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THE PROBABILITY THAT THE SAMPLE DISTRIBUTION FUNCTION
LIES BETWEEN TWO PARALLEL STRAIGHT LINES'

By J. DugrBIN

London School of Economics and Political Science

1. Introduction. Suppose that 0 < z; < --+ =< z, = 1 is an ordered sample of
n independent observations from the uniform (0, 1) distribution. The sample
distribution function is

Fuo(z) =7/n, 2, = 2<%y,
=0, <,
=1, T =%,

Let S denote the sample path of F,(z) as £ moves from 0 to 1. In this paper we
consider the probability p.(a, b, ¢) that S lies entirely in the region R between
thelinesny = a + (n + ¢)zxandny = —b + (n + ¢)z, (a,b,a + ¢, b — ¢ > 0).
A knowledge of this probability is important for problems arising in tests of good-
ness of fit, tests for the Poisson process and tests of serial independence.

For the case @ = b = an integer and ¢ = 0, a set of simultaneous recurrence
relations were obtained by Kolmogorov (1933) as a preliminary step in the de-
velopment of the asymptotic form of p,(a, a, 0). These were solved by Massey
(1950) to give a linear difference equation of order 2a — 1 in the quantity
pa(@, a, 0)n"/n!. In Section 2 we obtain the general form of Kolmogorov’s rela-
tions and from them deduce a generalization of Massey’s difference equation ex-
pressed in terms of the quantities ¢g.(a, b, ¢) = pa(a, b, ¢)(n + ¢)"/nl. Sur-
prisingly, the coeflicients of this difference equation do not depend on ¢ or n and
in fact depend only on @ 4+ b. Initial conditions are given whence values of
pa(a, b, ¢) can be obtained by repeated applications of the difference equation.

For the case where c is a positive integer an explicit generating function for
g.(a, b, ¢) is given in Section 3, generalizing results of Kemperman (1961) for
the case ¢ = 0. This is applied to the study of the distribution of the two-sided
Kolmogorov statistic C, = max; [xr; — j/(n + 1)| derived from Pyke’s (1959)
modified sample distribution function. The methods used are different from
Kemperman’s and are more elementary.

The asymptotic form of p,(a, b, 0) was obtained by Doob (1949) by methods
based on the reflection principle. In Section 5 we consider the application of a
variant of this principle to the finite-sample case. It turns out that while the
technique does not give exact results in a simple form, some sharp inequalities
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which should be adequate for many practical applications can be obtained. The
simplicity of these results may be contrasted with the complicated character of
some exact formulae obtained by Bla/ckman (1958) by a reflection method. The
limiting form of p.(a, b, ¢) for a = an?, b = pn}, ¢ = yn? is given in Section 6.

Finally, we mention that the Appendlx to the paper by Barton and Mallows
(1965) contains a useful bibliography of recent work on Kolmogorov-Smirnov
statistics.

2. A generating function for g.(a, b, ¢). Let (X;, j/n) denote the points at
which the line with slope (n + ¢)/n passing through the point (1, 1) meets the
horizontal linesy = j/n,j = n,n — 1, -+, —[c] + 1, —I¢]. Clearly X, = 1 and
X _iq is the last value =0 in the sequence X, , X,—1, - - - . [c] denotes the largest
integer =c, regardless of the sign of c.

Consider a Poisson process with occurrence rate n + ¢ and sample path S’
starting at the point (0, 0). The probability that the path S of F,(x) remains
inside R as x moves from 0 to 1 is the same as the conditional probability that S’
remains inside R given that it passes through (1, 1). Let us therefore consider the
latter probability. For convenience assume that @ 4 ¢ and b — ¢ are not integers;
results for the integral case then follow immediately as limiting values.

The possible points at which S’ can cross the line x = X; a,nd remain inside B
have y-coordinates [j — b + ¢ + 1]/n, [j — b+ c+ 2l/n, .-+, [ + a + c]/n.
Denote these points by A, -+, Ajp wherep = [b — ¢] + [a + ¢] + 1. Given
that S’ passes through A;; the probability that it passes through A;.x is the
probability of exactly k& — ¢ + 1 observations in the interval (X;, Xju), ie.
ek —i+ DG k=23-,p—Lk=i—1).

