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1. Introduction. The research leading to the results reported in this paper was
originally motivated by a desire to find asymptotically optimal linear combina-
tions of order statistics for estimating location and scale parameters in both the
uncensored and censored data cases. It was recognized at the outset that the
methods of Chernoff-Savage [2] could be applied to obtain the asymptotic
normal distribution of statistics of the form

To=n" 2 Jli/(n + 1) X,

where X3, £ Xy, < --+ £ X,, are the ordered observations of a sample, and
where J(-) is a well behaved function. It was also discovered that a simple,
standard variational argument could be used to obtain the asymptotically
optimal J’s explicitly for the case of éstimating location and scale parameters.

Subsequently, the attention of the authors was directed to the unpublished
dissertation of Carl Bennett [1] where the asymptotically optimal J’s had been
obtained for both the uncensored and multicensored cases by a tour de force
which did not include a derivation of the asymptotic normality of the estimates.
Some of Bennett’s results were obtained independently by Jung [5] under rather
restrictive conditions. Plackett [9], and Weiss [13], independently considered the
case where all observations below the pth and above the gth sample percentiles
(0 < p < g < 1) are censored, and obtained asymptotic normality for suitable
linear combinations of the available order statistics. Plackett also characterized
the asymptotically optimal weights for this case. Asymptotic normality for the
case of uncensored data was not treated by these authors.

The present authors found that, while the Chernoff-Savage approach was
adequate for the particular applications initially considered, it nevertheless
involved certain objectionable mathematical inelegancies. A different technique
based on representing the ordered observations in terms of independent ex-
ponentially distributed random variables was therefore selected. This technique
yields stronger results and yet involves only arguments which are essentially
elementary. Regrettably, these resultsstill seem to fall short of the “best possible”
results which may ultimately require a sophisticated ‘“‘invariance principle”
type of argument.
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The authors have benefited from helpful discussions with several colleagues.
Early in the course of this research two of the authors had several interesting
conversations with Z. Govindarajulu who subsequently derived results over-
lapping some of those of the present paper in [3]. Govindarajulu’s techmque is
based on an unpubhshed result of LeCam [7], and his main result requires bounds
on J(u) and J'(u) as u — 0 or 1, which ours does not. On the other hand, we
require a smoothness condition on the tails of the distribution of the observa-
tions which Govindarajulu apparently does not need.

In Section 2 we first obtain a quite general theorem concerning the conditions
under which statistics of the form

To = 0" 2cih(Xm)

are asymptotically normally distributed. This theorem and its corollaries are
then specialized to the more useful Theorem 2 and finally to Theorem 3, where
the cj»’s are of the form ¢;» = J[j/(n + 1)]. These theorems involve the de-
composition

Tn = Un + Qn + Rny
where u, is non-random,
=n" D a;m(Z; — 1),

where the Z s are mdependent and identically distributed exponential random
variables, n}Q, is asymptotically normal, and R, is asymptotically negligible.
Corollaries 3 and 4 of Theorem 3 are concerned with the case where additional
weight is given to certain sample percentiles, and useful alternative formulae for
the variances of the resulting asymptotic distributions are given. The decomposi-
tion referred to above facilitates the consideration of vectors whose components
are statistics such as T', or functions of such statistics.

In Section 3 the results of Section 2 are applied to the problem of obtaining
asymptotically efficient estimates for location and scale parameters. It is shown
that the covariance matrix of the asymptotic normal distribution of Bennett’s
estimators coincides with the Cramér-Rao bounds given by the inverse of the
Fisher information matrix. Given the estimates and the above demonstration of
efficiency it is unnecessary to present the formal variational derivation of the
estimates. It should be noted that a heuristic derivation of the estimates is
possible based on a linearized approximation to the maximum likelihood esti-
mates for a related “partially grouped data” problem. This derivation is not
discussed further in this paper.

Examples of applications of these results to the logistic, Cauchy and normal
distributions are given in Section 3.

2. Asymptotic distribution of linear combinations of order statistics. In this
section we study the asymptotic distribution of

(2.1) To = 17" 2 it cinh( X jn)
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where Xy, = Xy, = -+ £ X,, are the ordered observations from a random
sample of size n from a distribution F. Theorem 3 will specialize earlier results
to the case where ¢;, = J[j/(n 4+ 1)), i.e.

(2.1) T = 0" 23 I/ (n + DX ).

For applications, it is convenient to represent the results in terms of decomposi-
tions of the form

(2.2) Th=pn+ Qu+ R,
where p, is non random,
(2.3) Qu=n" Diman(Z; — 1),

with Z, Z,, --- independently and identically distributed according to the
negative exponential distribution 1 — ¢ °, 2 = 0 and R, is a remainder which is
asymptotically negligible.

