ASYMPTOTIC PROPERTIES OF THE BLOCK UP-AND-DOWN
.METHOD IN BIO-ASSAY!

By R. K. TsuTAKAWA
 University of Chicago

1. Introduction. The block up-and-down method consists of sequentially
making K = 1 quantal response observations per trial at levels belonging to
some fixed countable collection of real numbers, such that the (» 4+ 1)st level
depends only on the level and frequency of responses on the »th trial. For situ-
ations in which the sequence of levels form a Markov chain with a positive class,
the asymptotic properties of the frequency of trials and responses at each level
are studied and used to derive the asymptotic distribution of the maximum
likelihood estimator. The method is illustrated by the random walk design where
the successive levels form a random walk.

The case where K = 1 and the (» + 1)st level is a unit amount above or below
the »th depending on whether the »th trial shows nonresponse or response, respec-
tively, is known as the up-and-down method and, together with modifications, has
been studied in [3], [7] and [8] for estimating the mean of the normal distribution.
Comparisons with other procedures, such as the Robbins-Monro process have
been made in [5] and [13]. With numerical results for the normal and logistic dis-
tributions, these studies have emphasized designing efficient sequential sampling
procedures. The purpose here will be to study large sample properties.The problem
of seeking efficient procedures has been discussed in a separate paper [12] and
will not be considered here.

2. Sample properties. Let L denote a countable collection {d:} of distinct
real numbers indexed by a subset, I, of the integers, R the integers {0, 1, - - - , K},
and D a function defined on the Cartesian product I x R taking values in I. In
bio-assay L corresponds to dosage levels and we will refer to d; as the 7th level
or level <. Now consider taking independent quantal response observations, K at
a time, starting at level Y; in I and sequentially at Y, ---, Y, , defined by

YV+1=D(Y1'7JV): V=1""’n_17

where J, is the number of responses on the »th trial and n a predetermined total
number of trials. D will be called the design function since, together with L, it
specifies the sampling procedure. This method gives rise to a sequence of levels
and responses {Y,, J,; 1 < » = n} and, if the sampled population has dis-
tribution function F, the probability of obtaining a particular sequence
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v, 351 = v =nlis

K aL Sl
:‘=l (Jv)Pljl: 43 J"

where P; =1 — Q; = F(d,),if0 £ j, £ Kand y,.1 = D(¥, ,J,) and is zero other-
wise. The two processes {Y, , J,} and {Y,} are Markov chains with many related
properties. (It may be noted that the results given in this section and the next
can be generalized, with minor changes, to include randomized rules by treating
D(Y,,J,) as a random variable over I for each value of (Y, ,J,).)

In a sequence of n trials, let n:, ¢ ¢ I, be the number of trials at the sth level
and let 7; be the corresponding number of responses. If Cr is a positive class for
{Y,} and Y, e Cr, it follows from the strong law of large numbers (cf. [4], p. 87)
that ni/n and r;/n, i ¢ Cr, converge with probability one, as n increases, to
7 and K= ,P;, respectively. Thus if we define p; as r;/n;K or 0 according as
n; > 0orn; = 0, p; converges with probability one to P; for all 7 ¢ Cr . The joint
distribution of {p., n:/n} is given by the following: '

TuEOREM 1. If the sequence {Y,} obtained by the block up-and-down method has a
positive class Cr with stationary distribution {m; , 1 € Cr} and the second moment of
the recurrence time, mﬁ), is finite for some i e Cp, then for any finite set
C = {4, -, mn Cp the distribution of the vector ,

{nl(pi — P)), n'(fi — m:); i€ C)

where f; = n;/n, converges as n increases to the multivariate normal distribution
with mean zero and some covariance matriz X.

The asymptotic distribution of the proportions of responses can be derived
without requiring the finiteness of the second moment of the recurrence time and
is given by the following result:

Tueorem 2. If {Y, , J, ;v = 1} 7s a Markov chain obtained by a block up-and-
doun method and the marginal process {Y, , v = 1} has a positive class Cr with
stationary distribution {m;, © &€ Cr}, then for any finite set C = {4, --- , %} in Cp
the distribution of the vector {(nK )%(p,- — P,), 1 & C} converges as n increases to the
multivariate normal distribution with zero means, zero covariances, and variances
P,Qi/m, 1eC.