For i, k = 1, p we have to allow for the fact that b — ¢ and a + ¢ are not
integers. Letl—-6—b—c—[b—c]and1—-e—a+c— [a+c] In moving
from Aj to A (B =1, ,p — 1) the path S8’ will remain in R only if at
least one observation occurs in the interval (X;, X; 4+ (1 — 8)/(n + ¢)). The
probability of & observations in (X;, X;u), at least one of which is in
(X;,X;+ (1 —8)/(n+¢))ise (1 — &)/k!. Thisis therefore the probability
of S moving from Aj; to A;41 % and remaining 1ns1de R. Similarly, the probablhty
of movmg from Aj; to Aju, inside B is e(1 — &) /(p — ¢ + 1)},
i = 2, -+ ; p. Finally, the probability of movmg from A,1 to Aju,p inside B is
eN(1 — a” — ¢®)/plford + e < landise{l — 8* — e’ + (6 + ¢ — 1)} /p! for
6+ e> 1.

Let e~ u;; be the probability that S’ passes through Aj; while remaining in-
side R and let u;/ = [uj, -, Ui, j = ¢,c +1,---, n, where for notational
simplicity we write ¢’ = —[c]. (The term in the exponent comes from the fact that
(j + ¢)/(n + c) is the y-coordinate of A;;). The transition from u; to ;41 is then
given by the relation

(1) ui+1=Hui7 j=c',~~,n—1,

where the transition matrix H is given by
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r 1—3 1 0 0 0
1-¢ )
21 1 1 0
1—9° 1
30 al 1 1
(2) H= . . .
0
1
1-8"—+h 1—-¢"  1=¢ P
. p! p—1)! 21 ]

whereh = 0if 6 + e < landh = (6 + ¢ — 1)?if 6 + > 1.

To obtain the probability of S arriving at (1, 1) we require the element w,; of
u, corresponding to the point (1, 1); thishas¢ = [b — ¢] + 1. Denote the vector
with one in the ([b — ¢] + 1)th position and zeros elsewhere by w. Then the re-
quired element is w’H™ u,, . The probability that S’ passes through (1, 1) after
remaining inside R is therefore e~ ™*?w H" )y, . Since the unconditional prob-
ability of " passing through (1, 1) is ¢ “*?(n + ¢)"/n!, the conditional prob-
ability pa(a, b, ¢) that S reaches (1, 1) after remaining in B, given that it reaches
(1,1),isn! wH™ e /(n + ¢)™

In Section 1 we defined g.(a, b, ¢) as (n + ¢)"p.(a, b, ¢)/n!. Consequently
g(a, b, ¢) = wH"™ . which is the coefficient of 2" in the generating function

f(z) = 2row Hug™
= 2wl — zHue ,

the series expansion of [I — zH] ™ being valid for [¢A| < 1 where \ is the largest
eigenvalue of H in modulus. Let T' be the adjoint matrix of I — zH. Then

(3) f(z) = £wTus/|I — 2H]|,

where w'Tu» and |I — zH| are polynomials in z of orders p — 1 and p at most

respectively.
Putting 2 = —y " we have |[I — 2H| = y ™ |H + yI|. We prove by induction

that
(4) H + yI| = 2\ [(a + b — 5)7/1y".

Recalling that 1 — 6 = b —c —[b —¢c,1 —e=a + ¢ — [a + ¢] and
p=[—c+la+c+ 1wehavep = a + b+ & + ¢ — 1. Thus the upper limit
of summationin (4) ispif 8 + ¢ < landp — 1if 6 4+ ¢ > 1.

” Denoting by D,(3, €) the determinant
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1—6+4y 1 0 0----0
(1—-8)/2! 1+y 1 0
(1—16%/3! 1/2! 14y 1
0
. 1
Q=0 —€¢+n/rt A=N/ =1 « « - - - 1—et+y
we prove (4) by showing that '
(5) Di(5,€) = 2iol(r + 1 — 8 —e— /iy,

where when 6 + ¢ < 1,7 = rand h = 0, while when 8 + ¢ > 1,7 = r — Land
= (8 4+ ¢ — 1)". Expanding by the first column we have

D(5,¢) = (1 — 8+ y)D,1(0,¢) — ((1 — &)/2!)D,5(0, €)
(6) + o (SD)THA =T/ (r = D)L — e+ )
+ (=) =8 =€+ h)/rl, r=234---.

