SOME CONVERGENCE THEOREMS FOR INDEPENDENT RANDOM
VARIABLES!

By Y. 8. Crow
Purdue University

1. Introduction. Let a.x, a» be real numbers and z, be independent random
variables. The convergence of D g—1 Gniiz a8 n —> o has been discussed in [4],
[5], [7], [14] and [15]. Section 2 of this paper is suggested by Hill’s work [7],
and is devoted to the convergence of Z:;l a.xzi; under the condition Z;;-l ai; =
o(log™ n). As an application, we prove the following theorem, relating to a
result of Pruitt [14]. If z, are identically distributed, Ex, = 0, Ezx,, = 1, and
Z,Ll aie = 1, then n"*zlﬁ;l anr tends to zero a.e. Section 3 is suggested by
Kahane’s work [9]. Salem-Zygmund’s sample continuity theorem [15] for
D % antn cos nt is extended from Bernoulli random variables to generalized
Gaussian random variables (defined in Section 2). Sections 4 and 5 are devoted
to the extensions of Hsu-Robbins’ complete convergence theorem [8]; the ma-
terial in these two sections is closely related to the work of Franck and Han-
son [4].

The first counter-example showing that a directed set indexed martingale of
bounded variation may diverge pointwise is due to Dieudonné [1]. A simpler
counter example is given in Section 6. Section 7 contains some theorems about
a.e. unconditional convergence of sums of independent identically distributed
random variables, and in Section 8 the following theorem is proved. If
E sup, |z.] < o, then D1 . converges a.e. implies that Yy Ex, converges.

2. Extension of Hill’s theorems. In this section, we assume that for n, &k =
1,2, -+, @n are real numbers and A, = D 4 asx < o for each n.

LemMmaA 1. Let x be a random variable, Ex = 0 and |x| < 1. Then for every real
number i,

(1) Ee*

Proor. If 0 < t < 1, then E exp [tz] < 1 + & < exp [f]. If ¢t > 1, then
E exp [tz] < exp [t] < exp []. By symmetry, we obtain (1).

In [9], a symmetric random variable z is said to be semi-Gaussian, if there
exists @ = 0 such that for every real number ¢

t2

I\

(2) E exp [tz] < exp [o’t?/2].

The minimum of those « satisfying (2) is denoted by (z). Obviously, a N (0, 1)
random variable z is semi-Gaussian (with 7(z) = 1), and by Lemma 1, if z is
symmetric and bounded by K, z is semi-Gaussian (with 7(z) = 2'K). For
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convenience, we introduce the following definition, which is by no means
standard.

DEeriniTION. A random variable z is said to be generalized Gaussian, if there
exists & = 0 such that for every real number ¢, (2) holds. In this case, the mini-
mum of those « satisfying (2) is denoted by 7(x).

Obviously, if z is generalized Gaussian, so are —z and ax (for @ > 0) with
r(—z) = 7(z) and 7(az) = ar(z). If z is generalized Gaussian with 7(z) <
a > 0, then for A > 0,¢ > 0,

(3) Plz = \] = P[\za™? = Ma7] £ exp [—2/(247)],
(4) Plle| = N £ 2 exp [—N/(24)].

The properties of semi-Gaussian random variables has been discussed in
[9], pp. 75-77. Some of them can easily be extended to our case. However,
the above mentioned properties are enough for our purpose here.

Lemma 2. Let x, be independent, generalized Gaussian with v(x.) = 2! and let
T, = Z:=1 awity . Then for each n, the series T, converges a.e., and for every
€e> 0, —w0 << o,

(5) Ee™n
(6) Pl|T,| > ¢ < 267"/44»,

Proor. (6) follows from (5) and (4). To prove (5), let Tpn = > o Gk -
By independence,

(7) E exp [tTwm] = 151 E exp [tanzi] < exp [D_ i1 faii] < exp [£4.].

Hence Tnn is generalized Gaussian with 7(Twn) < (2D 11 a2i)}, and by (3),
forj = m,

(8) Pl 2 im ams] > €] < 2 exp [—€/(42 im at)].