Proor. For each 7in Crand v = 1, let

uy = K}NJ,JK — P)/m; if YV, =4

=0 otherwise.
Without loss of generality assume that (#, ---, %) = (1, --+, s) and for any
s real numbers a;, -- -, a, consider the linear combination uw, = 2 i au ,

v = 1,2, - . Then, for each » = 1, u, is a function of (Y, , J,) such that the
conditional expectation

E{ty|Ym,Jm;1 Sm < v =0
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with probability one. If (Y7, J1) has the stationary distribution,
Eluyuj} = PQi/m; if =7
=0 otherwise
and ’
(1) E{uvz} = 2:=1 aiZPiQ"/"ri .
It follows from a result by Billingsley [2] that the distribution of
0 2w, = (nK)! Lo afi(ps — Po)/m:

converges as n increases to the normal distribution with mean zero and variance
(1). Since f; converges in probability to =, ¢ & Cr, the distribution of

(K D iaips — Pi)

converges to the same normal distribution. The proof is completed by applying
the Cramér-Wold [6] theorem.

3. Maximum likelihood estimation. Suppose that quantal response data are
obtained from a population with a distribution function, F5 , which depends on
an unknown real or vector valued parameter 8. For nonsequential designs, the
asymptotically optimal estimators of 8 are often discussed (cf., e.g., [9]) under
the theory of regular best asymptotically normal (RBAN) estimates (cf. [11]). In
RBAN estimation we consider a fixed sample design, taking Ny, ---, N, ob-
servations at levels dy, ---,ds, respectively, and analyze the asymptotic
properties of the estimators as the total sample size N = ».;_; N; increases
while N;/N converges to some positive constant ¢;, 7 = 1, - -+, s. Under cer-
tain regularity conditions, we will show for the block up-and-down method that,
if there is a finite positive class Cr with stationary distribution {=;} for {Y.},
then the asymptotic distribution of the maximum likelihood estimator is, es-

sentially, identical to that of an RBAN estimator using ¢; = n;, ¢ =1, --+ , s.

Conprrions. (i) The set X of 2’s for which 0 < Fy(z) < 1 is independent
of § = (61, -+, 0n) €2, where @ is an open set in m-dimensional Euclidean
space.

(ii) For every z & X, Fy(x) has continuous partial derivatives of order 2
with respect to 61, -+, Onm.

(iii) The process {Y,, » = 1} has a finite positive class Cr = {41, %2, «+ , %}

such that d;e X if 2¢Cp.
(iv) The m X s matrix ||0Fs(d;)/6||, where ¢ e Cr, of partial derivatives
has rank m. '

“Note that if (iii) is replaced by the condition that N;/N — ¢;, ¢; > 0,
i=1,---,s, then the conditions for RBAN estimation are essentially satisfied.
Note also that (iv) requires that s = m.

THEOREM 3. Suppose that the distribution function Fo, 0 ¢ Q, and the Markov
chain {Y,, J,; v = 1} associated with the block up-and-down method satisfy
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conditions (i) through (iv) and that Y1 e Cr. Then, with probability one, if n is
sufficiently large there exists a solution vector (By, - - - ,8,) to the mazimum likelihood
equations and the distribution of the vector {(nK )%(9;c — 0p), 1 =k = m} converges,
as n — , to the multivariate normal distribution with mean zero and covariance
matrix the inverse of ||Gy,|| defined by (2) below.

Proor. If {Y,, J,; v = 1, ---, n} is the outcome of the first n trials and
Y, & Cr, then under conditions (i) and (iii) the log-likelihood function is given
by

L = nK ZieCp'f’i(pi log P; + ¢:log Q:)

where P; = 1 — Q; = Fo(d;) and ¢ = 1 — p;, 7 & Cr. Without loss of generality,
assume that Cr = {1, ---, s}. Under conditions (i), (ii), and (iii) the partial
derivatives, L, of L with respect to 6;, k = 1, - - -, m, exist. Moreover, under
the same conditions L, = Li(p, f, 6) possesses continuous partial derivatives
with respect to the arguments p = (pi, -+, ps), f = (1, -+, fs)
and 6 = (6, -+, 0,). For a fixed point 6° = (6, -+ -, 6,,") in @, let P’ be the
value of P = (P, ---, P,) and =° the value of the stationary distribution
{m’, --+, )} for Cy when 6 = 6°. Then, Ly(P’, %, 6°) = 0,k = 1, ---, m.
Define

(2) Guo = D i1 mwiPLPL/PQS, w0 = 1, ---, m,
where P}, is the partlal derivative of P; with respect to 6, evaluated at § = 6°,
1 =1 --,8u =1, , m. These are the second partial derivatives of L

with respect to 6;, -+, O evaluated at (P°, 7°, 6°) and divided by —nK. By
(iv) the matrix ]lGu,,H is nonsingular. Thus, by the implicit function theorem

there exists m unique functions 6x(p, f), ¥ = 1, - -+, m, which are continuously
differentiable and satisfy the maximum likelihood equations,
for (p, f) in a neighborhood of the point (P ") such that 6, = (ik(P ),
k = 1, ---, m. Furthermore, the partial derlvatlves ax; and by; of 6, with re-
spect to p; and f; , respectively, evaluated at (P°, #°) are given by the equations
(4) D a1 Grutui = (Piyr) /(PIQ5),
(5) ZZL=I Gkubui = 0,
k=1, ,m;t =1, , S.