Assuming that (5) is true when 7 is replaced by 2, 3, - -+ , 7 — 1 and taking first
the case & + ¢ < 1 we find that the coefficient of 3* on the right-hand side of
6)=1Lk=r;=(k+1—86—¢*/(r —k)\k=r—1,---,1;and =
(1 —8 —¢)/rl, k = 0. Thus (5) is true for d + ¢ < 1. When § + ¢ > 1 the
term (—1)""k/r!in (6) contributes an amount (—1)"(8 + ¢ — 1)"/r! which
cancels out the constant term (1 — & — €)"/rl. Thus (5) is true for 6 + ¢ > 1
with #’ = r — 1. That (5) is true for r = 2 is easily verified. Thus it is true for

r = 3,4, --- ;in particular for » = p, and for all §, e.
Substituting y = —z" in (4) we obtain
(7) I — zH| = 2 (=1)((a +b — §)/ihe

= g(z,a + b) say.
Cross-multiplying in (3) and writing

(8) f(Z) = Z:o=c' qf(a; b: c)zr
we have '
(9) 9(z, 0 +b) Do ga, b, c)e = 27w Tue .

Since the right-hand side of (9) is a polynomial of degree at most ¢’ +p — 1 =
—[cd + [a + ¢] + [b — ¢], on equating the coefficients of 2" on both sides of (9)
we have '
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(10) P (—=1)((a + b — 5)7/ig-i(a, b, ¢) = 0,
=—ld+lb+d+b—d+1,—[d+le+d+b—c+2-

where ¢,(a, b, ¢) = 0fors < 0.

This is the required generalisation of Massey’s difference equation ((1950), p.
118; note, however, the misprint » = 1 for h = 0 in Massey’s formula). For the
case ¢ = 0, (10) is implied by Kemperman’s generating function [(1961), 5.34
and 5.40] It is rather surprising that as a function of a, b, ¢ and n (10) depends
only on a + b, apart from the range of 7. The required probability of S remaining
in R is then obtained from the relation p.(a, b, ¢) = g.(a, b, c)n!(n + ¢)™".

To use (10) in practice we need suitable initial conditions. The most important
case is that where ¢ is an integer. u, then gives the probabilities of S’ passing
through points on the line z = 0, i.e. unity for the point (0, 0) and zero otherwise.
Thus u. is the vector with unity in the [b 4+ 1]Jth position and zeros elsewhere.
But g.(a, b, ¢) = w'H" "y, where w is the vector with unity in the [b — ¢ + 1]th
position and zero elsewhere. Thus ¢.(a, b, ¢) is the ([b — ¢ + 1], [b + 1])th element
of the matrix H™*,r = —¢, —¢ + 1, - -+, [a] + [b] — c¢. The initial conditions
can therefore be obtained simply by calculating powers of the matrix H. For the
case where ¢ is =0 as well as being integral an alternative is to recognise that for
r=—¢ —c +1,---, —c + [a] + [b], the probability of leaving R given a
sample size of r is the sum of the probabilities of crossing the two lines bounding
R, since for r < [a] + [b] — cit is not possible for a single path to cross both lines.
The probabilities of crossing the separate lines are, for this purpose, most easily
obtained from Dempster’s formula (1959, (5')). The required ¢,(a, b, c) are then
derived from the values so obtained. The method is exemplified in Section 4. A
further method is given in the next section immediately following equation (11).

For the general case a method which is straightforward in principle is to calcu-
late u. directly and to obtain ¢.(a, b, c¢) as the [b — ¢ 4 1]th element of H U .