By hypothesis, A, < <« and therefore the left hand side of (8) tends to zero
asj = m — «. Hence T, coverges in probability for each n. Since 2, are in-
dependent, 7', converges a.e. for each n (see [12], p. 249). By Fatou’s lemma and
(7), we obtain (5).

Let x, be independent and Pz, = 1] = Pz, = —1] = %. Then for ¢t > 0,

E exp [tza] = (' + ¢7)/2 < exp [£/2],

since exp [7/2] = Do £"27/(n!) = 2 ¢ ¢"/(2n)!. Hence 7(z,) =< 1 and
Lemma 2 implies that P[|T,| > €] < 2 exp [—¢"/(24.,)], which was proved by
Khintchine [10] and by Salem and Zygmund [15].

TaEOREM 1. Let xn, , k = 1, 2, - - -, be independent, generalized Gaussian with
sup 7(Tw) = 2! for each n. Put Tp = 2 -1 Guitu and A = D iy iy . If for
every a > 0,

(9 Dre M < oo,

t24,
€ )

IIA
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then the series T, converges a.e. for each n, lim T, = 0 a.e. and for every ¢ > 0
(10) 2T PT. > ¢ < .
Proor. From Lemma 2, T, converges a.e. for each n and
2T PTa| > ¢ £ 23 exp [—¢/(44,)] < .

By Borel-Cantelli’s lemma, lim 7, = 0 a.e.

TarorEM 2. Let xa, , k = 1,2, - - -, be tndependent and xn, — Exar, be generalized
Gaussian with supy 7(Tw, — Exup) = 2t for each n. Let Cn = D net GniElTni cON-
verge for each n and lim C,, = C. If (9) holds or if A, = o(log™ n), then the series
Th = D i1 Qi CONVerges a.e. for each n and lim T, = C a.e.

ProOF. Put 2, = Tw — Exne and T’ = D ret Guini - Since A, = o(log™ n)
implies (9), by Theorem 1, the series T, converges a.e. for each n and lim 7," = 0
a.e. Hence T, converges a.e. for each n and lim 7, = lim C,, = C a.e.

Theorem 2 has been proved by Hill [7] for Plx,, = 1] = Plzw, = 0] = 3.
Even in that case, Erdés [3] gives a counter-example to show that the condition
A, = o(log™ n) in Theorem 2 cannot be replaced by 4, = O(log™* n).

COROLLARY 1. Let x, be independent and x, — Ex, be generalized Gaussian with
7(xn — Bx,) < 2 forn =1,2, -+ . IfSn = 21 + -+ + , and for some a > 0,

lim n? (log~***"n)ES, = 0,
then lim 7 (log™ " )8, = 0 a.e.

Proor. Forn = 2,3, -, put am = nFlog ™2 pforl £ k £ n and
@mi = 0 for k > n. Then A, = D ryak; = log7™n = o(log™'n). Hence by
Theorem 2,

lima D et G = lim, (n7% log~ )8, = 0, a.e.

This completes the proof.

Let @ = (k) jmj ) forl <k <m,n=1,2 --- ;and aw = 0 otherwise.
For a sequence of real numbers ., define
(11) teo = D img i/ 2o g

If lim ¢, = ¢, then the sequence ., is said to be (N, n~') — summable to value .
It is known ([6], p. 110) that summability (N, ™) implies summability (C, a)
for every a > 0. Since the method (N, n™') is regular ([6], p. 64) and 4, =
Sriai, = O(log? n) = o(log™" n), from Theorem 2 we have:

CoOROLLARY 2. Let z, be independent and xz, — Ex. be generalized Gaussian
with (2, — Bx,) < 2 forn = 1,2, --- and lim, Ex, = 0. Define t, by (11).
Then lim, t, = 0 a.e. In particular, x, s summable (C, o) to O for every « > 0.

Corollary 2 has been proved by Hill [7] for Plz, = 1] = Plz, = 0] = 4,
and it is closely related to a result of Hanson and Koopman [5].

TaeoreM 3. Let x, be independent, identically distributed. Then Ex, = 0
and Bz’ < o, if and only if for every array a.. of real mumbers such that
lim, Y re aZi = 1, we have
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(12) lim, v D fy e = 0 ace.

