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1. Introduction. Let X; < X, < .-+ = X, be the order statistics of a sample
of size n from a continuous distribution function F(x) and let F,(x) be the
corresponding empirical distribution function. Let G(z) and H(x) be two func-
tions of z. We will consider the probabilities

P, = P{inf, [F.(z) — H(z)] = 0};
(2) P, = Plinf,[G(z) — Fa(2)] = 0, inf,[Fa(z) — H(z)] = 0}.

These probabilities are related to the statistics of the Kolmogorov-Smirnov
type in the following way: The corresponding one-sided statistic has the dis-
tribution function

(3) P{sup:. m'[F.(z) — F(z)W[F(2)] < A}

which is a probability of the form (1). The two-sided statistic has the distribu-
tion

(4) P{sup. n!|Fu(z) — F(z)YIF(x)] < N}

which is a special case of (2). In these expressions y(z) is a (non-negative) weight
function. A discussion of these statistics can be found e.g. in Kendall and
Stuart [4].

Wald and Wolfowitz [8] [9] have given recursion formulas for computing
P,, P, and P, . Daniels [2] was led to a probapility of the same form as P, or
P, in connection with a study of the strength of bundles of threads. He found
recursions slightly more general than in [8] by a very similar method. In Section
2 we give a simple derivation of still more general formulas for P, and P, ,
which contain a wider choice of recursions, so that the numerical computability can
be taken into account. Note that two non-recursive formulas for P, or P, are
given by Daniels [2], but unfortunately they are not easily tractable.

In Section 3 a formula for P, is derived which is simpler than the corresponding
formula of [8] but is valid only under certain conditions. Furthermore in Sec-
tions 2 and 3 bounds of P,, P, and P, are given with a view to approximate
calculations.
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Section 4 is devoted to the particular case where the weight function in (3)
and (4) is

(5) Yz) = [x(1 — )

We give a table of percentage points and a truncated power series which ap-
proximates P, in this case. The weight function (5) seems to have been proposed
first by L. J. Savage. As Anderson and Darling [1] pointed out, it assigns in a
certain sense the same weight to each point of F(z). Some arguments in favour
of it and a different and less complete treatment have been given by Vandewiele
and de Witte [6]. Anderson and Darling [1] give information on the asymptotic
behaviour of thé distribution (4). However the question whether the limit
distribution is non-degenerate in the case of the weight function (5) is open.

2. The one-sided statistic.
2.1. The fundamental formula. The event

inf, [G(2) — Fa(2)] 2

is equivalent to the event that every order statistic X; is not smaller than some

.

well defined number o;,i.e. X; = aj,j=1,--- ,n,withay L s £ -+ £ a,,
or equivalently, since F(z) is monotonous, F(X;) = a;,j = 1, -+, n, with
a;j=F(a;). Thus0 Sy 2= -+ 20, = 1.

Let Y, £ Y, = --- = Y, be the order statistics of a sample of size 7 from
F(z) with 7 £ n. Let
(6) Qi(t) = P{n;=1[F(YJ) = aj, F(YJ) = t]}) 1 = 1) 2) P (2

Qu(t) =

In particular Q,(1) = P,. Clearly
(7) Qt) =0 if t=
Ifnow0 < a; <t <t <1, onehas

a;

P{lN=a; S F(Y;) £ {10 [Njmnt = F(Y;) S 8]}
= CHQut)(t —£)*

and consequently
(8) Qi(t) = 2o CEQE)(t — ).
Thus Q:(t) is a polynomial in ¢ of degree ¢ when a; = ¢ < 1. Let ¢i(¢) be a poly-
nomial in ¢ of degree ¢ defined for all values of ¢ and such that g.(¢) = Q.(¢)
everywhere in [a;, 1]. It is clear that
(9) 0(t) = L= Ciqu(t) (¢ — 1)

for all ¢ and ¢'. By setting ¢ = 0 one of the formulas of Wald and Wolfowitz [8]
is obtained.
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2.2, Comzzutatitm of P,. The formula (9) can be used in several ways for
computing P, . Setting in (9) successively ¢ = a; and ¢ = 1, 7 = n, one obtains
the following recursion formulas:

' ﬂ:qo(t,) = 1}
(10) Z”;=U Ciqu(t,)(ai - t,)i—k = 0) 1= ]-y 2) cre, Ny
(11) Pp = Qu(1) = 210 Calqu(d) (1 — £)"

Formula (10) is given by Daniels [2]. By setting ¢ = 0 in (10) and (11) the
recursion formulas proposed by Wald and Wolfowitz [8] are obtained. The

choice ¢ = 1 leads to the more direct recursion considered by Daniels [2]:
QO(]-) = ]-,
Dk CFQu(1) (ai — 1)7* = 0, i=12 - ,n.

These recursions are however not suited to numerical computation as they
involve small differences of large numbers. This feature can be avoided at the
cost of a greater amount of calculation by using the following recursion: Setting
in (9) successively ¢ = a;,¢ = ajyandt = 1,¢ = a., ¢ = n, one obtains

Qﬁ(af)=17 j=1)2:"'yn;
(12) Qi(a;) = 2im CFQulaj)(a; — a;)"™
1= 1725 ’.7— 17.7= 1’2’ e, Ny
(13) Pn = Qn(l) = :l;;)l CniQi(an)(l - an)n—i-
These formulas involve sums of non-negative terms only.
2.3. Bounds of P, . Consider two sets of numbers {a;, j = 1, ---, n} and
{a",7 = 1, ---, n} and let Q;(¢) and Q."(¢t) be defined by (6) where a; has

been replaced by a; resp. a;”. Let P, = Q,/(1) and P,” = Q,”(1). When
of £a; 20,5 =1, -,mn, it is clear that
(14) b/ z P,z P,

The following particular choice of a;" and aj”_, where [ is any integer in [1, n],
will provide useful upper and lower bounds of P, :

’ ”n .

a; = a; = aj, j=1 -, 11,
I_ .

a; = ap, ]_l)"';n7
” .

a; = Q,, ji=1 -, n

It is clear that Q/(¢) = Q:"(T) = Q.(t) for ¢ < I. According to (7),
Q/(a) = Q/(ai) =0 foriz|,
Q (ax) = Q(ai") =0 fori =L
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According to (8), with ¢ = n, ¢ = a;, ¢ = 1, one thus has
(15) Pn, = Qn,(l) = E:’;O Cn1Qi,(al)(1 - al)n—‘ = i;% Clez(al)(l - al)n_i‘

On the other hand, setting in (8) ¢ = n, { = a,,t = 1, one obtains

(16) Pn” = Qn”(l) = 'Z;;O CniQi”(an)(l - an)”-.i
= 2250 Quan) (1 — @)™,
The terms of (15) can be computed using recursion (12) for j = 1, ---, L

The terms of (16) then follow from
Qi) = 20 CiQu(ar)(an — @)™

Again sums of non-negative numbers only are involved.

Note that (16) simply corresponds to a truncation of (13). According to (14)
the expressions (15) and (16) are upper resp. lower bounds of P, and can be
used for approximating it. The larger ! is chosen, the nearer to P, the bounds
will be. Unfortunately actual computations need large values of I because (16),
unlike (15), converges slowly. For the computations described in section 4.3,
the use of an electronic computer was necessary.

3. The two-sided statistic.
3.1. A particular case. The event

inf, [Fa(z) — H(z)] = 0

is equivalent to the event that every order statistic X; is not larger than some
well defined number 8;, i.e.

Xjéﬁf’ j=17""n:
with 81 = 8 £ .-+ £ B., or equivalently, since F(z) is monotonous,
F(Xa)él_bn—i-l—l) j=17"”n:

with 1 — bn_j+1 = F(B,)ThusO Eh=b=s--=b=1
We then have
P, = P[n?=1 a; £ F(X;) £ 1 — byl

We will derive an expression of P, in the particular case where a, < f; or
equivalently

17) an =1 —b,.
Let ¢ and ¢ be such thata, £t <1 — ¢ £ 1 — b, . The probability that there
are 7 observations in [—, F'(¢)], j observations in [F'(1 — ¢'), «] and

n — 4 — j observations in [F'(¢), F7(1 — ¢')] and that at the same time H(z) <
F.(z) = G(z) for all z is

l/iljin — & — QD -Q(£)- (1 — ¢ — £y,
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In this expression Q' (¢) is defined by (6) where a; has been replaced by b;.
Hence

