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1. Introduction. We are concerned with the prediction of future observations
y and functions ¢¥(y) given past observations x when the joint distribution of z
and y given an unknown parameter w satisfies certain invariance properties.
Our results are analogous to those given in an earlier paper on estimation (Hora
and Buehler (1966), hereafter referred to as HB-1), and therefore some details
are omitted from proofs. An identity is given involving the expectation of in-
variant functions H(z, y, w) with respect to a distribution which we call the joint
fiducial distribution of ¥ and w given z. The identity is used to define ‘‘best”
invariant predictors in terms of fiducial expectations, and to establish sufficient
conditions for prediction limits obtained from the fiducial distribution of ¥ to be
prediction analogues of confidence limits. The relationship to consistency criteria
for fiduecial distributions is indicated.

For regression models, prediction analogues of confidence limits were discussed
by Eisenhart (1939), and later in textbooks such as Mood (1950), Section 13.3.
In the interest of simplicity the present paper does not include a regression struc-
ture, which would be a fairly straightforward extension.

Weiss (1955) gave a general method of determining ‘“confidence sets’ for
future observations y using a sufficient statistic 7'(x, y) for w. Our construction
in Section 7 below is similar to his; his method would apply in certain cases lack-
ing our group structure, but the present method applies in some cases when his
sufficient statistic is lacking.

Kitagawa (1951) considered estimators ou* and a,™ of a parameter a, based
respectively on a past and a future sample and considered the accuracy of
prediction of ay*. Later Kitagawa (1957) gave a theory of fiducial prediction
quite close in spirit to the present work, but depending heavily on the theory of
exponential families of distributions and on sufficient statistics, which are not
required in the present treatment. Kitagawa’s (1957) statistic 4 in Definition 2.3
and in equations (4.01) and (4.02) is an ancillary function of two sufficient
statistics, and plays the same role as the quantity ¢ 'y in the Appendix below.
Kudo (1956) applied Kitagawa’s theory in obtaining the fiducial distribution of
the maximum of a future sample from a normal population. This case falls within
the present scope since ¥(y) = max (y1, + -+ , ¥m) is an invariantly predictable
function, as defined below in Section 5.

The Bayesian analysis of the prediction problem has been discussed for ex-
ample by Fisher (1956), Chapter 3, Section 2, and by Jeffreys (1961), Chapter 3.

In the present paper attention is restricted to continuous variates. Similar
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796 R. B. HORA AND R. J. BUEHLER

problems in the prediction of discrete variates have been considered by Roy
(1960) and Thatcher (1964).

2. Distributional assumptions. In HB-1 we gave five assumptions regarding
the distribution of x given w. Recall that in our earlier notation, ¢ = {g} is a
group which transforms both X = {z} and @ = {w}, ¢ is an ancillary statistic
labeling the orbits Gz, and ¢ is a conditionally sufficient statistic given a. We now
make three additional assumptions regarding the distribution of y given z and w.

AssumpTION 6. (Y, By) is a measurable space, and for each g ¢ G, gy(y € Y) is
a measurable one-to-one transformation of Y onto itself.

AssuMPTION 7. £ is a measure on Y such that foreachge G, Y e By, £ Y) =
J(g)E(gY), that is, the Radon-Nikodym derivative J(g) £(dy)/t(g(dy))
exists and does not depend on y.

AssumpTioN 8. For each w ¢ © there is a probability dlstrlbutlon onX x Y such
that the conditional distribution on ¢ given z and « has the form P*(Y | z) =
[rfale™y| o™, a)J(w)E(dy), all Y e By .

Loosely speaking, models of this kind will arise when elements g of G transform
both & and 9, and when a family of distributions P? is defined for a given P by
PY(gX x gY) = P(X x Y). The assumptions are not actually symmetric with
respect to X and ¥ however, since each orbit Gy (unlike each orbit Gz) need not
be in one-to-one correspondence with G. For example if G consists of changes of
both location and scale, then % must be at least two-dimensional, while 4 maybe
one-dimensional. Our earlier location and scale parameter examples extend in
obvious ways to include a space Y = {y} of future observations, with gy defined
analogously to gz.

3. Bayesian and fiducial distributions. In this section we define fiducial dis-
tributions to be equivalent to posterior distributions when the prior measure
equals the right Haar measure » on the group G. The definitions are then justified
in several ways.

Assumptions 4 and 8 give a ]omt density for (i, @, ¥, ») of the form

(1) fo™ oy | a)J (w)N(da)u(dt)E(dy)v(dw)
where '
(2) . , ft,yla) = it a)fa(y | ¢, @)

and where fi is the f of Assumption 4. Note that the total measure of (1) will
be infinite when » is unbounded. We shall require the following three conditional
probability elements implied by (1):

(3) fory,wl|t,ar  flot, 0y | a)d(«)A()E(dy)v(de);
(4)  forwl|t, a: filw ™| @)A(t)r(dw);
(5) fory | t, a: A E(dY) [of(0™t, 0™y | @) (w)p(dw).