Proor. For the “if” part, let 7' = z if |2 < kY and 2" = 0 if [z > K.
Let 2" = o — @, Tn = 0 ) rms @ty and T, = n? D ey amas”. Then
lim, Ez,” = 0 and

(07 b amBim)’ < 07 i ahee Do B — 0.
Hence lim, n* > 1y @Bz’ = 0. Since n”¥|z;’ — Bz,/| < 2 and
D ez — Ex) = n an(z — Exk’)n”*,
from Theorem 1 and Lemma 1, we have
lim, n > ry ani(z’ — Ex’) = 0 ae.

For ¢ > 0, choose N = N(e) such that [(jz=m 21" dP < e and put 2, = z;
if [z] = N and ,* = 0 if ka‘ < N. Then by the strong law of large numbers,

(0 2 imama”)’ S (1 + o(1)n ™ 200 (2”)" = (1 4 o(1)n™ 200 (m™)® + o(1)
— B(,")? < ¢ ae.

Therefore lim, 7D 1—) am2i” = 0 a.e. and hence (12) holds.

For the “only if”’ part, let a.x = 0 for £ ¢ n and @., = 1. Then (12) implies
lim n ¥z, = 0 a.e. Hence Ex,® < «. If we put @, = niforl <k < n, then
(12) implies lim (21 + -+ 4+ z.)/n = 0 a.e. Hence Ez; = 0.

The “if” part was conjectured by L. Gleser under the extra condition
max ., —> 0 asn — «, where 1 < k£ =< n. In a personal correspondence, D.
Burkholder has given a slightly simpler proof of the ‘““if”’ part, by first proving
(12) under the condition Ez,* < « and then truncating z, at 0 < ¢ < .

3. Extension of Salem and Zygmund’s theorems.

LemMA 3. Let a, and o, be real numbers and Q(t) = D7 an cos (nt + ¢n).
Then |Q'llw < 2m”|Qll. , where [|Q]l.. = max. Q(2).

Lemma 3 follows immediately from the definition of Fourier coefficients and
is a special case of S. Bernstein’s theorem (See [16], II, p. 11): [|Q’[l» < m[ Q] .

Lemma 4. Let x, and ¢, be random variables. For real numbers a, , define Q(t) =
D om1 @nn €08 (Nt + ¢a) and M(w) = ||Q(t)||w . Then for K = 0,
(13) [M(w) = K] < Ui [[Q(k/(2m")| = K/2].

Proor. Let M(w) = Q({(w), w). Then

Q) = Q)| = [ — U] Q]e = 20t — #(w)]-M(w).
Hence for |{' — t(w)| < (4m”)7,
QNI = M(w)(1 — 20t — H(w)]) 2 M(w)/2.

If M(w) = K, then there exists an interval I(w) of length =(2m’)™ and
|Q(%, w)| = K/2 for t e I(w). Hence (13) holds.



1486 Y. S. CHOW

TaEOREM 4. Let x, and ¢. be two independent sequences of independent random
variables and each x, be generalized Gaussian with 7(x,) = 2! Let a, be real num-
bers and a > 0 such that

(14) >t aslog™n < .

Then for each t, D 3 Gnta cos (nt + @) converges a.e. to a stochastic process f(t).
Furthermore there exists another stochastic process g(t) such that for each t,
Plg(¢) = f(¥)] = 1 and g(t) ¥s a.e. sample continuous.

ProoF. Put n(j) = 27, Q;(1) = D ntiH auts cos (nt + ¢n), M; = [|Q;(t) |,
Bj= >t a2 €= D nttH an’log™n, and t, = k/(2n(j + 2)). By Lemma 4,

PIM; = 2777 = 2285597 PlQi(w)| 2 77,
For —w < t < w, since z, is generalized Gaussian with 7(z,) < 2},
(15) E exp [taa cos (ns + )] = E(E{exp [tx, cos (ns + ¢a)] | 1,02 - -+ })
< exp [{)].
Hence by independence,
(16) E exp [tQi(t)] S exp ['Bj] < exp [£C,/(2 log 2)"™].