The following notational conventions will be observed. The probability law of
a random variable (or random vector) X will be indicated by £(X). In the
special case where X is normally distributed with mean vector u and covariance
matrix Z, its law is indicated by the symbol 9% (u, £). The Mann-Wald symbols,
O, and o, are to be interpreted in the usual sense, ie., if X, ,n = 1,2, --- ,isa
sequence of random variables and g(-) is a positive function then the statement
X, = 0,[g(n)] means that X,/g(n) is bounded in probability for all » and the
statement X, = o0,[g(n)] means that X/g(n) approaches zero in probability as
n — o, We shall write

k k j
Zi=j+1 a; = Zi=1 a; — Zf:l G
even when j = k. Furthermore
—1
(2.4) mu Jn = ZE]:E‘"L]‘FI

where the limits « and «  are suppressed when they are 0 and 1 respectively. In
particular we write

M (b} = O(on) absolutely

if sm,,“'{b,-,,} = O(o,) and if, for any sub-interval E of (u, ') of length
8, non' D imex |bin] < p(8, n) where p(8, n) approaches 0 as 6 — 0 and n — o,

Let F~* be an inverse (not necessarily unique) of the cdf F. Then the X;, may
be represented from the point of view of distribution by

(2.5) Xjn = F(Up),

where the Uj, are the ordered observations from a sample of size n on the
uniform distribution on (0, 1) Similary

(2.6) an = —-log (1 - an)

represent the ordered observations from the negative exponential distribution
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with edf 1 — ¢, v > 0. We define Hand H according to
2.7) h(z) = H(u) = H®@)

where © = F_l(ul and » = —log (1 — u). It follows from (2.7) that
H'(u)(1 — u) = H (v). We shall observe that the mean of Vj, is given by

(28) Im=EWVp)=n'4+@-1D"+ -+ @m—-j+1)"
which is close to
(2.9) vin = —log [1 — j/(n + 1)].

Certain elementary and well known propositions which are referred to in
subsequent arguments are listed here without proof. Let X, , Y., n = 1,2, -- -,
be sequences of random variables.

ProposiTioN 1. (Slutsky). If X, = Y, 4+ 0,(1) and £(Y,) — £(Y) for
some random variable, Y, then £(X,) — £(Y) asn —. «.

ProposITION 2. For any ¢ > 0, P{ |X.| > ¢} < ¢ E{ |X.|}. Consequently,
Xo = OfE{|X,}}, and if Yo = 251 X, then Yo = Opf 2 [E(X)]).

ProposITION 3. The V j, may be represented by

an = Zl/n+Z2/(n_ 1) + - +ZJ/(n—]+ 1)) .7 = 172y N (2]

where Zy , Zs , -+ -, Zn, are independent and identically distributed random variables
with cominon cdf 1 — ¢, 2z = 0.
Equation 2.8 follows immediately as does

(210) wjn = B{(Vin —9)} =0+ (o = 1)7" 4+ - + (n —j+ 1)7,
and, using approximations by integrals it is easy to see that

J+1) <1 =7 <j/(n+3).
Thus, since v;, = —log (1 — j/(n + 1)), the mean value theorem yields

0= 9jn—vin<j/(2n+1)(n—J+3),
and by integral approximations again,
Jn+1)n—j+1) <wpn<j/n+iHn—-7+3)
<4j/(n+1)(n—-7+1).

Clearly the random variables U, and Vi, can be simultaneously bounded in
probability. That is to say there exist wia(€), u""(e), vin(e), v""(¢), such that

Plum(e) < Um < u'™(e),1 SiSn} 21— n=1,
Plvi(e) < Vin <0'™(e),1 Si<n} =1 — ¢ n=1,
with _
vin(e) = —log [l — ui(e)], v""(e) = —log [l — u"(e)],

uim(e) < i/(n+ 1) < u'(e), Vin(€) < vin < Fin < 0°"(e).
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PrOPOSITION 4. There exist uin(e), u'"(e€), vin(e), v'*(¢) as described above such
that
(a) (Glivenko-Cantelli)

SUP1giga [ (€) — uim(e)] = o(1),
and
(b) (Based on the Kolmogorov inequality)

SUP1<izn [07"(€) — vin(e)| £ K(e) (K (€) independent of n).
This implies
()
Sup1<iza (1 — ui(e))/(1 — u™(e)) = Ki(e) (Ki(e) independent of n)
and with the use of symmetry
(d) SUD: <i <n %" (€)/Uin(€) S Ku(e).

PropostTioN 5.7 If X1, < Xow < -+ £ Xon are order statistics from a sample
of size n having common cdf F(z) and empirical cdf F,(z), and if F(\,) = p,
0 < p < 1, where F'(\,) exists and is finite and posttive, then

(2.11) Fa(A) — 2 = F'(0\) 0 — Xngn) + 0p(n 7).

Incidentally Proposition 5 furnishes a useful proof of the asymptotic nor-
mality of the sample percentile X(., ., since the left hand side of (2.11) is
clearly the sample average of g(X) where g(z) =1 — p forz < A, and —p
otherwise. This representation of X(u,,» in-terms of a sample average permits
the derivation of the joint limiting distribution of several sample percentiles
and sample averages. In particular, it quickly yields the result of Mosteller [8]
and the result of Sarkadi, Schnell and Vincze [11] on the asymptotic joint distri-
bution of the sample mean and a percentile.

We now present a preliminary lemma which can be derived by applying
the Lindeberg-Feller theorem. The proof given here was suggested by R. G.

Miller. For any sequence of constants Qjn ] = 1, 2 ymen =12 ... let
Q. =n"t E:—l am(Z; — 1), and o) = n~ Z;‘—l Qjn .
LeEMMA 1.

L£(n*Qu/0s) — (0, 1) if and only if Maxi<;<n |am| = o(nlon)

asn— «, )
Proor. Let ¢,(t) be the characteristic function of n!Q,/s, . Then since the
Z; are independent and exponentially distributed

log ¢a(t) = 2 i1 {—it asn/nlo, — log (1 — it a;n/nios)}.