Py = 2aisa[l/ililn — ¢ — DIQLD)Q/(¢)-(1 — ¢ — ),

Let ¢.'(t) be a polynomial in ¢ of degree 7 defined for all values of ¢ and such that
¢/ (t) = Q/(t) everywhere in [b;, 1]. It is clear that

= 2z Vililin — & — Hlet) ¢’ ()1 — ¢ — )
for all ¢ and ¢. This can be written
(18) Pp= 2k Chf (1 — ¢ — &))" 20 Ch'qult) - qui(t).

By suitable choices of ¢ and ¢ convenient methods of computatlon of P, can
be devised, as was the case in Section 2.2.
3.2. Bounds of P, .~Define the events

A = {inf,[G(z) — Fu(@)] 2 0}, B = {inf. [Fa(z) — H(z)] = 0);
and let A and B be the complementary events of A and B. Then
P, =P(AnB) + P(An B),
P, = P(AnB)+ P(AnB),
P, = P(An B).
Hence
(19) P(AnB) + Po+ Pu=P. + 1.

Let now G(x) and H'(z) be functions of z such that G(x) = G(x)
and H'(z) £ H(z). Define A B, A B, P,,, P.', P, for G'(z) and H'(x)
in a similar manner as A, B, A B P f were defined for G(x) and H(z).
Since clearly

P(A'nB') £ P(AnB),
relation (19) provides a lower bound for P, :
Pnan,"l'(Pn_Pn,) +(£n__Pn,)~

An upper bound of P, is given by the following inequality which has been
proved by the authors [7]:

Pn é Pn,’Pn'.En'[Pn,’En’]_l'

These bounds make possible an approximate caleulation of P, if one knows
functions G'(z) and H'(z) such that P, is more easily calculated than P,.
In particular, choosing @(z) = 1and H'(z) £ 0forallz, onehas P,/ = P,/ =
P,’ = 1, and the bounds are written as functions of the corresponding one-sided
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probabilities exclusively:

(20) P,
(21) P,
On the other hand any alternative ch01ce of @(z) and H'(z) provides closer
bounds than (20) and (21). Wald and Wolfowitz [8] proved (20) and conjec-
tured (21). Professor W. Hoeffding pointed out to the authors that (21) also
can be deduced from a theorem of Lehmann [5]. This is explained in [7].

When G(z) and H(z) are such that (17) is not satisfied, formula (18) can
nevertheless be used for finding bounds of P, . Let » be any number and let

||V
"Ul
+

P, -1,

I|A
Lo
N

n .

G(z) = Gx) for z = u
=1 for = > u;
H'(z) =0 for z <u
= H(z) for z = w.

Then P, can be calculated by (18), since clearly a,” < 1 — b,.

4, The particular weight function (5).
4.1. The quantities a; and b;. When the particular weight function (5) is
chosen, the function G(z) is defined by

G(z) = F(=) + M {F(2)[L = F(z)]}}
and consequently
i/n = a; + M a1 — a,-)]*
Unfortunately this express1on of a;, when put in formula (10), does not lead
to a simple expression for P,. However a development of a; in powers of A

will lead in Section 4.2 to a useful series for P, .
Setting

o(a:;) = (1 — nas)n™ (1 — a;)™"

one obtains a; = N ¢(a;) and, since a; = 0 when A2 = 0, the development of
a. is given by Lagrange’s formula (see e.g. Goursat [3]) in the form

= 2 BTN e(an)] /dad o=
Using complete induction for finding the derivative one obtains finally
(22) a; = Z;O=l(_1)k+lk—l 2k oy~
S b YT (= 1) Ok — m — D).