(15) implies that 2, cos (nt + ¢,) is generalized Gaussian with r(x, cos (nt + ¢n))
< 2! By Theorem 1, for each ¢, % @nn cos (nt + ¢n) = f(t) a.e. From (4)
and (16),

PllQ;(t)| > 777 £ 2 exp [—27% log"™* 2/(4C;5")].
Therefore
PIM; = 277 < 32n(j + 2) exp [— 270972 Jogt+ 9/((4)]
= exp [(27 + 5) log 2 — 270497 1og™** 2/(Cy")] S exp [—27),

if 7 is large enough. Hence > Y P[M; = 27%] < «. By Borel-Cantelli’s lemma,
for almost all w there exists jo(w) < « such that M;(w) < 277 if 7 = jo(w).
Hence )y M; < « a.e. and for almost all w, > Q,(t) converges uniformly in
t to a stochastic process g(t). Since for each fixed w, @;(f) are continuous in ¢,
g(t) is a.e. sample continuous. Since for each ¢, 2704t = f(t) a.e., P[f(t)=
g()] = L.

When Plx, = 1] = Plx, = —1] = % for each n, Theorem 4 is due to Salem
and Zygmund [15]. A closely related theorem for semi-Gaussian random variables
has been given by Kahane ([9], p. 78).

LemMa 5. Letxj,j = 1, 2, -+, n, be independent, generalized Gaussian and
r(z;) < (2r;)}. Let N be a stopping variable (or time) relative to &y, - - - , & and
Sy = 2, 4+ -+ 4 2% . Then Sy is generalized Gaussian and (Sy) = (227 )t

Proor. For —o < t < o, put ¢i(t) = E exp [tz;] and ux = exp > %)/

Yoi(t). Then (ux, $i, k < n) is a martingale ([2], p. 352), where ; isthe
Borel field generated by 1, + -+ , 2, . Since 1 £ N = n, from [2], p. 303,
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1 = Buy = Eux = E(exp [tSy]/IIY 0:(8)).
Since ¢;(t) < exp [£'7;],
1= 227 [iv=n (exp 88,1/ T en(t)) dP
2 D5 fiven exp [88; — £ 21 1] dP
251 [veq exp [tS; — £2°7 7] dP.
Hence for —o <t < o,
(17) exp [*2°1 7] = E exp [tSa].

THEOREM 5. Let b, be real numbers, by = 0, B, = b + -+ + b, = « and
by > 0. Let x, be independent, generalized Gaussian, 7(x,) =< 2t and b,=
o(Bn/log log B,). Then

(18) T,= > 1bz;/B,—0 ae.
Proor. For —» <t < o,
2 1 b/B." = o[(log log B,)™] = e,/log log B,
E exp [tTa] < exp [ 7 b%/B.Y] = exp [et’/log log B,
where ¢, — 0. For ¢ > 0, by (4)
P[|T4| > € = 2 exp [—¢ log log B./(4e,)].

For © > 6 > 1, let n(j) be the first m = 1 such that 8’ < B,, < 6. It has been
shown ([15], p. 247) that n(j) always exists, for j large enough. Then for all
la'rgej = jo ) Say,

P[|Tah| > €] = 2 exp [—¢" log (j log 6)/(4encs)]

< 2exp[—2log (jlog 8)] = O ).

(1%

Hence
(19) 2 PlITan] > € < .

Now let F; = [MaXa(y<men(itd | 2onts biti/Bay| > €] and let N be thefirst
n(j) < m < n(j + 1) such that | D pis1 b > eBng , if there is such one,
and N = n(j + 1) otherwise. Then N is a stopping variable relative to 1,
©e+, Tngy - By Lemma 5 and (4),

P(F;) = P[| 22741 bixs/Buiy| > €]
2 exp [—¢ 47 ( R b)) B )]
2 exp [—€ 47 (2217 b)) TBY b Y]
2 exp [—¢" 4707 log log Bagn/eniin)
= 2 exp [—2 log log Ba;4v),
for all large j = ji(Z jo), say. Hence P(F;) = O(exp [—2 log j]) = O(; ).