% This proposition although familiar to many investigators seems not to have appeared
previously in the literature. A proof of a stronger result, however, may be found in “A
note on quantiles in large samples’” by R. R. Bahadur, Ann. Math. Statist. 37 577-580,
which appeared after the present paper was submitted for publication.
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But
Doimilog [ — dt ajn/nlon] = —it D iey am/mlon + /2 + ra(t)

where 7,(t) — 0 if [and Re[r.(t)] — 0 only if] max; |am/n*o.] — 0 as n— o.
The desired result follows.

Let
(2.12) = 0 20 il (5a),
(2.13) am=(n—j+ 17 2k;cull (5m),
(2.14) on’ =1 Dimraln.
Then

To =27 25 cnh(Xjn) = 07 25w ¢l (Via) = tta + Qu + Ra
where
(2.15) Q=17 2Xian(Z; — 1),
Ro=n7" 2 cin(Vin — 3n)Gin(V1a),
and
Gim(v) = [H@) — H3i)/ (0 — 5ja) — H' (5;0) i v 5 5jn

and 0 if v = ¥, . 5
AssumpTioN A. H(v) is continuously differentiable for 0 < v < .
AssumptioN B. For each € > 0,

St leil g/ (n = § + DI = o(naa)
where
gin(e) = SUPy j, () <v<vin(e) lGjn(”)l-

AssumMPTION C. Maxi<j<a |am| = o(nley).
TaEOREM 1. If Assumptions A, B, and C are satisfied

limye LTy = wn)/0a] = liMpae £[02Q,/ 0] = (0, 1).

Proor. By Assumption C and Lemma 1, £(n*Q,,/a,,) — 91(0, 1).
It remains only to show that R, = o,(n *s,). Applying Proposition 4, we have

P{|R.| £ 07" 251 [eingin(€) (Vi — Fi)} 2 1 —
for all n. But
B{ 251 |eingin(€) (Vin — Fia) |}
S B0 [oml gim(E(Vin — 750)"1}
= O{ 251 lesnl g/ (n + D) (n = j + DY = o(nl,)
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by Assumption B. Applying Proposition 2 it follows that
Z |cingin(€)(Vin — Vin)| = Op(n%’-"n)

and hence R, = o,,(n_*a,,).

Theorem 1 is our fundamental theorem but its present form, while allowing
for flexibility, is too general for most applications. Before commenting on the
theorem and specializing it we shall digress somewhat to state two related results
which we shall label as corollaries in order to emphasize the general approach.
The first corollary deals with T, equal to the function h evaluated at the sample

percentile X (np) » -
CoroLLARY 1. (Sample Percentile). If 0 < p < 1, F(\;) = p and H (v)
exists and is finite and non-zero at v = v, = —log (1 — p) then

(1) M Xng1 ) = k(Ap) + @n + Rn
where Ry = 0,(n%) and Q, = 0" D jm1ajn(Z; — 1) with
apm =n(n —j+ 17 H (5) =nn —j+ 171 —p)H (p) if j=np,
=0 otherwise,
and therefore,
(i) SN h(Xipa) — B — 90, p(1 — )" (5)I) = 90, o).
(iil) If #n addition F’ and b exist and are finite and non-zero at \, ,
B (5) = 1 — K (M) /F'(N)
and
o = p(1 — p)IF' () /F ()T

(Parts (ii) and (iii) are of course well known).
Proor. The last two parts follow simply from the first. For that part, Lemma

1 applies to
Qn = (Vigin = Fam ) A (9p) = 07" L ain(Z; — 1)
since
ot = 07 D ol = nopa al ()] = [/ (1 = P)IE ()]
It remains only to show that
= B(Vign) — Bp) = Vima = v)H () — (v = Fana) H (v5)
= o,,(n_i).

But bpupin — vp = o(n_é). The existence of A’ at v, implies that H(v.) — H(v,
— (Wn — vp)H (vp) = o(nh), if (v — v) = O(n™). Since Vinpin — ¥ =
0,(n?), the desired result follows from the O, calculus.

Corollary 1 could be treated more directly as a corollary by letting cippjn = 1
and cj, = 0 otherwise.
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AssumprioN D. (Virtual Stability). There exists a sequence ¥,(p) # 0 such
that for b, bounded away from 0 and o,

Slrpthenll o = baniu(p)IL + o(1)].

COROLLARY 2. For 0 < p < 1let Ay(v) =140 =v £ v, = —log (1 — p),
and O otherwise. If Assumption D s satisfied

Tn = n_l Z;“-l cjnAp(an) = Mn + Qn + Rn

where

-1 [np]
Bp =1 Zi=l Cin

a'nz n(l — p)zwnz(p)w[nplm = p(l - p)‘/’nz(p)[l + O(n_l)]
Q= —(1 — plyu(p) 2520 (0 —j +1)7(Z; — 1)
R. = o[n Mn(p)]

and 0Ty — ua)/oa} — (0, 1).

(This corollary is relevant to functions H which have a finite number of jump
discontinuities. )

Proor. Referring to the above definitions of T , pa , @n ,

-1
R, =Tn —pta — Qu = D11 Cin — Qn

where B, = D=1 Ay(V ;) is the number of V;, < v, . It is convenient for us to

apply Proposition 5 to the exponential distribution to obtain
By — np = n(l = p)lvp = Vil + 0(n)

—n(1 = P)[(Finprn — %) + 2255 (n — 5 + 1)7(Z; — 1)]
+ 0p(n’)

nl¥a(p)]"Qn + 0p(n').