3. Explicit forms. When ¢ is an integer =0 the generating function (3) can
be simplified since w'Tue is then the ([b — ¢ + 1], [b + 1])th element of T', which
is the ([b + 1], [b — ¢ + 1])th co-factor of I — zH. By deleting the [b + 1]th
row and the [b — ¢ + 1]th column of I — zH we see that this co-factor is (—1)°
times (—z)° times the product of the following two determinants of orders
[b —cland p — 1 — [b] = [a] respectively:

1—2(1—39) —2 0----- 0
—2((1 — 8°)/2!) 1—2 —z-eee-

—2((1 = ") /Ib — )
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and
1—2 B | I, 0
—2/2' 1 —2 —2 ceveeenanns 0
—2
—2((1 — )/[a]!) - - 1—2(1 —e)

But these have the form |I — zH| withp = [b — c], e = 0 and withp = [a], 6 = 0
respectively. Their product is therefore g(z, b — ¢)g(z, a) by (7). Substituting in
(3) we have .

(11) f(z) = g(z, a)g(2, b — ¢)/g(2, a + b).

Equating the coefficients of 2" on both sides of the relation g(z, a + b)f(z) =
g(2,a)g(z,b —¢) forr = 0,1, ---, —c + [a] + [b] gives an alternative way of
getting the initial conditions needed for the application of the difference equa-
tion (10).

Picking out the coefficient of 2" in (11) and multiplying by n!/(n + ¢)" we
have the exact form

(12) pa(a, b, c)
= (nl/(n + ¢)") 2L D (= 1) yers(a — ) (b — ¢ — 5)°/rls!

forn = [a] + [0 — c], where v; is the coefficient of 2’ in the expansion of
g(z,a + b7 ie.

(13) v = (=172 {4+ -+ + dm) /i -+ nl} TTia (—1)%
{(a +b — h)"/AY™,

where >’ indicates summation over all sets (4, - - - , %m) Of non-negative integers
satisfying ¢ + 24, 4+ -+ + m2, = j and where m = [a + b]. This generalises
Kemperman’s [(1961), 5.40] result for ¢ = 0.

4. Application to Pyke’s modified sample distribution function. Pyke (1959)
has suggested a form of the sample distribution function based on plotting the
points (z;, ¢/(n + 1)) instead of (z;, 2/n) and has given reasons of symmetry
supporting the suggestion. There are other reasons for considering tests based on
this forin arising from the faet that these tests occur more naturally in problems
of testing serial independence in time-series analysis and in testing the hypothesis
of a Poisson process than do tests based on the usual form F,(z) [Brunk (1962);
Durbin (1967)].

- A two-sided statistic of Kolmogorov type based on this approach is

(12) C. = max; |z; — j/(n + 1)|.
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Its distribution is given by
(15) Pr(Cn £ a/(n+1)) =Pr(—a/(n+1) +j/(n+1)
<z;2a/(n+1)+j/(n+1) forall j=1,---,n)

Now the event Fn(z) < a/n + (n + ¢)x/n for all z in (0, 1) is the same as the
event j/n £ a/n + (n + c)z;/n, ie. x; = —a/(n + ¢) + j/(n + ¢), for all
j =1,---,n. Similarly the event F,(z) = —b/n + (n + c)z/n for all zin
(0, 1) is the same as the event j/m = —b/n + 1/n + (n + c)z/n, ie.
z; < (b—1)/(n+¢) +3j/(n+c)forallj=1,---, n. Since p.(a, b, ¢) =
Pr{—b/n + (n + ¢)x/n £ Fu(x) £ a/n + (n + c)z/n for all z in (0, 1)} it
follows that '
(16) pa(a, b, ¢) = Pr(—a/(n +¢) +j/(n +¢c)

<z, 2 (b—1)/(n+¢c)+j/(n+c) forall j=1,---,n).

Comparing (15) and (16) we deduce, by takingb = @ + land ¢ = 1,

(17) Pr(C, £ a/(n+ 1)) = pa(a,a + 1,1).
The generating function (11) reduces to
(18) f(z) = {g(z, a)}*/g(2, 2a + 1).

Writing ¢a(@, @ + 1, 1) = gu(a) the difference equation (10) gives
(19) X (—1)((2a+ 1 —5)7/ig-i(a) = 0,7 = 2la] 4 1,2[a] +2, --- .