IATIA A TIA
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Therefore
(20) 225 Plmaxagrcmencin | 2nar1 b/ Bul > o £ 205, P(Fy) < .
From (19) and (20), by Borel-Cantelli’s lemma,
(21) Pl 2% bawi/Ba| > 2¢, 4. 0.] = 0,
and (18) follows immediately.
When Pz, = 1] = Plr, = —1] = 1 for each n, Theorem 5 is due to Salem

and Zygmund [15]. Even in that case, they give [15] a counter example to show
that the condition b, = o(B,/log log B,) cannot be replaced by O(B,/log log B,).

4, Extension of Hsu and Robbins’ theorem. Let a,. be real numbers and
An = Z;:=1 alec .

TaEOREM 6. Let x, be independent, identically distributed random variables
with Ex, = 0. Let an, = 0 if k > n, and |au] £ KA, for some 0 < K < o,
nk=12 - . If for some0 < a < 1, A, < Kn"* and E|lz)|"* < K, then

(22) D2APITA 2 ¢ <

for every € > 0, where T = D1 Guics «
Proor. We can assume that K = 1 and A, > 0 for each n. For 0 < 8 < «
and N = 2,3, -+, put

o = zllz, < 0, z” = wpllz, = en®/(NKY)), if am = 0;

(23) ' = mlla = —n), " = wllz, < —en™/(NKD], if am < 0;

’ ” ’ o ’
o =a—a — 2,  Ta = D Qm,

® " ® m
T = D i Gus”, T." = D i ami”,

where I(A) is the indicator function of the set 4. If a random variablex < 1 a.e,,
then obviously Eexplz] < exp[Ex + Ez’l. Let 0 < t < K_ 'n?. Then
tami /An < 1 and E(ama:’) < 0. Hence

E exp [tamay /An] < exp [Faiid. "E(z)"]
=< exp [falrd. *EX)
< exp [faird. K],
since K = 1. By independence, E exp [(T./As) < exp [FK/A,). Hence
PIT. = ¢ = PitT /A, 2 te A, < exp [—t(e — tK)/An].

Put ¢ = n K. Then for sufficiently large n, P[T,’ = ¢] < exp [—en®?/(2K)].
Sincea — 8 > 0,

(24) 21 PIT. 2 ¢ < .

Now P[T.” = ¢ £ nP[|zy| = en®N 'K’ = nP[(NK® [a:ll/e)"‘—1 = ). Since
E |z < « and N, K are fixed constants,

[
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(25) STYPIT = ¢] < .

Since a.x:” = ¢/N, T»” = e implies that there are at least N non-zero z;” for
k=12 ---,n Hence

PIT" 2 < (DP"w] > nf] = PVl > ).
By Tchebichev’s inequality,
PIT,” = ] < () (En#*)" < MpO#/¥,

for all large n, where M is a finite constant, depending only on N and K. Choose
B = 2a/3 and N = 6. Then for all large n, P[T,” = ¢] < Mn>. Therefore

(26) STPIT” = ¢ < w.

From (24), (25) and (26), we have D 1 P[T» = €] < «. By symmetry, we
obtain Y 1 P[T, < —¢] < . Hence (22) holds.

When an, = n " for 1 < k < n and & = 1, Theorem 6 is due to Hsu and
Robbins [8]. The above demonstration is a modification of Erdés’ elegant proof
[3] of their theorem. When 1 > « > %, Theorem 6 is implied by a result of Franck
and Hanson [4].

Theorem 6 cannot be improved without some modifications, since Erdos [3]
has proved that (22) implies Ez; = 0 and E2,® < o if @ =0 for1 <k <n
and o = 1.

b. Some further extensions. We assumed that z,; are generalized Gaussian in
Theorem 1 and that z, are identically distributed and a. is a triangular matrix
in Theorem 6. Both conditions are essential in their proofs. However, if we are
willing to sacrifice some sharpness, further extensions are possible.

Let @ be real numbers and A, = D pey a2 .

THEOREM 7. Let x, be independent, Ex, = 0, an, = 0 if k > n* for some
1 =\ < and |aum| = KA, for some K < . If for some0 < « = 1,4, < Kn™°
and E[|z,|"™* (log + |z.|)"] £ K, then

2EPT 2 <

for every € > 0, where Tn = D11 Guils «
Proor. We can assume that K = 1 and E |z,|"™'* < K. For 0 < 8 < « and

N =23, ---,definex;’, ", &, T, To” and T,” as in (23). Then, as before,
we have
(27) ZEPIT 2d < .