Since B, has the binomial distribution, n (B, — np) is bounded away from
0 and « in probability in the special sense that, given ¢ > 0, there are positive
bo(e) and b;(€) such that

Plbo(e) <n P |By —np| < bi(e)} =1 — ¢
for all n sufficiently large. Applying Assumption D, and the O, calculus
Y umCin = (Ba — np)¥n(p)[l + 0,(1)] = n@ull + o0p(1)].

Thus
Rn = Qnop( 1 ) = OP[n_b\bn(p)]'

Lemma 1 applies trivially to @, and the rest of the corollary follows imme-
diately.

Let us now review Theorem 1 and its proof. The following remarks are
relevant to its effective utilization and comprehension.
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RemMARK 1. One may regard the theorem as having reduced the stochastic
problem of the study of £(7,) to the analytic problem of studying g;.(e), ¢;x
and ajy, .

REMARK 2. Assumption A is not mentioned in the proof of Theorem 1. It
occurs only implicitly in the use of A'. However, in applications where A’ is not
defined everywhere one may replace A’ by some other function as long as As-
sumptions B and C still hold in terms of the appropriately modified G and g.
For example we could replace H(7;,) by H(v;») = H[j/(n + 1)] and we could
replace A (3;,) by H (vin) = [1 — j/(n + 1)]H[j/(n + 1)] if H exists at
J/(n + 1) and by 0 otherwise. Then G;, could be replaced by

{{A®) — H(an)]/(v — vin)} — g,("jn)‘
The proof of Theorem 1 then requires very little modification. One observes that
E(Vin = vin)' = E(Vin = 9a)" + Gin — vin)" = Bl(Vin — 7)1 + 0(1))
uniformly in 7. One must also add the assumption that

201 Cin(vin — Fia)H (vja) = o(nlay).

ReMark 3. In its present form Theorem 1 has an apparent asymmetry de-
rived from the use of the exponential distribution. This asymmetry is more
apparent than real and is essentially dispelled under the transformation H(u) =

HQ@).
REMARK 4. Squaring and adding the a;, given by (2.13) we have
(2.16) Non = D bimt CinCinHl' ($in)H' (3jn) Kisn

where K;;, = K,.,. = win & i/(n + 1)(n — 2 + 1) for ¢/n bounded away
from 1. Thuso,’ is the analogue of a Riemann sum over the unit square.
ReMARK 5. If 0, in Assumption B is replaced by some other sequence 7, , the
proof of Theorem 1 yields |R,| = o0,(n *r,).
ReMARK 6. Suppose

(2.17) T° = m® + @ +R.®, 1=i=r,

where

(2.18) QP =0t Y (Zi—1), 1£isr,

and R,,“{ = o,(n ). Let [0, = o7 Z,_, QPP T, = Z,_l T2, un =

Zi-l Mn ): Qjn = Zr—l a;:,), on =" ¢ZJ—1 a?,., and Tn = Z'—l [Un(t)]
With natural conditions on the a5 and 7, , one can easily establish the approxi-
mate normality of T, and of the vector whose coordinates are T,”. In par-
ticular if,

G .
MaXi <j<n Iaj:.)] = o0y(nls,?®), 1=:¢=r
and
0 =0(e,), 1=Zi=m,
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then
£} (T — pn)/on] = 3(0, 1).
Alternatively if
(2.19) 7i5 = Ll {07702 D ki o}
exists finite for all 4, 7, 1 < %, j < r, then
L (To® — ua®) /10, o+ s 0 (Ta®” — 1) /a} = 9O, [I7s5])-

The asymptotic normality of the sample percentile can be derived by a variety
of standard methods. In view of Remark 6, our form of Corollary 1 facilitates
the study of the joint asymptotic behavior of several percentiles and other
linear functions of the order statistics.

Now we shall replace Theorem 1 by an alternative in which the assumptions
are modified to a more useful form.

AssumpTioN A*. H(-) is continuous on (0, 1) and satisfies a first order Lip-
schitz condition® in every interval bounded away from 0 and 1. H' exists and is
continuous except on a set S of Jordan content 0. (We shall replace H " by 0
wherever H' is not defined.)

Assumption B*. (Recalling the definition of 9% (in (2.4))

af|emH'[7/(n + Dli(n + )71 = j(n + D™} = 0(sn)  absolutely,
M~ [einl} = O(c)
absolutely for each 6 > 0.

AssumprioN E. (Tail Smoothness). There exists a &, 0 < 8 < 1 such that
(a) either ¢cj, = 0 forj < nd for all sufficiently large n, or for each K > 0 there
exists a finite M such that if 0 < wy, uz < 8 and K < wi/u; < K then M~ <
H'(w)/H' (us) < M, and (b) eitherc;» = 0 forj = n(1 — &) for all sufficiently
large n or for each K > 0 there exists a finite M such that if 1 — o < w1, uz <1
and K < (1 — w)/(1 — w) < K then M~ < H'(w)/H (w) < M.

TrEOREM 2. If Assumptions A* B* and E are satisfied, then the results of
Theorem 1 apply with equations (2.12) and (2.13) replaced by

(2.12)) = 0 2t ciH[j/n + 1))
and
(213) @@= (n—j+ 1) 2kieHli/(n + DL = ¢/(n + 1)].