Since the matrix HGMH is nonsingular, (5) implies by; = 0,k = 1, ---, m;
1 =1, , 8. As indicated in the last section (p, f) converges, as n — o, to

(P, 1r°) With probability one. Thus, with probability one, if n is sufficiently
large there exists a unique solution (4;, ---, 8,) to the maximum likelihood
equations (3). Moreover, using Theorems 1 and 2 together with (4) and (5),
it follows that the distribution of the vector

{(nK) (B — 6°),1 < kb < m}
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and the vector
{(nK)*Z:=1 ai(pi — PO, 1 2k < m},

converge to the same distribution, which is the multivariate normal distribution
with mean zero and covariance matrix the inverse of ||G..||, completing the proof
of the theorem.

An extension of the above result to cases where Cr is countably infinite can
be made by applying a result given by Billingsley [1]. The extension requires a
few additional conditions involving the third order partial derivatives of Fy
with respect to 6, - -, 6,,. It may be noted that the asymptotic covariance
matrix of the maximum likelihood estimator, for both the finite and infinite
cases, depends on the Markov property of the design only through the stationary
distribution.

4. Random walk design. A class of block up-and-down methods which can be
analyzed in some detail is the random walk designs. For this design L is a se-
quence, {--+,d_1,do, d1, ---}, of increasing real numbers having no accumula-
tion points. The design function is now given by D(4,r) = 4 + 1,4, 0r,7 — 1
according as 0 = r < by, by <7 < ky,ork, £r £ K,wherek;and k.,0 £k, <
k. < K, are fixed constants; thus {Y,} forms a random walk. We shall now con-
sider the finiteness of various moments which appear in the asymptotic study
of this design.

Let a; and B; denote the transition probabilities of moving up or down, re-
spectively, from ¢ & I. (These are just the tail probabilities of the binomial
distribution with parameter P;.) (Random walks with a; + 8; = 1, 7¢I,
are discussed in [4] and [10].) Since F is a distribution function and L has no
accumulation points, {a;, B8: ;¢ € I} satisfies the following properties:

(6) 273 + ﬁz > 0)
(7) a1 £ a; and B £ Bip,
(8) Bil < aj and o, < By,

for some integers 7; and 45, 41 < 2. Now let
Cr = {1, F(di1) < 1 and F(ds1) > 0}.

Without loss of generality assume 0 ¢ Cr and for each integer 7 let

Li = [Ticioua/B  ifi >0
(9) =1 ifi=0

= [I2:iBer/ae  if7 <O.

From (6), (7), and (8) it follows that
(10) Zi;c,, [i'L; < o
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for each positive integer r. It is easily verified that Cr forms a positive class with
stationary distribution =; = L;/D> L;, ieCp.

Given 7, j e I, 7 # j, let ps; be the probability that the random walk reaches j
before it returns to %, given that it starts at <. Define py; to be 1 or 0 depending
on whether ¢ belongs to Cr or not. We will now show that for any fixed jo & C,

(11) ]IlfugF pij, > 0.

A difference equation technique (ecf. [4], p. 66) can be used to show that, for
J < i,withs,jeCp,
(12) pii = Bi{l + it [k au/Bu} 7,
where we define the empty sum ».: ' = 0. (Cases where both 7 and j do not
belong to Cr may be treated in the obvious manner. By symmetry, the expression
for the case ¢ < j is similar.) The inequality (11) follows upon applying (6),
(7), and (8) to (12).

For each 4, j £ Cr, let mi; and m{? be the first and second moments of the

first passage time from ¢ to j. (Here, 7 and j need not be distinct.) We will now
show that for each e Cr, m{? < w. It will then follow that m < o, for

every i, e Cp.

Suppose Y; = ¢ for some ¢ & Cr. Let ¢ be the first recurrence time of 7. Let &
be a real valued function on I and let U = D _!Z} h(Y,). The expression for the
second moment of U given in [4], p. 83, can be simplified for random walks by
noting that
(13) Map = Msj + My
if 1 <j < kortz>j >k and using the result, shown by Harris [10], that for
distinet 7 and %k in Cp

(14) pir(ma + mi;) = my;.

Substitution of (13) and (14) into the expression in [4] leads to

(15) B{UY = mafd 22 2 iiwec; MGRE) T/ pjs + Diecy (2 — pis)h(4)7i/ psi
+ 2h(3) 2 iisiecr M(G) TS},

provided the series converge absolutely, where C; = {(5,k) e Cr x Cr;i <j <k

or i > j > k}. The finiteness of m{y follows upon setting & = 1 in (15) and
applying (10) and (11). ’
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