Put m = [n"], the integral part of n*, and z, = (NK® [z4|/e)* . Then for n > 3,
P[T.” = ] £ >y PINK? |zi|/e)* " = n]
< D> ra Pl log? 2 = 0!t log’ n]

< Dran " log T n- Bz logk z).
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By the condition E[z.""™'* (log + |z.|)"] < K, there exists a constant
K* = K*(N, K, \, ¢, @) < » such that E(z2 P log’ 2,) < K*. Hence

PIT.” 2 ¢ < K* X ran ™ log?n = K*n ™" log " n,
(28) DI PIT 2 ¢ < =.
Now by same reasoning as before, we have
PIT,” = d = (%) Il Pllwl > 0] < (R)K "0 = 0(n" OV,

Choose 8 50 near to & such that A — (1 + \)/a < 0, and then choose N so large
such that N(A — 8(1 4+ \)/a) = —2. Then

(29) D TP zd= 2700 < .

Therefore Yy P[T, = ¢ < «. By symmetry, > f P[T, < —¢ < . This com-
pletes the proof.

COROLLARY 3. Let z, be independent and Ex, = 0. Assume that there exists
1 <a< o suchthat B(n, @) = D joneai < K(nlog’n)™ for some K < o
and that A(n, @) = X p<ne @2 < Kn™ for some 0 < 8 < 1. If |am| < KA(n, @)
for k < n* and El|z.|“*®" (log + |2a)"] < K, then

(30) STPT. = <

for every ¢ > 0, where T, = D ot Gmi

PROOF. Let by = ameif b < n* and by, = 0if & > 2% Put T’ = i~ busti and
T, = D i1 (@uks — bux)zi . By Theorem 7, > T P[|T.| = €] < . By a theorem
of Kolmogorov ([12], p. 236), T.” converges a.e. for each n and E(T,"”)" =
B(n,a) = K(n log’ n)™". Hence

STPIT.| 2 ¢ = 0( 2T n  log " n) < .
Therefore (30) holds.

6. A counter example. Let (2, F, P) be a probability space and A be a directed
set with elements \. For each \ € A, let $ C & be a Borel field and ) be an in-
tegrable, F\-measurable random variable. If for every pair A < 8, §x C 5 and
E(z; | ) = 2 a.e., then (2x, T, A) is said to be a martingale (see [11]). In
[1], Dieudonné constructed a martingale (zx ,  , A), which diverges on a set of
positive measure and satisfies the conditions: A is the family of all finite sets of
positive integers, ordered by inclusion, and for each M e A, zx = P(A | %). His
example shows, among other things, that Doob’s martingale convergence theorem
([2], p- 319) cannot be extended to martingales by directed sets without some
restrictions on the Borel fields &, . However, his example is rather complicated
and a simpler counter example can be obtained as follows:

Let A be the family of all finite sets A of positive integers, ordered by inclusion,
and let z, be independent, identically distributed random variables with
Plz, = 1] = Plz, = —1] = }. For each A ¢ A, define

(31) Sy = Djen @i/,
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and let 5 be the Borel field generated by (z;,j € \). Then by independence, it is
easy to verify that (S\, %, A) is a martingale and ES\’> = Zm it o=
> 17" < «. However, by the following theorem,

Pllim sups Sy = ©] = P[liminfy Sy = — ] = 1.

THEOREM 8. Let A be the family of all finite sets of positive integers, ordered by
inclusion, and let x, be independent, identically distributed random variables. Define
Sx by (31) for X e A. If Plxy > 0] > 0, then

(32) Pllim sups Sy = ] = 1.