Proor. Recalling Remark 2, it suffices to prove the following two lemmas.
LEM;\JA 2. Assumption B* implies A ssumption C and S Cin(vin — Fin) H (v;0)
= o(n’es).

$The function H(-) satisfies a first order Lipschitz condition on § if (Hz) —
H))/(x — y) is bounded forz, y € 8, = y.
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Proor. Let
@ = lenH Ti(n + Dl(n + 171 = j(n + 1)),
Considering the behavior of u(1 — u),
(n + )7 9m{je;nd [5/ (n + DI}
< 2790 (@) + Masfai}] + (n 4+ D71 — 87 am).
Assumption B* implies that the right hand side is o(es/n'). But then for all j
lainl £ (n 4+ 1) 2k el T/ (n 4 1)]| = o(n'ey)
and Assumption C is satisfied. Furthermore
251 Cin(vim — ) H'lj/ (n + 1)]
= 2 cin(vin = 7)H'lj/(n + DI = j/(n + 1)]
= 0{ 2= lenH'[j/(n + D))j/(n + 1)} = o(n'en),
which establishes the second assertion of the lemma.

Lemma 3. Assumption A*, B* and E imply Assumption B.

Proor. We modify g;,(¢) according to Remark 2. In view of the assumptions
and Proposition 4, it is possible for each ¢ > 0,0 < 8 < 8, 8, > 0 to decompose
(0, 1) into three non overlapping sets Si1, Sz, and S; with the following proper-
ties: 8y = (0, &) u (1 — 8, 1), H (u) isdefined if u = 1 — ¢ ¢ S, unless
the corresponding c¢;, are zero, and if(j/n) ¢ Sy,
|gin(€)] = SUPy (0 g0 gvin [H (0) — H'(vjn)]

< [Mi(e) + U H/(n + DIL — j/(n + D]
for n sufficiently large, by Assumption E. The set S, is a finite union of open
intervals, with total measure less than &, which contains [uj(e), u’"(¢)] if
[uin(e), u'™(e)] contains a point of S when 7 is sufficiently large. If (j/n) ¢ S,
lgin(€)| = M>(8,) which is determined by the Lipschitz condition bound for  in
[6:/2, 1 — 8,/2]. On the remaining set S;, H'(u) exists and is uniformly con-

tinuous, and max jmyes; gin(€) = 0(l) asn — .
Let

bjn = leagim(e)li/(n — § + DII.
Applying Assumption B¥, we have,
2 imes; bn S [Mi(e) + 11My(81, n)(n 4 1)on
where M;—0 as & — 0, n— o,

D iimesy bin S Ma(8)) Ma(81, 8, n)[(1 — &) /8o

where My —0 as 8 —0, n— o,
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D (iimess bai S Ms(n, 61, 8:)[(1 — &) /81 non
where My —0 as n— .

Given ¢ > 0, we select &1, 8; and N in order, so as to obtain M{b;,} < o, for
n = N. But this is the desired result.

REMARK 7. The version of this theorem using A’ (5,,) in place of H'[j/(n + 1)]
requires less effort. The present version has some minor advantage in appearance
which facilitates applications where it is most natural to deal with H(u) rather
than A (v).

We now turn to the major source of applications. This is the case of ¢;, =
J3/(n + 1)]. Let

(220)  w= JoJ(uw)H(u) du,

(221) a(u) = 1 —u)™ [LJ(w)H (w)(1 — w) dw,

(222) & = [id(w)du = [ [5JH (u)J(w)H (w)K(u, w) du dw,
where

(2.23) K(uw) = Kwy,u) =u(l —w) for 0=usw=l,
(2.24) By = [§ J(u)H (w)u(l — u)]! du,

(2.25) B, = [i7J(u)du, 0<8<E.

These expressions are the continuous analogues of those of Theorem 2 and (2.16),
ie.,

(212")  wn = MJ[/(n + DIHIG/(n + 1)},

(213") am = (n—j+1)7 228 J¢/(n + DIH'[/(n + DL — /(n + 1)],

(2.14") o)’ = Mlat} = MJIE/(n + DIH'E/ (n + 1)/ (n + 1)]
-H'[j/(n + DK/ (n + 1), §/(n + 1]}

and those appearing in Assumption B*. (The last expression for o,’ corresponds
to the average over the square. See Remark 4.) We now introduce

AssumptioN B**. The Riemann integrals B;, B, converge absolutely.

Let Q. = n ' D J1a;x(Z; — 1) as before and let

(2.26) Q.F =n' 2 faalj/(n + 1)(Z; — 1).

Tueorem 3. (i) Under Assumptions A¥, B* and E, if o s bounded away
from 0O, then

I

Tn = Un + Qn + Op(n—}))

with £(n*(Tn — ua)/oa} — 90, 1).
(ii) If also, the double Riemann integral (2.22) for a® > O converges absolutely,
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then
Qn = Q.5 + 0,(nY) and o) > = [1d(u) du,

so that ¢, can be replaced by ¢ in part (i) and Q. /o) — (0, 1).