The expression (4) is just the fiducial distribution of w given  in Fraser’s
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(1&1)61) sense, and could be derived by use of the conditional pivotal quantity
w L.

Two justifications for calling (5) the fiducial distribution of future observa-
tions y given past observations z are: (a) consistency with Fisher (1935),
(1956), pp. 113-116, in special cases which are straight-forward to verify; and
(b) an alternative derivation given in the Appendix, using a pivotal argument
which is Fisherian in spirit. Previous generalizations of Fisher’s examples have
been given by Kitagawa (1957), Sprott (1963), and Ramsey (1963). The
present expression is claimed to be more general in that it does not require the
existence of sufficient statistics (Kitagawa), nor is it univariate in nature
(Sprott), nor is it restricted to location and scale parameter families (Ramsey).

The relationship of (3) to (4) and (5) will be our justification for calling
(3) the joint fiducial distribution of y and « given x. Special cases have been
given previously by Ramsey (1963).

4. An expectation identity. The following result generalizes our previous
identity, and is used below in Sections 6 and 7.
TuaroreEM 1. If Assumptions 1 through 8 are satisfied and if

(6) H(gz, gy, g») = H(z, y, »)
then .
(7) E"' ““H(z, y, w) = B ! ‘H(z, y, »)

where BY"* ' *° denotes conditional expectation with respect to (y, t) gwen (a, )
and where E;*° ' ® denotes expectation with respect to the fiducial distribution
(3) of (y, w) given = (1, a).

Proor. Both sides of (7) can be shown to equal [ [ H(t, a, y, e)f(t, ¥ | a)-
u(dt)¢(dy) where H(t, a,y, w) = H(z, y, ») and e is the identity.

5. Invariantly predictable functions. We now consider the problem of pre-
diction of a function ¥(y) of the future observations . In order to exploit the
assumed invariance properties of the family of distributions we find it necessary
to restrict attention to “invariantly predictable functions” defined by

(8) ¥(y1) = ¥(y2) implies ¥(gy1) = ¥(gy2), all g€ G
The transformations §' = {g'} of {¢} defined by
(9) gV(y) = ¥gy)

then form a group homomorphic to G.

Some examples of functions ¢ satisfying (8) are found in Table 1 below. In
addition, any function which is constant on each orbit Gy will satisfy (8) trivially;
prediction of such functions is not of interest however, since their distributions
are the same for all w.

6, Best invariant predictors. To treat the prediction problem from a decision
theoretic viewpoint (generalized to allow for the future observations i) we wish
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to construct invariant functions on ¢ x Y x @ to represent the “loss’ incurred
when §(z) is the predicted value, ¢(y) is the observed value, and w is the true
parameter value. A predictor ¢(z) of an invariantly predictable function ¥ (y)
will be called “invariant” if it satisfies

(10) P(gzr) = g'¥(z).

Lemma 1. If Y(y) and §(x) satisfy (8) and (10), if ®(-, +) s a function on
¥ x ¥ (where ¥ = {Y}), and if

(11) H(z,y, 0) = ®(o"(2), o "¥(y))

where o’ & G’ s the image of € Q defined in (9), then H(z, y, ») = H(gz, gy, gw).

TrEOREM 2. If (1) Assumptions 1 through 8 are satisfied, (ii) ¢(y) is tnvariantly
predictable, (iii) ®( -, -) s a real-valued function on ¥ x ¥, (iv) there is a unique
value Po(z) of ¥ which minimizes

B" (0 7, o TW(Y)),

then Po(x) minimizes ™ ' “®(o' (z), o ¥ (y)) amongst the class of invariant
predictors $(x).

Proor. Use Lemma 1 and Theorem 1.

CoROLLARY. When ¥ is a subset of the real line and when for some (), o(w) > 0,

oY = {e(o)}¥ + 7(w), then
(12) $o(z) = Erle(0)¥(y)}/Ese(w) (By = E;*°'7)

Ys the minimum mean square error invariant predictor of Y(y), that is, @t mintmizes
E= 'eld(x) — Y(y)}? in the class of invariant predwtors

Proor. The theorem applies with ®(u, v) = (u — v)°.

Table 1 gives several examples wherein the Corollary applies. Refer to HB-1 for
notation in the first and third columns. In the second column Q@ = X . aiyw;
where D iai; = 0(all ¢) and D _;a; = 0 (all j), and @ and Q, are similar fune-
tions of y1; and ys;, respectively (the definition of the y’s should be evident).

—4r  —4s

In the final example, ¢ = o1 o2

7. Fiducial prediction limits. In this section we show that invariant predicta-
bility of ¥(y) essentially ensures that limits obtained from the fiducial distribu-
tion of ¥(y) will be prediction analogues of confidence limits.