On the other hand one verifies that b; = a;fori = 1,2, --- ,n,and P, = P,.
Hence by (20) and (21)

(23) 1—-P2<1—-—P,<2—2P,.
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These inequalities will_be used in Section 4.3.
4.2. Development of P, and its inversion. When in formula (10) a; is replaced
by its expression (22), one obtains by (11), setting ¢ = 0

P,=1— X7 — (2 =30\ — (10 — 570" + 48n")\°
(24) — (74 — 1021n7" 4+ 2743n7% — 17970 °)\"°
— (706 — 19123n~" + 11190507 — 213619n~° + 1201320 )\ 7%

By inversion of this series one obtains
NP =(1—=P,)—(2=3n")(1 = P,)" — (233" +30n7")(1 — P,)’
(25) — (14 — 48In~" 4 16780 — 1212n7°)(1 — P,)*
— (134 — 8083n~" + 65246n" — 146110n~° + 88812n*)(1 — P,)°

Unfortunately we did not succeed in finding the general term and a truncation
error for these series. Their comparison with exact calculations carried out on a
digital computer is discussed in the next section.

4.3. Numerical results. Let

(26) 1 — P, = P{sup, n}{F(2)[1 — F(z)}[Fa(z) — F(z)] = N.

Table 1 gives the values of A which are necessary for carrying out the one-sided
test ‘using standard levels of significance. (As will be seen the unusual levels
0.025 and 0.005 are necessary for the two-sided case). The columns with head-
ings 0.1 and 0.05 were computed by successive interpolations with the help of
formulas (15) and (16) where [ was chosen so as to ensure the precision mentioned
in the table. The other columns were computed by series (25) taking all five
terms fully written and after checking its precision in the proper region.

The curves of Figure 1 are derived from additional computations by formulas
(15) and (16). All computations were carried out on a digital computer.

The precision of series (24) has been examined for n £ 100. Taking the five
first terms the relative error on 1 — P, is smaller than 10~ when X = 4, than
10~ when X = 5 and than 10~* when A = 6. Taking the two first terms only this
error is smaller than 10“2‘when \ = 6. For smaller n the convergence is somewhat
more rapid.

Using formula (23) the two-sided test can be carried out with a good approxi-
mation by means of Table 1. As an example suppose n = 20 and take A = 6.477;
then P, = 0.975 and 0.049,375 < 1 — P, = 0.05. The corresponding significance
level thus certainly is smaller than 5% with a possible deviation of 0.000,625
or a possible relative deviation of 1.25%.
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TABLE 1

The variable \ as a function of n and (1 — P,) according to equation (26). Values of \ either
read directly or interpolated linearly for additional values of n are guaranteed to entail a
relative error on (1 — P,) smaller than 0.1 %.

1—"Pn
n
0.1 0.05 0.025 0.01 0.005
1 3.000 4.359 6.245 9.950 14.107
2 3.169 4.498 6.352 10.022 14.159
3 3.247 4.556 6.394 10.047 14.177
4 3.294 4.589 6.416 10.061 14.186
5 3.327 4.611 6.430 10.069 14.191
6 3.351 4.627 6.440 10.074 14.195
7 3.370 4.639 6.447 . 10.078 14.198
8 3.386 4.648 6.452 10.081 14.200
9 3.399 4.655 6.457 10.084 14.201
10 3.409 4.662 6.460 10.085 14.202
11 3.419 4.667 6.463 10.087 14.203
12 3.427 4.671 6.465 10.088 14.204
13 3.434 4.675 6.468 10.089 14.205
14 3.441 4.678 6.469 10.090 14206
15 3.446,9 4681 6.471 10.091 14.206
20 3.469,6 4.692 6.477 10.094 14.208
25 3.485,2 4.699 6.480 10.096 14.209
30 3.497,0 4.704 6.482 10.097 14.210
40 3.513,7 4.711 6.485 10.098 14.211
50 3.525,5 4.715 6.487 10.099 14.211
70 3.541,3 4.720 6.489 10.100 14.212
100 3.556,0 4.724 6.490 10.101 14.213
n =100 ] 1
n=10 M~
n=2 05
n=1
02
X 0.1
O_C
| N 005 ! ]
il -
- 002 T
| N
: 001
: |
i 0005
! |
|
3 45 10 200002
—_— 7\

* Fra. 1. The variable N defined by equation (26) as a function of (1 — P,) for n =1, 2,
10 and 100.
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