(iii) If un = u + o(n?), then u, can be replaced by u in part (1)

Proovr. The first part follows since Assumption B** implies B*. For the second
part, the convergence of B; implies that of the integral for (1 — u)a(u) and
also the continuity of a(u). It follows that ajn — ofj/(n 4+ 1)] = o(1) uni-
formly in any interval bounded away from 0 and 1. The absolute convergence
of the double Riemann integral for ¢° implies, with Remark 4, that

Y a =0 o0 = [1a(u) du = limase w7t D i/ (n + 1))

Thus the tails contribute “little” to 9M{c’[j/(n + 1)]}, the middle contributes
little to Mfatn — ’[j/(n + 1)]} and hence the tails contnbute little to IM{afn}.
Hence Mflajn — alj/(n + 1)]] } = o(l) and Qn — Qn = n Z [
—afj/(n + DIWZ; — 1) = op(n” ). The rest is trivial.

A simple application of Corollary 1, Theorem 3 and Remark 6 yields the fol-
lowing corollary which corresponds to the case where a finite number of sample
percentiles are given special weight.

CoroLLARY 3. If
To =0 2t /(0 + DI X)) + D it b Xinpi )

where J and h satisfy the conditions of Theorem 3,0 < p1 < pe < -+ < pr < 1,
F' and b exist and are finite and F' is non zero at the corresponding population
percentiles Ny, A, -+ , A, then

e(n}(Tn — u)/o} — N0, 1),

where

(2.27) p= [oJ(WH(u) du + 2i1ah(\),
(2.28) o = [sd(u) du,

and

(229) a(uw) = 1 —u) {[u J(w)H (w)(1 — w) dw
+ Ppze il — p)H (pi)}.

ReMARk 8. If H has a finite number of jump discontinuities, it may be de-
composed into the form H(u) = Ho(u) + > aid,,(w) where Hy is continuous and
Theorems 1, 2, or 3 ean be combined with Corollary 2. An alternative is to show
that the results of using a smooth approximation to H approximates that of
using H. This can be done by studying the effect of functions 8,(v) — An(v)
where 8, is a smooth function rising rapidly from 0 to 1. Thus we see that Theo-
rem 3 may be regarded as applicable if H has a finite number of jump discon-
tinuities and the integrals for a and ¢* in (2.21), (2.22) are replaced by Stieltjes
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integrals. This comment leads naturally to a conjecture that the ‘“natural”’
theorem would involve the condition that H is of bounded variation.

ReMARK 9. If Theorem 3 applies to T,,” obtained from J; and H; for 1 <
¢ < r, then it applies to the vector (T,*, T,®, .-+, T,). Here the relevant
cavariance matrix is ||o;;|| where

(2.30) o4 = f(l) ai(u)ai(u) du
= [0 Jo Je(w)H{ (w)J j(w)H; (w) K (u, w) du dw,
where a;(u) is obtained by inserting subscripts in (2.21).
REMARK 10. Let Aj, = n" D iy aimand Bjp = 0% D i1 bsm . Then
(2.31) 07" 2P anbnKG/(n 4 1),5/(n + 1)1 = (n + 1) 211 4B
—[(n+ 1) 2 Apll(n + 1)7! 2031 Byl

where the right-hand side resembles a sample covariance. Analogously, if we
introduce the indefinite integrals A(u) = [ a(u)du and B(u) = [ b(u) du,
it can be seen that

(2.32)  [3 [7 a(u)b(w)K (u, w) du dw
= [o A(w)B(u) du — [[3 A(w) dull[s B(x) dul.

Note that adding constants to A (u) and B(u) does not affect the right hand
side of equation (2.32) which is valid even if A(u) and/or B(u) diverge as u
approaches zero or one so long as the Lebesgue integrals on either side converge
absolutely. The connection of (2.31) and (2.32) with (2.22), (2.14") and (2.30)
is evident. Hence we have

COROLLARY 4. Let

(233)  A(u) = [JW)H (u) du, Aiu) = [ Ji(uw)H/ (u) du.
Then (2.22) and (2.30) become
(222" ¢ = [sa’(u) du = Var {A(U)} = Var {A[F(X)]},
(2.30) o = [oai(u)a;(u) du = Covar {A:(U)A4,(U))
= Covar {A{F(X)], 4,F(X)}}

where X has cdf F and U is uniformly distributed on (0, 1). Moreover, these results
apply to the case covered in Corollary 3 if J(w) s treated as a delta function, i.e.,
if A(u) has a jump of a:H' (p:) at u = p; .

3. Applications to asymptotically efficient linear estimation for the uncensored
and multicensored cases. In this section we apply the results of Section 2 to
demonstrate the asymptotic efficiency of Bennett’s estimates of location and
scale parameters in the uncensored and multicensored cases. Throughout this
section we shall assume that the standard conditions for the validity of the
Cramér-Rao bounds are satisfied, and that the related integrations by parts are
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permitted, and also that the conditions of Corollaries 3 and 4 are satisfied. To
indicate asymptotic efficiency we shall demonstrate that the asymptotic covar-
iance matrix of our estimates coincides with the inverse of the Fisher information
matrix.

Let X1, £ Xon £ --- £ X,.. be the ordered observations from a distribution
of the form

F(x; 61, 0:) = Fl(x — 61)/65]
with density

f(x; 61, 6,) = 6, fl(x — 61)/6a].
We consider estimates of the form
(3.1) T =n" 2 J[j/(n+ 1) X.

