday problem. Josepu I. Naus, Rutgers—The
State University.

Let N individuals have birthdays distributed at random over D days. The classical birth-
day problem seeks the probability that at least two of the N birthdays coincide. The proba-
bility that at least n of the N birthdays coincide is also well known. We seek the probability
that at least n of the N birthdays fall within d adjacent days. For the case where the D
days form a circle (the Dth day is adjacent to the first), we find the probability that at least
two of the N birthdays fall within d adjacentdaystobel — (D — Nd+ N — 1)!/(D — Nd)!
DV for D = Nd. For the case where the D days form a line (the Dth day is not adjacent
to the first), we find the probability that at least two of the N birthdays fall within d adja-
cent days to be 1 — [D— (N —1)(d — 1)]I/[D — (N —1)(d — 1) — N]J! DV, for D =
(N — 1)(d — 1). An approximate solution is given for the more general probability of n
birthdays within d adjacent days. (Received 11 July 1966.)
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38. Inadmissibility of the best invariant estimate for loss function W(t) =
|t|* (preliminary report). S. K. PErNG, Michigan State University.

By modifying an example due to Charles Stein (private communication), we have
an example which shows that, in the fixed sample size case, if the loss function is W(¢) =
|¢|* for & = 1, there exists a probability density such that the best invariant estimator is
uniquely determined, but is inadmissible. Furthermore for this example, E (| X|*—"W (X)) <
o where % is an arbitrary positive number. This closes the gap between Brown’s theorem
(unpublished Ph.D. thesis) giving conditions under which E(|X|W (X)) < « implies
admissibility and his example showing that E (| X|*W (X)) < o for 0 £ a« < k/(2¥ — 1)
does not imply admissibility. Let £ be an unknown real parameter —o < £ < +®, ¢ be a
random variable distributed according to the known density = with respect to Lebesgue
measure, where w(c) = Co~®*+2-n for ¢ > 1, = 0 otherwise, where » > 0, C is a constant.
Assume X — £ given ¢ is distributed according to density ¢, with respect to Lebesgue
measure where ¢, = ¢71¢(y/s) and ¢(z) = -3t if |z] < 3%, and 0 otherwise. Then the follow-
ing estimator dominates the best invariant estimate X. Let ¢ (X, 0) = X + of (X /o) where
fiz) = —edbzif 2] S 1/e; = —e8(2/e — |2|) sgn z if 1/e < [2] < 2/¢, = 0 otherwise. I wish
to thank Professor Stein for communicating his unpublished example. (Received 17 June
1966.)

39. On some optimum nonparametric procedures in two-way layout. Mapan
L. Purt and PranaB K. Sen, Courant Institute of Mathematical Sciences,
New York University, and University of North Carolina.

For the estimation and testing of contrasts in two-way layout, some optimum non-
parametric procedures based on Chernoff-Savage type of rank order statistics (Ann. Math.
Statist. (1958) 972-994) are considered here. The asymptotic properties of the proposed
methods are studied and compared with those of the least square method. (Received 8
July 1966.)

40. Some observations on estimates of the distributions of two stochastically
ordered random variables. Ttm RoBErRTsON and RoBERT V. HoaGe, Uni-
versity of Iowa.

Let X and Y have the respective distribution functions F and @ such that F(z) = G(2)
for all z. With m z-observations and n y-observations, maximum likelihood estimates of F
and G, which are of the discrete type, have been found in an earlier paper of Brunk, Franck
Hanson, and Hogg; an illustration of this solution is given in this paper. If, instead, it is
assumed that the distributions are of the continuous type and unimodal, it is proved that
the maximum likelihood estimates of the corresponding densities can be taken to be uniform
within intervals which join consecutive observations. Consequently, only estimates, which
are uniform within these intervals, are considered. Under this additional restriction, two
types of estimates are then found: the first estimates are not required to be unimodal but
the second estimates are. In essence, these estimates spread out the probabilities, which
are found in the discrete case, over certain intervals until all of the restrictions are fulfilled
Examples are given and these estimates are proved to be consistent. (Received 27 June
1966.)

41, The empirical Bayes approach: estimation of posterior quantiles. J. R.
RureERFORD, Royal Military College of Canada.

In Rutherford and Krutchkoff (submitted to Biometrika (1966)) an estimator of the
prior distribution is constructed in the following situation: we observe a sequence of random
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variables X;, X, .-, X, independently distributed according to a known conditional
density function f(z; | 8;) where 6:, 6z, --- , 6, is a sequence of independent realizations
of an unobservable random variable ® distributed according to a prior distribution function
G (9) which is an unspecified member of the Pearson family of curves. The conditional
density function is such that there exist known functions hx(z), k = 1, 2, 3, 4, such that
Elhi(X) | 6] = 6% Let G.(0) be the estimate of the prior distribution then an estimate,
gn (), of the & quantile, ¢q(«), of the posterior distribution of ¢ given z is constructed. We
prove that ga(e) — ¢(a) for all a. This result finds various applications such as the point
estimation problem with the absolute difference as loss function: the estimate of the pos-
terior median is then shown to be asymptotically optimal. (Received 27 June 1966.)