TABLE 1
Example Y () gY@ = ¥v(gy) P, 0’ lY) “best” invariant
predictor
3.1 Ymax El’(y) + « (‘Z; - ‘/’)2 Eﬂ#
3.2 2 4y BY(W) + a2 a; @ — ¥)¥/a? Ey(c~%)/Eyo™
3.2 Q B (y) W = ¥)*/o* Es(c*y)/Epo™
3.3 2 2 by B+ 2 2 adiy (b — 9 Ei(e=)/Eyo™?

34 QroQy BBy W - V% Es(et)/Ero
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For any real valued ¢¥(y), any observed z, and any probability level v, an
upper fiducial prediction limit ¥(z, v) is defined by

(13) Priy(y) = ¥z, ) |2} = 7

where P; denotes fiducial probability. The fiducial prediction limits may not
possess the frequency interpretation expressed by

(14) P{Y(y) = ¥(z,v) |w} = v forall w.

TuroreM 3. If (i) Assumptions 1 through 8 are satisfied, (ii) ¥(y) 7s real-
valued and invariantly predictable, (iii) (13) has a unique solution for ¥(z, v)
forallzex, 0 < v < 1, and (iv) g'y increases as y increases for each g g,
then (14) is satisfied.

Proor. Let I(z, y) be the indicator function which equals 1 or 0 according
as ¥(y) is < or > ¥(z, v). It can be shown that I(gz, gy) = I(z, y), and the
result follows from Theorem 1.

CoroLLARY. Under the conditions of the theorem, Bayesian limits for ¥(y),
based on prior measure v, have the frequency interpretation (14).

A result announced by Hall and Novick (1963) is more general than this
corollary in that it includes a regression parameter, but more special in being
restricted to certain location and scale parameter models.

8. Remarks on some consistency criteria for fiducial distributions. Fisher
(1956) states, “The concept of probability involved in the fiducial argument is
entirely identical with the classical probability of the early writers, such as
Bayes,” (p. 51), and later on p. 125, “This fiducial distribution supplies in-
formation of exactly the same sort as would a distribution a priors.” Such claims
can be tested by actually using a fiducial density, say fr(w | z), as if it were a
conventional distribution. Thus for any given density of y given z and w, say
f(y |z, ) (usually this is just f(y | w)) we may form a joint density of (y, )
given x as

(15) f(:%w‘x) =ff(wlx)f(ylxy w)
Let f(y | *) denote the integral of (15) over w, and let f(w |z, y) = f(y, w|z)/
f(y | 2). \

One consistency criterion proposed by Lindley (1958) (and also studied by
Sprott (1960) and Fraser (1962)) tests the equality of f(w |2, y) and the
fiducial distribution of w given (z, y). A related criterion of Sprott (1960) re-
quires that any posterior or fiducial distribution contain all the symmetries of
the likelihood function. It is clear from the relationship to Bayesian analysis
that the distributions in Section 3 satisfy the criteria of both Lindley and Sprott.

Let us say that the above density f(y | z) is the fiducial distribution of y given
z obtained by the “integral method,” which was used by Sprott (1963) and
seems to be implicit in Fisher (1956), p. 126. Either by direct calculation or by

* the Bayesian interpretation it is easily seen that f(y | z) agrees with our definition
(5), and this may be regarded as a further consistency property of the fiducial
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distributions here defined. A somewhat more stringent criterion proposed by
Buehler (1963) requires that prediction limits for ¢/(y) obtained by the integral
method should have the frequency property (14). Theorem 3 shows that in the
vresent framework, invariant predictability of ¢(y) (with mild regularity
conditions) is a sufficient condition, and generalizes the results announced by
Buehler (1963).

APPENDIX

Derivation of the fiducial distribution of y given x by the pivotal method. From (1)
the distribution of (¢, y) given (@, w) is

(A1) fo7t, 'y | a)p(dt)J (w)&(dy).
Defining v = ¢ 'y we obtain the joint distribution of (¢, ») given (a, ®w) as
(A.2) flo ', o 't | a)u(dt) (£ w)E(dv).

To obtain the marginal distribution of v given (a, w), we integrate the last ex-
pression with respect to ¢, and after changing the integration variable to z = w™'¢

this yields
(A.3) E(dv) [ (2, 20 | )T (27 n(de).

In this form it is clear that the distribution of v given a does not depend on w,
so that v is a conditional pivotal quantity. Next consider ¢ to be fixed, and trans-
form the variate » to y where v = ¢ 'y. This “pivotal argument” yields the fiducial
distribution of y given z = (¢, a) in the form

(A.4) Hdy)I(0) [ f(z, 267y | a)J (27 u(de).

On changing the integration variate from z to » where z = ™ t, the last expression
will be seen to agree with (5). Thus the “pivotal argument” leads to the same
result as the Bayesian analysis.
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