DISTRIBUTIONS OF A M. KAC STATISTIC!
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0. Summary. In 1949, M. Kac defined a statistic which appears useful for
statistical problems arising in insurance, biology, and telephone engineering
[2]. In those fields, the natural observation period is a fixed time period during
which a random number of observations would be obtained. The distribution of
the number of observations is given by a Poisson distribution. Distributions of
this statistic can be used to determine upper and lower confidence contours for
an unknown distribution, or in testing a distribution hypothesis. The purpose of
this note is to extend the authors’ earlier results, [1], to the two-sided Kac statis-
tie.

1. Introduction. Let N, X;, X:, :-- be independent random variables, N
having a Poisson distribution with mean A and each X, having the same con-
tinuous distribution function F(y). Let ¢,(z) be 0 or 1 according as x > ¥y or
z < y. A modified empirical distribution function was defined by M. Kac [2] as

(1.1) B (y) = N7 2 (X)), —o <y< »,

where the sum is taken to be zero if N = 0. Notice that it is possible for F\*(y)
to exceed one. The statistic analogous to the two-sided Kolmogorov statistic
[3] is Wb_weyewn |F(y) — Fr*(y)| and will be referred to as the two-sided Kac
statistic. It is noted [2] that as long as F(y) is continuous, the distribution of the
statistic is independent of F(y). Hence we will confine our attention to the case
F(z) = 2,0 =2 £ 1.

A random sample will determine a confidence band for the unknown distribu-
tion F(y):

(1.2) F*(y) — k/N < F(y) < \*(y) + k/\, k a positive integer < \.

ReMaRk. Recently L. Takées, [6], has derived the exact distributions for
statistics based on (1.1) and also the empirical distribution function

N7 2 iad(X;), —o <y < w.
2. The distribution of the two-sided Kac statistic.

TueorREM 1. Assume that N, Xy, X2, --- satisfy the hypotheses of Section 1.
Let J(\) be an integer such that PIN > J] < 6, for appropriately small 6. Let
(2.1) Pi(k) = P{lub_wc<w [F(y) — F*(y)| < /N,
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k=1,2 --- N, where \ is a posttive integer. Then
(2.2) Py(k) = ZBYE Un (V)™

where Upj(m + 1),7 =1,2, -+, 2k — 1, m = 0,1, ---, N — 1, satisfy the
equations

(2.3) Uni(m + 1) = 4R Uus(m)/(G + 1 — )!
with
(2.4) Upi(m) =0 ¢f hz=2k, oref h+m>n-+k

Furthermore, the U,,«(t) satisfy the boundary conditions
Un,0) =0 foris=k,

(2.5) Unx(0) =1 for 7=k,
Uni(t) =0 for ¢4+¢t>n+ k.

The error in approximation (2.2) is at most 6. For J = N + k — 1, the error is
zero.

Proor. Using the distribution-free property of the statistic, the independence
of N, X1, X,, ---, the definition of J()), and the value of Y 1y ¥.(X,) at
u =1,

P)\(k) = P{maxoéuél |u - )\—l E?’=I’I/u(Xz)| < k/)\}

(2.6) = D n—oP{maxocuci|u — N7 2 Yu(X0)| < k/MP[N = n]
= D mIUAERD Pimaxecuc U — N Dorm Yu(X0)| < /N
€M\ /n!

= > anYE D U, masx(N)e by the following lemma.
LEmMmA. Forn suchthat N — k + 1 =n = N+ k — 1 and ) an inleger,
(2.7) Po(k/N) = P{maxoguz [u — N7 2o7a u(X3)| < /M)
= (nY/N)YUpnariu(N), E=1,2--- A

where Uy j(m +1),7=1,2,---,2k —1,m =0,1, --- N — 1, satisfy the system
of equations (2.3), (2.4), and (2.5). We also have

)

(2.8) P.(k/N\) =0 for n<AX—k+1 oo n>N+k—1.

RemARk. The condition on 7 also implies that » — N + k = 1, so
that U, nax(N) is well defined.

Proor. The proof of this lemma involves only minor changes in Massey’s
proof on page 117, [4]. We let o; be the number of observations falling in the
interval [(¢ — 1)/A, /A, = 1,2, --- ,A. Then D _1—1 a; = n. Letting Un naix(N)
be the sum of the terms (o5 ! -+ - ax 1)}, X i1 @; = n, such that N7 X7 vu( X5),