To obtain initial conditions we first note that ¢_1(a) = 0. Forr = 0,1, --- , [a]
it is clear that if S’ reaches the point (X, , r/n) it cannot previously have left K.
Thus the conditional probability that S’ remains in R and reaches (X, , r/n) is
the same as the unconditional probability, namely e " (r + 1)7/rl. It follows
that ¢.(a) = (r + 1)"/riforr =0, ---, [a].

Forr = [a + 1], -+, 2[a], S’ can cross either the upper line or the lower line
but not both on its way from (0, 0) to (X,, 7/n). Thus the probability that it
leaves R is the sum of the probabilities that it crosses either line. By symmetry,
these two probabilities are equal. The conditional probability of crossing either
line given that S’ passes through (X, , /n) is easily obtained from a formula of
Dempster (1959), (5'). Dempster showed that the probability that the path of
Fa(z) crosses the line through the points (0, §), (1 — ¢, 1)(8,¢ > 0) is

(20) Qu(n, 3, €) = e 526 (F)(e + (1 — /(1 — 8))i/m)"™
(1 —e— ((1 = /(1= 8)j/n)"".

For the present application we find we need to take § = a/r,e = (a + 1)/(r+1)
and n = r. On substitution, (20) gives for the probability that S’ lies between the
two lines,

(a+ Dr+ D7 X e+ 1+ )7 (r —"a =)
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To obtain ¢,(a) we must multiply this by the unconditional probability of S’
passing through (X, , r/n), namely ¢ “*’(r 4+ 1)"/r], and divide by ™. Per-
forming this calculation we obtain for the set of initial conditions needed for the
full solution of (19),

q"(a) =0, r = —1,
(21) = (T + l)r//r!; r=20,-.--, [a]7
= (r+1)7/rt = 2(a + 1) 2357 ((a + 1+ 5)7/i)

(r—a—J)’_’/(r—J)', r=[a+1],~~-,2[a].
It is interesting to compare these results with the corg‘esponding ones for Kol-
mogorov’s statistic D, = max,; [Fu(z) — z|. The generating function for
Pr (D, = a/n) corresponding to (19) is
(22) 1(2) = {9(z, a)}"/g(z, 2a)

with consequential difference equation
(23) 2% (—1)((2a — 5)7/i)ar—i(a) = 0, r = 2[a] + 1,2[a] + 2,

and initial conditions

g(a) = 1, r=20
(24) =17"/rl, r=1---,[a],
= 1"/rl — 2a 245 ((a + 7)Y
(r—a—5"0r =Y, r=la+1],--,2[a],

where now ¢n (a) = ¢n (a, a, 0).

5. Inequalities for p.(a, b, c). Denote the lines ny = ¢ + (n + c¢)z and ny =
—b 4+ (n + ¢)z by 4, B. As x moves from 0 to 1 let 4; be the event S crosses A
at least once, A, the event S crosses A then B at least once, A; the event S
crosses A then B then A at least once, and so on. Similarly, let B; be the event S
crosses B at least once, B, the event S crosses B then 4 at least once and so on.
Let @, be the event S crosses A but not B, @, the event S crosses A before crossing
B, then crosses B but does not subsequently cross A, and so on. Let £ be the
event S crosses A or B at least once. Then

E=B5B+&
=4+ B, — B: — G

(265) = 25 (—=1)7(4; + B;) — Bu — Gu
(26) = 2 3L (=17 4; + B;) + Boya + Gaupa .
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Let ; = Pr (4,) and g; = Pr (B;). Since pa(a, b, ¢) =1 — Pr(E) we have
from (25) and (26).

(27) 14 235 (—1)(e; + B;) + B
< pa(a, by¢) =14+ D23 (—1)(aj + 8;) — Bun, k1=1,2---.

A similar pair of inequalities obtained by replacing Bu, Bata in (27) by aw,
aziy1 can be determined by an identical argument. Which pair is preferred de-
pends in part on the relative magnitudes of the a’s and 8’s, but generally speaking
the form given is to be preferred since sharper inequalities can be given for §;
than for a; when j is even (there is no advantage when j is odd).