42. The Halmos-Savage theorem in the non-s-dominated case. HERMAN
RusiN, Michigan State University.

The well-known result of Halmos and Savage (Ann. Math. Statist. 20 (1949) 225-241)
that in the o-dominated case if J is pairwise sufficient for a {Ps : 6 € @} then there is a fac-
torization dPy = f(8) du where f is J-measurable are extended to the case where the Py
are dominated by a locally finite measure » or, equivalently, if given any family § of meas-
urable sets there is a set £ such that for all 8 £ @, E is a Ps-least upper bound for 8. The
arguments follow closely those of I. E. Segal, (Amer. J. Math. 73 (1951) 275-313) and the
Halmos-Savage paper. (Received 8 July 1966.)

43. Large-sample approximations to the variance and bias of bispectral esti-
mates. PAuL SaaMaN, New York University and Columbia University.

Let {X (¢)} be a real-valued, continuous parameter random process that is sixth-order
stationary and has mean 0. Given observation of the process for 0 < ¢t < T, construct an
estimate br* (w1 , w2) = cr* (w1, w2) + % dr* (w1, we) of the bispectrum, which is the Fourier
transform of the third-order moment function, by forming the Fourier transform of an
estimate of the third-order moment function and applying a weighting function. Under
appropriate regularity conditions on the process and on the weighting function in the
estimate, large-sample approximations are given for the bias of br*(wi, w2) and for
var ¢r* (w1, we), Var dr* (w1, w2), and Cov (cr* (w1, w2), dr*(wi,ws)). Also given are
bounds on the errors of the approximations for large 7. The method of analysis is to work
with the spectral functions in the frequency domain rather than with the cumulant functions
in the time domain. The regularity conditions on the process include boundedness and
boundedness of the first derivative for the spectrum, bispectrum, and trispectrum. For
0<a<3, TeBEbr*(w,ws) —blw,w)) =0(1), T2 Var cr*(w1,w) =0(Q),
T2« Var dr* (w1, w2) = O(1), and T'* Cov (cr* (w1, wz), dr* (w1, w2)) = O(1).

44, Convergence of a sequence of transformations of distribution functions.
R. SuanTARAM and W. L. HARkNEss, Pennsylvania State University.

Let F (z) be the distribution funetion of a positive random variable, all of whose moments
un = E(z") exist and are finite. Define G;(z) = u™! fﬁ [1 — F(y)]dy for x = 0 and zero
elsewhere; and recursively, for n = 2, define Go(z) = [u(Ga)]™* [5 11 — Gus(y)] dy for
z 2 0 and zero elsewhere (u = u; = E(z), and u(Gr-1) is the mean of G._,(z)). Then G, ()
is the distribution function of a positive random variable, for n = 1,2, --- | whose kth
moment is given by ("F*)tuuik/un, k=0,1,2, --- . If F(z) is distributed on a finite
interval, then G, (z/n) converges, as n — », to an exponential distribution function. If,
on the other hand, F(z) < 1 for all z > 0 and G, (c. z) — G(z), a proper distribution func-
tion, for a sequence {c.} of normalizers such that {c./ca_1} is a bounded sequence, then it
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is shown, among other things, that G(z) is everywhere continuous, ¢, ~ pni1/ (M + D ,
(n — »), and limy., ¢a/ca—1 exists. This last limit equals 1 if F (z) has an analytic char-
acteristic function, in which case G(z) is exponential. If lim Supm.. Cn/Cnoy = 4 and
G () is continuous at the origin, then the ¢, are not of the form pngr/(m 4+ Dun, (asn — ).
Finally, certain criteria for existence of the {c,} are derived. (Received 1 July 1966.)

46. Some results on the complete convergence of linear combinations of mar-
tingale summands (preliminary report). W. F. Stout, Purdue University.

Let X be a sequence of random variables, &, be the o-field generated by
X1, Xs, -+, X, au be a matrix of real numbers, 4, = D2, a’, S, = > i1 Xi, and
T = D71 anx Xi. Tn is said to converge completely to a constant ¢ if T, is well defined
and if D o P|T, —¢| > €] <  for all ¢ > 0. THEOREM 1. Let X& be iid, E|X[?* <
Jor some a > 0, @ = 0 for k > n, |an| < Kn~= where K is a finite real number independent
of kandn. Then (1)0 < @ =1, EXy = 0, and Zﬁal exp (—N/4.) < « for allX > 0 implies
that T\ converges completely to zero. (ii) a > 1 implies that T, converges completely to zero.
TaEOREM 2. Let (8., Fn) be a martingale with |X;| < 1, e iexp (—A/4,) < w for all
A > 0. Then T converges completely to zero. Further results are also presented. The stated
results are generalizations of results due to Y. S. Chow (Ann. Math. Statist. 37 540, plus
unpublished work). (Received 11 July 1966.)