TABLE 1

Puk/N) =,k S
A
K
1 2 3 4 5 6
1 .36788 .13534 .04979 .01832 .00674 .00248
2 .69923 .53106 .40447 .30845 .23534
3 . 84887 75285 .66479 .58646
4 .91866 .86655 .81194
5 .95350 .92542
6 .97218
A
K
7 8 9 10 15 20
1 .00091 .00034 .00012 .00005 .00000 .00000
2 .17960 .13708 .10462 .07985 .02068 .00536
3 .51733 .45642 .40276 .35545 .19048 .10213
4 75818 .70676 .65825 .61282 .42805 .29909
5 .89313 .85873 .82360 .78861 .62806 .49792
6 .95680 .93805 .91684 .89398 77250 .65893
7 .98281 .97415 .96324 .95038 .86857 77841
8 .98915 .98410 .97768 .92798 .86205
9 .99305 .99002 .96224 .91756
10 .99550 .98081 .95253
11 .99042 .97351
12 .99525 .98557
13 .99765 .99227
14 .99886 .99590
15 .99945 .99784
16 .99888
17 .99942
18 .99971
19 .99986
20 .99993
A
K
25 30 35 40 45 50
1 .00000 .00000 .00000 .00000 .00000 .00000
2 .00139 .00036 .00009 .00002 .00001 .00000
3 .05476 .02936 .01574 .00844 .00453 .00243
4 .20905 .14613 .10215 .07141 .04992 .03490
5 .39462 .31278 .24793 .19654 .15581 .12352
6 .56032 .47614 .40456 .34375 .29209 .24820
7 .69269 .61485 .54527 .48343 42857 .37993
8 79258 72525 .66220 .60403 .55072 .50202
9 .86470 .80957 75528 .70328 .65417 .60816
10 .91460 87170 .82701 78241 73895 .69719
11 .94775 .91592 .88064 .84382 .80668 77000
12 .96891 .94633 .91958 .89025 .85953 .82827
13 .98194 .96657 .94704 .92446 .89983 .87395
14 .98970 .97963 .96587 .94905 .92988 .90904
15 .99422 .98782 .97844 .96629 .95179 .93544
16 .99679 .99283 .98662 .97809 .96742 .95492
17 .99823 .99583 .99182 .98599 .97834 .96901
18 .99903 .99760 .99507 .99118 .98582 ,97901
19 .99948 .99863 .99706 .99451 .99084 .98598
20 .99972 .99923 .99826 .99663 .99416 .99076
21 .99985 .99957 .99891 .99795 .99632 .99398
22 .99992 .99976 .99941 .99876 .99770 .99612
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0 = u = 1, reaches (1, n/\) by a route within a k/A band of u, 0 < u < 1,
we obtain (2.7).

The slightly different boundary conditions on U are easily verified. Finally,
(2.8) applies since such n’s provide too few or too many points to be within
the band at v = 1. .

The asymptotic distribution for the statistic has been derived by Kac in [2],
and is now stated.

TareoREM 2. For N, X;, X,, - - subject to the previous conditions, and a > 0,

(2.9)  limyse P{lub_wcyce [F(y) — Fr*(y)| < a/N}}
= (4/7) 20 [(—=1)"/(2k + 1)] exp [—(2k + 1)*7°/8’].

Remark. Asin [1], it is easy to show that the two-sided Kae statistic produces
a consistent test. One first obtains a lower bound on the power of the test, using
an idea of Massey, [5]. One completes the proof as in the proof of Theorem 3, [1].

TABLE 2
Pi(e/N) =8

A

15 20 25 30 35 40 45 50 limy

.011 .004 .001 .006 .006 .004 .003 .002 .0006
.019 .028 .028 .022 .015 .019 .021 .020 .0092
.076 .071 .055 .063 .063 .058 .053 .056 .0414
.141 128 132 127 123 .125 124 119 .1027
214 .216 .209 .210 .209 .205 .206 .205 .1852
.306 .304 .302 .301 .299 .298 .297 .296 2776
.398 .393 .395 .391 .391 .389 .389 .389 .3708
.480 .482 AT7 .480 .476 477 475 475 .4593
.558 .557 .560 .556 .557 .555 .556 .554 .5404
.633 .629 .627 .628 .626 .626 .625 .625 .6130
.689 .690 .693 .689 .688 .689 .687 .688 .6770
745 744 .743 743 744 742 743 741 .7328
791 .791 793 .790 .789 .790 .789 .788 .7808
.829 .829 .829 .829 .830 .829 .828 .829 .8217

.890 .890 .890 .890 .890 .891 .890 .889 .8851
913 914 .915 914 .913 912 912 913 .9090
.933 .931 .931 .931 931 .931 .932 .931 .9285
.946 .947 .948 947 .947 .947 .946 .946 9444
.959 .959 .958 .958 .958 .958 .958 .959 .9571
.968 .968 .969 .968 .968 .968 .969 .969 .9672
977 .976 975 .976 .976 .976 .976 .976 9752
.981 .981 .982 .982 .982 .982 .982 .982 .9814

: 989 989 .990 .990 .990 .990 .990 .990 .9898
.992 .992 .992 .992 .992 .992 .992 .992 .9925
.993 .994 .994 .994 .994 .994 .994 .994 .9946
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3. Distribution tables. Part of Table 1 was computed on the Ball State Uni-
versity IBM 1620 digital computer. The most time consuming calculations of
Table 1 were computed at the Research Computer Center, Indiana University,
on a Control Data 3400/3600 computer. The authors wish to especially ac-
knowledge the help of that center. T'wenty-five places were kept in the calcula-
tions. The results were then rounded to five places. The § involved in (2.2) was
chosen equal to .0001. Hence, the total error estimate is 1.5 X 1074

Table 2 was derived by linear interpolation from Table 1, and indicates the
convergence of the true distribution to the asymptotic distribution. The mild
oscillation was caused by the interpolation process.
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