(27) implies the further sets of inequalities

(28) 1+ 2235 (—1)(e; + B85) + B
< pala,b,¢) S 14 205 (=1)(es + 8);
(29) 1+ 235 (—1)(e; + B))
= pn(a) b7 C) =1 + Z?il(—l)i(al + BJ) - B2k+1y k= 17 2’ Tt .
For practical work these are preferable to (27) since the maximum value of r
in the ., B, required is the same on both sides.
The probability that S crosses the line A = ny = a 4+ (n 4 ¢)z fora > 0,
a + ¢ > 0 is given by the known formulae
(30) hu(a,¢) =1—(a+c)(n+c) "2 ()G—a)(a+c+n—j""
(30" (@a+e)(n+ )" Xitan (NG —a)(a+ec+n—5)"""
[Pyke (1959), Dempster, (1959)]. Since throughout this section » and ¢ remain
constant we will write h(a) for h.(a, ¢). By reversing the order of the sample it
follows that the probability of S crossing B is k(b — ¢). Thus &1 = h(a) and
B = h(b - C).
To evaluate 8; , consider a path in the class Bs, i.e. one that crosses B then 4

at least once. Let Pp be the first point at which S crosses B and let P, be the
first point after P at which S crosses A from above. Let ps , p4 be the z-coordinates

of Ps, P, ..Construct a new sample %1, - - -, ¥» by interchanging the intervals
(0, ps), (ps, Pa), the relative positions of sample points within intervals being
kept unchanged.

Let the sample path for the new sample be denoted by S’. As = moves from
0 to px — ps, S rises through a vertical distance (p. — ps)(n + ¢)/n +
a/n + b/n since over the interval (ps, p4) S rose from line B to line A. Let L(d)
denote the line ny = d + (n + c¢)z. It follows that S’ crosses the line L(a + b)
at the point with z-coordinate p, — ps, say P . Moreover this is the first point
at which S’ crosses L(a + b) from above.

“Conversely, let 8’ be a sample path which first crosses the line L(a + b)
from above at a point P’ and subsequently first crosses A at P, . Let ps, ps
be the z-coordinates of Ps, P, . Interchange the intervals (0, ps’), (ps, P4)
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without altering the relative positions of points within the intervals. Let S be
the sample path of the new sample. By a similar argument to the above it follows
that S crosses B then A. Moreover the point Py at which S crosses B is the first
such point and P, is the first point at which A is crossed from above after Pg.

We have therefore shown that there is a one-to-one correspondence between
sample paths crossing B then A and those crossing L(a 4 b). It remains to show
that corresponding paths are equi-probable. This can either be taken as im-
mediately obvious because of the uniformity of the distribution or can be shown
formally as follows.

Lemma 1. Let z,, x, be the largest of the observations x;, - - - , &, less than ps,
D4 respectively. Let

Yi = Zipr — DB, 1,'=]_,"-,8—7',
=xi—s+r+pA_‘pB, 7:=8—T+1,"',S’
= z;, i=s+1,---,n,

Then the probability density at (y1, +++ , Yn) s the same as that at (xy1, « -+, Tn).
Proor. The probability of s — r observations in the interval (0, p. — ps),
rin (psa — P, Pa);n — sin (pa, 1) is

all(s — r)lri(n — $)7(pa — p8) 7P (1 — p)™™,
which is independent of the order of the intervals. Multiplying by the con-

ditional density at y1, - -+, ¥.—r given that there are s — r observations in (0,
pa — Pa), which is the same as that of z,41, - - -, x, given that there are s — r
observations in (ps, p4), 1.e. (s — r)!/(ps — ps)"", and similarly for the other
two intervals we have for the density at (y1, « -, y») n!, which is the same as
the density at (21, <<« , Za).

It follows that the probability of S crossing B then 4 is the same as the prob-
ability of S crossing L(a + b), i.e. B2 = h(a + b).