Hence in this section H(u) will always be the inverse function of F(z; 61, 6,).
That is

(3.2) Hu) = 6 + 6.F(u)

and hence H'(u) du = 6;dy and du = f(y) dy wherey = F~*(u).

We shall begin with the uncensored case, and there we shall first treat the
situations where only one of the parameters is unknown.

Uncensored case (complete sample). The Fisher information matrix* is defined

by
|E{[9 log f(X; 61, 62)/06.)- [0 log f(X; 61, 62)/36,}} ||

and under conditions, to be discussed shortly, which permit integration by parts,
it is equal to

|E{— " log f(X; 61, 6,)/06:003}].

Let

(3.3) Li(y) = = )/f),
and

(34) Li(y) = —{1 4+ of () /f(y)}.
Then

I

3 log f(x; 01, 0,)/061 = 6 Ln(y), y = (& — 6:1)/6s,
3 log f(z; 61, 6,)/98: = 6, La(y),
JZe Liy)f(y) dy = [Zu La(y)f(y) dy = 0.

4 To avoid confusion we note that I represents an information matrix and not the identity
matrix.
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The Fisher information matrix is given by 6, *I where
(3.5) I = ||fZe L) L;()f (y) dyll,

[ mwiw) ay [ 1)) ay
(35,) I = © © ’
[ vt @)y ay [ y1d i) ay

and Iy = In . To insure these relations an elementary argument shows that it
suffices to have the existence of f(y) and

(3.6) ¥f(y) >0 as y— £w.

(This condition can be reduced to yf (y) — 0 as y — == unless we use I
which is not required in the estimation of 6, when 6. is known.)

Location parameter: (scale parameter known). The estimator T, is determined
as in (3.1) by the function

(3.7) Ji(w) = il (y), y=F '(u).

Bennett’s estimator is Ty, minus the known bias correction I3 I1s6, . Applying
Corollary 3 we have for Ty, ,

(3.8) pmo= [ Ji(w)H(u) du = [Z0 LiLy (y) (61 + 691f(y) dy
= 0 + It 15 .
Next

Ay(u) = [ Ju(uw)H' (u) du = 6,17 [ L' (y) dy = I3 La(y).

Since A1(U) = 0,117 L:1(Y) where Y has cdf F(y), A:(U) has variance 6,'I1i I+
and

(3.9) o = 6’ .

Combining (3.8) and (3.9) we see that Ty, — It T16; is an asymptotically effi-
cient estimator of the location parameter 6; .

Scale parameter: (location parameter known). The estimator T, is based on the
function

(3.10) Jo(u) = ImLy(y), y=F"'(u).

Bennett’s estimator is 7., minus the known bias correction I32I126,. For the
estimator T, we have

(3.11) pe = [0 Jo(w)H(u) du
As(u) = [ Ja(w)H' (u) du
and A,(U) has variance

(3.12) or = 6,5

I3 I6: + 6,
013 Lo (y)
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which establishes the asymptotic efficiency of Tan — 3211261 as an estimator of the
scale parameter 0, .

Both parameters unknown. Here Bennett’s estimators (7T, , T4,) are based on
(3.1) with
(3.13) (Js(u), Ja(u)} = (Ld'(y), Ly, y = F7'(u).

Then the mean vector (us, us) is obtained by integrating each term of

(0,0 (1) 12, LT
yielding
(3.14) (us, ua) = (61, 62).
Furthermore, {As(u), As(w)} = 6{Li(y), Le(y)}I " and {A3(U), A4(U)} has
the covariance matrix
(3.15) lowill = 62T,

establishing the asymptotic optimality of the estimator (T'sn , Tan).

Censored Case. We now study the case of multiple Type II censoring where
the observations which lie in the sample percentile ranges (p1, p®),
(2, p®) s P, 0), 02 < PP << p® < <P <pP” =1,
are censored (i.e., unavailable). Thus, for each 7, the observations lying be-
tween the sample p”-percentile and the sample p:;-percentile (inclusive) are
available. If p; = 0 [p, = 1], then the smallest [largest] segment of observations
is censored. We first present the information matrix for a related problem in-
volving partially grouped data (see Kulldorff [6]). Here we start with — o =
H <tP <o <§ < E” 2 . If an observation falls in one of the intervals
(&, £?), the interval in which it falls is identified. Otherwise, the observation
itself is recorded. To exhibit the information matrix, let

A= (& — 61)/6,, A9 = (89 — 61)/6,,
(3.16) fi = f(\), 9 =50,
Fi=F\), F® = FQ\Y),

where f; and f are taken to be zero when F; = 0 or F(’? = 1 respectively. Let £
be the complement of the union of the intervals (A;, A?). For this problem, the
information matrix is readily seen to be 6, °I where

In = [ LEWf@) dy + Zia[f® — fI/(F® — Fo);
(317) In = [5Li(y)La(y)f(y) dy
+ 25 (O = ) OFC = Nf)/(F® = F);
In = [s LAW)f(W) dy + Tim OOFP = £/ (FO — Fo).
It can be seen that when \;, A? are such that F; = p; and F = p“, the in-
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formation in the partially grouped data matches that for the case of multiple
Type II censoring and 6,°I " corresponds to the Cramér-Rao bound for this case
as well.