46. On maximum likelihood estimation for two-phase linear regression.
Davip L. SynwesTER, University of Vermont.

Sprent [Biometrics 17 (1961) 634-645] has given some statistical hypotheses relevant to
two-phase linear regression models. Behaviour of parameter estimates, especially when the
‘“‘change-over point” 7 is unknown, has received little study. Let X, --- , X, be indepen-
dent normal random variables with EX; = a + 8t; for t; < r and EX; = o« + Brfort; > =
where 8 = 0 and o2 = Var (X;) > 0. We show that for the MLE &, of the unknown param-
eter point w = (a, 8, 7,0?%), & — w a.s. and n} (¢, — ) is asymptotically multivariate
normal. To obviate the difficulty caused by the fact that the likelihood function
L(w| X1, ---, X,) is not everywhere differentiable and even when differentiable the equa-
tion 9L (w | X1, --+, X»)/07 = 0 has many solutions, we ignore many of the observations,
find a ‘“pseudo-MLE” &,’ and determine its asymptotic distribution. We then show that
nt(@' — &») — 0 in probability. A key step in the proof is showing that Z, = supaea n~!-
ZZ;I A(:)Y; — 0 a.s. where the Y; are iidrv’s with zero means and A is the collection of
all polygonal functions composed of three or fewer straight line segments with A@)| = 1.
(Received 8 July 1966.)

47. Prediction filter coefficients for jointly stationary time series. GRACE
Wansa, IBM Corporation and Stanford University.

Consider P 41 jointly stationary, zero mean, Gaussian time series {X,(t), X1(t),
-+« , Xp(t)} possessing a positive definite spectral density matrix F (). It is well known

that Xo(¢) admits the representation Xo(t) = Y 2w D fo1 br(s)Xx(t — s) + () where
€(t) is a stationary Gaussian process independent of X (t), k = 1,2, --- , P. Suppose that
a realization of length T of {X,(t), X1(t), -+ , X, (¢)} is available. Under some additional

conditions, consistent estimates bi(s) of bi(s), |s| = (M — 1)/2 K T are given. These
estimates are based on the windowed sample spectral density matrix F () for M equally
spaced values of w, where the bandwidth of the window is proportional to 1/M. The asymp-
totic joint distribution of these estimates as M, T — «, M/T — 0 is given, as well as a
bound on the prediction error o2, where o2 = E(Xo(t) — Xo(2))2, Xo(t) = D lel < (-1ysa -
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Zlf-l 6k(s)5(k(t — 8), where {Xx(t), k = 1,2, --., P} is an independent realization of the
process. The estimates are a generalization of estimates suggested by Hannan (Proceedings
of the Symposium on Time Series Analysis, Wiley, 1962). (Received 8 July 1966.)

48. On the existence of an optimal stopping rule for X,/n (preliminary report).
Oscar A. WenMANEN, Purdue University.

Let X, = 0 be a sequence of independent, identically distributed, random variables.
Assume that E(sup X,/n) < », and E(X;| X1 2 a) = O(a). Define

Yn = €88sec, SUP B (X o/t ]| Fn)

where C», is the class of stopping rules ¢ with P(n < t < «) = 1. Define ¢ = the first n = 1
such that X./n Z v» or = if there is no such n. Then, using martingale properties, we can
prove that P(c < ») = 1. By a result of Chow and Robbins (to be published in Fifth
Berkeley Symp. Math. Statist. Prob. 1965), ¢ is an optimal stopping rule for X,/n. (Received
11 July 1966.)

49. Randomized fractional weighing designs. S. Zacks, Kansas State Uni-
versity.

The problem studied is that of estimating unbiasedly a given linear function, Aw, of p
unknown weights wi, -++ , wp ; where o’ = (w1, -+, wp); when the number of possible
weighing operations, n, is smaller than p. The weighing operations are of the chemical type.
The randomized fractional weighing designs constructed by choosing, according to a speci-
fied randomization scheme, n rows from a p X p Hadamard matrix (assumed to exist) and
performing the corresponding weighing operations. The randomization procedures studied
consist of choosing the rows independently and with replacement according to a probability
vector, £, of order p. Non-randomized designs are special cases. It is shown that any linear
function Mw can be estimated unbiasedly by a proper choice of £ Optimal randomization
procedures depend on the given function N. Each \ specifies a subset of r (1 < r £ p) ad-
missible rows, in the sense that if other rows are chosen then either the estimation is biased
or has a larger variance than the one attained by choosing the specified rows. It is proved
that if each of the r admissible rows is chosen with probability 1/r, then the corresponding
unbiased estimator has a uniformly (in w and ¢2) minimum variance. The procedure is then
extended to random choice of rows without replacement. (Received 5 July 1966.)