Unfortunately the same argument cannot be applied to o, since a one-to-one
correspondence does not hold between paths crossing L(a + b) or L(—a — b)
and paths crossing A then B. However, we are able to obtain some useful in-
equalities. Suppose S is a path crossing A then B at least once. Let P, be the
point at which it first crosses A from above and let Pp be the first point after P,
at which it crosses B. Letting p4 , ps be the z-coordinates of P4, Pp construct a
new sample by interchanging the intervals (0, p4), (P4, ps). Arguing as before
we find that the new sample path, S’ say, crosses the line L( —a — b). By Lemma
1 paths S and 8" are equi-probable, so that to every path crossing A then B
corresponds an equi-probable path crossing L( —a — b). Thus a; < the prob-
ability of S crossing L(—a — b), i.e. oz < h(a 4+ b — ¢). We can only obtain an
inequality because the correspondence is not one-to-one, i.e. not every path
which crosses L( —a — b) subsequently crosses B from above on its way to (1, 1).

We now seek a correspondence the other way round and hence deduce a
lower bound for a;. Let S’ be a sample path crossing L(—a — b — 1) and let
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P, be the first point at which it erosses L( —a — b — 1) as z moves from 0 to 1.
Let P5’ be the first point of S’ after P, of the form (z;, j/n) which lies on or
above theline L( —b — 1). Let d be the vertical distance of P5’ above L(—b — 1).
Then 0 < d < 1/n so P5’ lies below the line L( —b), i.e. below B. Letting p4’,
ps be the z-coordinates of P,’, P5 construct a new sample by interchanging the
intervals (07 pA,): (pA,y pB’)'

Let S be the sample path corresponding to the new sample. As £ moves from
D4’ to ps’, S’ rises through a vertical distance (ps’ — p4')(n + ¢)/n + a/n + d.
Consequently as « moves from 0 to ps’ — p.’, S rises to a point which is above 4
by an amount d. Since S also passes through P5’, which is below B it follows that
to every path S’ crossing L(—a — b — 1) corresponds a path S crossing 4
then B. The equi-probability of S" and S is a consequence of the following.

LeMMA 2. Let 0 £ y1 = -+ = yn = 1 be a sample with density n!, let y, be
the largest of the y’s < p4’ and let ps denote y,, s > r. Let

Ti = Yirr — D4, t1=1---,8—1,
=Yirs+ P8 — P4, di=s—r+1 -5,
= Yi, t=s4+1 -, n
Then the sample density. at x1, -+, Zn 18 0!

Proor. The probability of s — r — 1 observations in (0, ps’ — p4’), one in
(ps' — pa’s P58 — pa’ + day), rin (p5' — pa’, ps) and n — sin (ps, 1) is

(s —r — Dirt(n — )T (ps — pd) " p (1 — ps)" dxo_s.

Multiplying by the conditional densities of #1, «*+, Ze—po1, Of Toupqr, =+, Zs
and of Zs41, - -+, £, we have the result.

The probability of crossing A then B is therefore = the probability of crossing
L(—a — b — 1),ie. as = h(a + b — ¢ + 1). Putting the results together
we have

(31) Ma+b—c+ 1) Za = ha+b—c)

To deal with the remaining cases we need to state the basic results obtained
above in a slightly more general form.

LemMA 3. The probability of crossing L( —e) then A then B then A then B - - -
(p crossings) at least once = the probability of crossing L(a + e) then B then A
then B --- (p — 1 crossings) at least once (¢ > 0,p = 2,3, --+).

LemMA 4. The probability of crossing L(f) then B then A then B then A --- (p
crossings) at least once =< the probability of crossing L( —b — f) then A then B
then A --- (p — 1crossings) at least once and = the probability of crossing L( —b —
f — 1) then A then B then A --- (p — 1 crossings) at least once (f > O,

P = 27 3) e )-
., The proofs are essentially identical to those for the special casese = b, f = a
and p = 2 considered above.

Consider 8; = the probability of crossing B then A then B - - - (2j crossings).
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By Lemma 3 this = the probability of crossing L(a + b) then B then 4 ---
(2§ — 1 crossings). Applying Lemma 4 and Lemma 3 successively j — 1 times
each we have B; < the probability of crossing L(ja + jb) and = the probability
of crossing L(ja + jb + j — 1), i.e.
(32) h(ja + jb + j — 1) = B < h(ja + jb).

Similarly for 8;;;1 we require j applications each of Lemmas 3 and 4 giving
(33)  h(ja+ (+ b —c+J) S Boyn S h(ja + (G + b — o).