Proor. Choose @ > 0 such that P[z; > o] = 8 > 0. Define z,’ = aif z, = a,
and z,” = 0 if 2, < a. Then z,’ are independent, identically distributed with
Bz = af>0.Let K = K(w) = {n| 2.’ () = &} and k, = k,(w) = the number
of m such that m ¢ K and 1 < m =< n. By the strong law of large numbers, there
exists a null set 4 such that for w £ 4, lim, k.(w)/n = B. Let 0 < ¢ < B/4 and
w £ A. Choose ny = no(w) so large that |kn(w)/n — B] < ¢, if n = ng. For J €A,
let J © {1, 2, - -, jo} and choose a positive integer n; = n1(w) = max (no, o).
Put K, = Ku(w) = {j|jeK,n <j = 2n}. Then forn = n,,

Yiera @i(0)/F Z 2jery @' (0)/F Z a(kan — ka)/(20) Z (B — 3¢)/2 2 aB/S.
Hence

Dm<ser i(@)/f = Do Dierymn, 2i(0)/j = 0.
Therefore supx>s Sx(w) = o for every J ¢ A and hence lim sups Sa(w) = .

7. Unconditional convergence. Theorem 8 implies that the net S\ defined as in
(31) by independent, identically distributed random variables z, can never con-
verge a.e., except for the trivial case P[z, = 0] = 1. On the other hand, if z, are
independent identically distributed with mean zero, and if either z; is symmetric
or E(|z,| log* |z1]) < o, then by a theorem of Marcinkiewicz and Zygmund
[13], 2_1 z;/j converges a.e. Naturally, one can ask: under what conditions, for
every sequence {J,} C A satisfying J; C J; C ---, do we have the a.e. con-
vergence for the sequence S;, asn — «?

THEOREM 9. Let x, be independent, identically distributed, Ex, = 0 and {J,} be
a monotone increasing sequence of finite sets of positive integers. If either (i) x; s
symmetric, or (ii) E(|z|log* |z1]) < o, then S, converges a.e. as n — «, where
S, is defined by (31). If moreover lim, J, = {1, 2, ---}, then

(33) lim, S;, = > v z;/j ae.

ProoF. For 0 < ¢ < =, define z," = 2, if |xa| < en and 2, = 0if |z,| > cn.
Since z, are independent, identically distributed and E |z;| < «, we have

(34) Z;o P[Ixn' 2 cn] < o, Z;o ‘72(1’”,)/"2 < oo.

Under condition (ii),
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210 [men @ dP/j S D5 Dimio(k + 1)P[(ck + ¢ = @ > ckl/j
Seac(k 4+ 1)(1 + logk)Plck + ¢ = & > ck] < w.

IA

Similarly,
2% Jtgjcmeit — %;dP/j < 0.
Hence (ii) implies
(35) 2 jun |B(2) /3] = 250 [B(%) /5l £ 228 [isg15ei |21l dP/j < oo.

Under condition (i), Ex,’ = 0 for every n. Therefore Y ., E(z;')/j converges
as n — «. By Kolmogorov’s three series theorem ([12], p. 237), from (34), we
have the a.e. convergence of S, as n — . If moreover, lim, J, = {1,2, -+ -},
then (33) follows from ([2], pp. 118-119).

8. A convergence theorem for sums of means. The most difficult part of the
proofs for Kolmogorov’s three series theorem lies in demonstrating the conver-
gence of the sums of means of the truncated random variables in the necessary
part. The two known methods for proving this fact are that of symmetrization
(see [12], p. 237) and characteristic functions (see [2], p. 111). The following
theorem furnishes us another proof.

TaEOREM 10. Let 2, be independent, Sn = 1+ - -+ + zn and E supas: 2. < .
If 8, converges a.e., then D5 Ezx, converges.

Proor. Put z = sup, (.|, m» = Ez, and S, = lim, S, . For0 < ¢ < «, define
t = first » = 1 such that |S,| = ¢, if there is such one, and { = « otherwise.
Then P[t = ] > 0 if ¢ is large enough. Fork = 1,2, ..., put s = (k) =
min (¢, k). Then lim;, S, = S; a.e. Since |S;| < z + ¢, by the Lebesgue dominated
convergence theorem lim; ES, = ES, . It is easy to see that (or by [2], p.
303) ES, = E Y im;. Hence ES;wy = ES, = D.¢m;P[t = j] and m; =
(ESixy — ESi¢—y)/P[t = k]. Since P[t = k] monotonically decreases to P[t =
w] > 0 and ES,q) converges ask — , D1 m, converges by summation by parts.

By oral communication, S. M. Samuels has given another proof of Theorem

10.
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