For this case it will be convenient to estimate (6;, 6;) by (Tin, Ton) =
(Tsn, Tea)I", where Ts, and T, are determined by weight functions J(u)
and by additional discrete weights given to certain sample percentiles as
treated in Corollary 3. The “continuous’ part is determined by

(3.18) {(Js(u), Jo(w)} = {L'(¥), L' (y)}, oy =F'(u)eE
=0 elsewhere.
The “discrete” contribution attaches additional weights
(asi, ass) = f{ = La(\) — (F® = 7)/ (P = po),
(3.19) = L) — AP =)/ (0P — i),
(@, &) = fOLOD) + (O = 1)/ = p3),
L(?) + 7P =\ /(0 = p))
to the p; and p” sample percentiles, respectively.

To compute the asymptotic mean corresponding to (Ts,, Ten) We apply
Corollary 3. Noting that

Ja L' 0)f(y) dy = f(y)La(y)le + [a L’ (¥)f(y) dy,
Jo L 0)yf(y) dy = yf)La(w)la + [o La(y) La(y)f (y)dy,
JaLd 0)f (@) dy = 5y La(y)la + [o La(y) La(9)f (y) dy,
Jo L 0)yf(y) dy = yf(y)La(y)le + [a L (9)f(y) dy

a direct computation gives (us, us) = (61, 6)I, 50 that (Tin , Ta.) is asymp-
totically unbiased.

Applying Corollary 4, we interpret As(u) = st(u)H "(u) du = 0, [Js(u) dy,
so that it takes jumps of 6.a5:/f; and 6,05 /f at w = p; and w = p?, re-
spectively. In this way we have

Il

Il

As(u) = 6.Li(y), y = F'(u) ¢ E,
= =6 — £)/(»" — p), MN<y <A
As(u) = 6.Ls(y), ‘ yekE,

= =6\ =)/ PP —p), N <y <P
But then [45(U), 4¢(U)] has covariance matrix 6,'I. It follows that
(T:‘n ] T:‘n) = (TSn) TGn)I—l

18 an asymptotically efficient estimator of (61, 6,).
Remarks and examples. If F is symmetric and we have uncensored or two-



70 HERMAN CHERNOFF, JOSEPH L. GASTWIRTH AND M. V. JOHNS, JR.

sided symmetrically censored samples, then ;2 = 0 and the efficient estimate of
61 is the same regardless of whether or not 6, is known. The same is true for the
optimum estimate of 6,.Some examples of efficient estimates from complete
samples are given below. In each of these the required regularity assumptions are
easily verified.

ExamrLE 1. The efficient estimate of 6; for the logistic distribution,

F(z;61,0) = [1 + exp {— (z — 6,)/6J]
is determined by the weight function Ji(u) = 6u(l — ). The efficient esti-
mator of 6, is determined by
Jo(u) = 9(x* + 3) 2u — 1 + 2u(l — ) log [u/(1 — w)]}.
ExampLE 2. The efficient estimate of 6; for the Cauchy distribution,
F(x; 61, 0:) = 7 {tan ' [(x — 61)/62) + 7/2}
is determined by the weight function '
Ji(u) = sin 4w (u — §)/tan w(u — 3).

In this example it is interesting to note that Ji(%) is negative for (v — %) > 1.
The efficient estimate of 8, for the Cauchy distribution is specified by the weight
function

Jo(u) = 8 tan w(u — %)/sec’ w(u — %).

The formulas for the ¢-distribution with three or more degrees of freedom were
obtained by Jung. The preceding formulas are consistent with his.
ExampLE 3. The efficient estimator of 6, for the normal distribution,

F(z; 01, 62) = ®[(xz — 61)/62],
where
3(z) = [Twot)dt = [ (2r) " dt
is determined by the inverse function
Jo(u) = &7 '(u).

In the normal case, of course, the efficient estimator 6; is obtained by setting
J 1(u) = 1.

Since one of the authors [4] has already applied these results to one-sided
censoring we shall discuss estimating the location parameter of a normal distribu-
tion in the case of symmetric two-sided censoring. If upper and lower 100p
percent of the observations are censored, then the asymptotically optimum
estimate is formed by using weights specified by J(u) = Ipli'(y) for the
uncensored observations. The largest and smallest available order statistics are
given the additional weight,

a=Idlf )/ =T FN) = p.
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For the normal problem, ®()\,) = p,
Iy = f;:” Ye(y) dy + 26°(\p)/p
=1 = 2p 4 205,0(0\) + 26°(\,)/p,
while J(u) = Iii, p < u < 1 — p, and
a = Infe’(\)/p + Mp(Mp)}-

When p = 05, In = .986 and ¢ = .0437. When p = .10, I;; = .966, and
a = .086. For estimating the mean of a normal distribution in the uncensored
case, the optimal weight function is J(u) = 1. In this censored case the optimum
estimate is

T, = a[Xin + Xon] + 07Ut D oies X

where s and ! denote the indices of the smallest and largest available order
statistics.

The extra weight given to each of the extreme available order statistics is only
slightly less than that suggested by Winsor and advocated by Tukey [12]. This
fact is of theoretical interest as the asymptotically optimum estimate given above
is slightly better than the Winsorized mean for normal data and may well be
slightly less sensitive to contamination. Finally for p = .05 and .10, the asymp-
totically optimum weights given here are quite close (within 1.5 percent) of the
weights given for sample size 20 by Sarhan-Greenberg [10], p. 248. The latter
weights are those which provide the minimum variance unbiased estimate based
on linear combinations of order statistics in the censored sample.
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