For os; we need j applications of Lemma 4 and j — 1 of Lemma 3 giving

(34) h(ja + b — ¢ +j) < o < h(ja + jb — ¢),
and for as;;1 we have similarly
(35) R+ Da 4+ jb +j) < oy = (G + 1a + jb).

On substituting in (27), (28) or (29) we obtain the required inequalities on
pa(a, b, ¢). From a practical point of view the most important of these is the
simplest which is obtained by taking k¥ = 1 in (28) giving
(36) 1—h(a) — kb —c)+ h(a+b) = pa(a,b,c) =1 — h(a) — k(b —c)

4+ h(a 4+ b) + h(a + b — ©).

Taking k£ = 1in (29) gives

1 —nha) —b—c)+ha+db)+ha+b—c+ 1) — (22 +Dd)
(37) — hla + 2b — ¢)
< pala byc) £ 1 —ha) —h(b—c)+ Ma+Db)+ha+b—c)
—hla+20 —c+1).

Asymptotically, for p, moderately near to unity the dlfference between the
bounds is very small. For lnstance, forc=0anda = b = M} correspondlng to
the Kolmogorov statistic, (36) gives 1 — 2h(n\) + R(2n\) < pa(nt )\ n"")\ 0)
< 1 — 2h(n}\) + 2h(2n*>\) Applvmg Smirnov’s result h(nh) — ¢ =
say, we have h(2n ) — ¢® = o' Taking « = 0.1 we see that for p, > about
0.8 the difference between the upper and lower bounds of (36) is asymptotically
less than O. 0001 Snmlarly, the difference between the bounds (37) is asymp-
totically e 2

By judicious use of the information in Birnbaum’s (1952) Table we are able
to obtain the following results for finite samples, again for the case of Kolmo-
gorov’s statistic for which ¢ = 0 anda = b.

These results suggest that (36) is a very useful inequality for values of p.

not too far from unity but that the improvement from (36) to (37) is only likely
to be important as the sample size becomes fairly large.

6. Asymptotic forms. The limiting form of p.(a, b, ¢) is easily obtained by
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TABLE
Differences between bounds in (36) and (37)

Difference between bounds

n a pa(a, a, 0)

(36) 37
10 3 0.7295 0.0003 0.0003
10 4 .9410 .0000 .0000
20 4 .6473 .0011 .0009
20 5 .8624 .0000 .0000
40 5 .4808 .0054 .0036
40 6 .7016 .0005 .0004
40 7 .8471 .0000 .0000
60 5 2324 ..0312 .0162
60 6 .4478 .0070 .0040
60 7 .6404 .0012 .0007

Doob’s heuristic method. Putting @ = an!, ¢ = yn! we have nF.(z) < a +
(n + ¢)z when n}{F,(z) — z} < o + yz,0 < z < 1. Letting n — , Doob
(1949) replaces this by ¢(t)(t + 1) < a + (¢t + )7, ie. £(8) < o +
(e + ¥)t,0 < t £ o, where {(t) is a Wiener process. Using Doob’s formula
(4.2) this gives

(38) 1i0p s Bn(am?, yn?) = 7227,

A continuous version of the reflection method of Section 5 then gives immediately
limy . pa(on?, Bnt, ynt)
(39) =1— 2 ialexp (—2{ja + (j — DB}je + (G — 1)B + 1))
+ exp (=2{(j — Da + jBH(G — 1)a + j8 — 7})
- — exp(—2j(e + B)(jor + 38 + 7)) — exp(—2j(a + B)(je + 38 — 7))].

It is worth noting that the methods of this paper permit the development of an
elementary derivation of (39) which avoids the mathematical difficulties in-
herent in the justification of Doob’s approach. Following Wilks (1962), p. 339,
one puts a_= ont, ¢ = ynt in (30)" and proceeds to the limit using Stirling’s
approximation. This gives

litseo B am?, ymt)
= (e + )20 iy — )™ exp (—(a + )Y/29(1 — y)) dy.

Evaluating the integral we obtain (38), Substituting in (32)-(35) and then
(27) and proceeding to the limit we obtain (39).
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