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SEQUENTIAL MAXIMUM LIKELIHOOD ESTIMATION OF THE
SIZE OF A POPULATION!

By EsTER SAMUEL
The Hebrew Unwversity and Purdue University

1. Introduction and summary. Consider the following model, the practical
applications of which will be discussed elsewhere. An urn contains an unknown
number, N, of white balls, and no others. An estimate of N is desired, based on
the following sampling procedure. Balls are drawn at random, one at a time, from
the urn. A white ball is colored black before it is returned, a black ball is returned
unchanged. The ball is always returned before the next ball is drawn. We are
interested in two problems: (i) what stopping rule ¢ to use to terminate sampling,
and (ii) how to estimate N after we stop.

The present problem (also in a more general setup) has been considered by
several authors, notably L. A. Goodman [5], Chapman [1], Darroch [3] and
Darling and Robbins [2]. We shall refer to their results in the sequel.

Let w; , b; denote the (random) number of white balls, black balls, respectively,
observed in the first ¢ draws (w; 4+ b; = 7). We shall consider mainly the following
stopping rules.

Rurk A. Let A > 0 be a fixed integer. ¢, = A.

RuLe B. Let B > 0 be a fixed integer. ¢ = inf {¢]|b; = B}.

RuLe C. Let C > 0 be fixed.

te =1inf {¢|b; = Cw = inf {2 |2 = (C + 1w.
RuLe D. Let — o < D < o« be fixed.
tp = inf {¢ | b; = max (1, w;logw; + w:D)}
= inf {¢|¢ = max (w; + 1, w;logw; + w(D + 1))}.
RuLe E. Let {D;} be such that lim D; = .
te = inf {Z]b; = max (1, w;log w; + w:Dy,)}.

Since w; = N each of these rules is bounded, and thus clearly stops with prob-
ability one.

Of these rules, Rule B has been investigated most. See [5], [1] and [3]. Rule D
has been considered in a recent paper [2] by Darling and Robbins, who show that
for any 0 < a < 1 and a suitable choice of D one can have Py(Wp, = N) = 1 — «
uniformly in N, where W is the total of white balls observed before stopping.
(See Section 6).
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The motivation for consideration of rules A to E stems from a theorem on the
limiting distribution, as N — o, of w;, in a sample of fized size 7, for various
relationships between ¢ and N. We restate the theorem here, since we shall need
part of it in the sequel. Different parts of the theorem have been proved by
various authors. See for example Rényi [8], where also proper references are given.
Let u; = N — w; = number of unobserved white balls in the sample of size
7 (= number of white balls in the urn, after ¢+ draws). Since there are linear
relationships between w;, b., u; we shall express the limiting distribution for one
of these variables only. T.et ® denote the distribution function of a standard
normal variable. We have,

THEOREM 1. Let N — oc. )

Case A. If i = (2N\y)* where Ay — O then Py(b; = 0) — 1.

Case B. If 7 = (2NXy)* where Ay — N and 0 < N\ < oo then

Pu(bi = k) — e "\*/k! k=0,1,---.

Case C. If i = ayN where ENT < ay < log N — uy and £y — o, uy —
then

Py((wi — Bwy)/(Var w,)* £ z) > ®(z), —o <2< oo,
Case D. If © = N log N + Nay where ay — a and — o < a < o« then
Py(u: = k) — ¢ "N/k, k=0,1, .-+, where \ = ¢ °

Case E. If 1 = N log N + Nay where ay — o, then Py(w; = N) — 1.

We consider mainly the Maximum Likelihood Estimate (MLE) of N, denoted
by N. It turns out that if when we stop we have seen w white and b black balls,
then N = N(w, b) and does not depend on the stopping rule used, though the
distribution of N clearly will depend on the stopping rule. The value of N (w, b) is
discussed in Section 2. In Section 3 we briefly consider Rule A. It satisfies
Py(N = o) > 0forall N = A. Rule B is discussed in Section 4 and it is shown
that 2BN'/N has an asymptotic chi square distribution with 2B degrees of freedom,
(to be denoted x35), as N — . In Section 5 Rule C is considered, and bounds
on the distribution of (N — N)N* in terms of the normal distribution are given.
Rules D and E are considered in Section 6. Let [2]* be the largest integer not
exceeding z. For Rule D it is shown that N — N + [\]* has an asymptotic
Poisson distribution with parameter N = exp (—D — 1) and for Rule E
Py(N = N) — 1. The exact and asymptotic distributions of the corresponding
t’s is also considered, and is closely related to the distribution of N.

2. Maximum likelihood estimation of N. For any stopping rule ¢, the prob-
ability of having observed exactly w white and b black balls when we stop clearly
depends on ¢ as well as on N. Let Py(w, b |t) denote this probability. It can be
shown that

(2.1)  Px(w, b|t) = (N)h(w, b)/N*?,  w =1,2 ---,b =01, ---,
where (N); = N(N — 1) --- (N — 7+ 1), and where h(w, b) depends on ¢ but
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not on N. (We shall see the particular form of (2.1) for Rules A to C later). Thus
for any w, b such that h(w,b) 5 0, N (w,b) is the positive integer which maximizes
(N)./N**. Maximum likelihood estimation for our problem has been considered
by Darroch [3], and for a mathematically equivalent problem by Lewontin and
Prout in [6]. (The claim of asymptotic normality of the MLE in [6], p. 221, is
clearly generally false, as seen from Section 3 in conjunction with Theorem 1.)
Direct inspection yields

(22) N(w, 0) = » for w =2  N(,b) =1 for b = 1.

(The case w = 1, b = 0 is of no interest, since the first ball drawn is always
white, and thus more than one draw must take place in order to obtain informa-
tion about N.)

We shall treat (N),/N“™ as a function of a positive real variable N,
N > w — 1. We have

(2.3) d{(N)u/N"P}/dN = {200 (N — )7 — (w + b)N}(N) N,

Equating the right hand side of (2.3) to zero yields that the maximum value
N = N(w, b), satisfies

(2.4) (w + b)/N(w, b) = 252 (N(w, b) — )™~
Clearly (2.4) has a unique finite solution, and
N(w,b) = [N(w,b)]* or [N(w,b)] or both,

where [z] is the smallest integer not less than x. The right hanq side of (2.4)
is less than log {N/(N — w)} and greater than log {(N + 1)/(N —w + 1)}.
The solution of

(2.5) (w+ bz~ = log {z/(z — w)}

isgiven by ¢ = (w + b)/m(s), where s = w/(w 4+ b) and

(2.6) m(s) is the solution of s = (1 —e™)/m

and can be obtained from existing tables. Thus N (w, b) is given approximately by
2.7 N(w, b) &~ (w + b)/m(s) where s = w/(w 4+ b).

The interpretation of (2.7) is that the MLE is approximately proportional to
the sample size, with the proportionality.factor a function only of the proportion
of white balls in the sample drawn.

More accurate information about N can be obtained by considering the ratio
of (N)uw/N*"to (N — 1)./(N — 1)**, which we denote by dw»(N), and when
no confusion is likely, by g(N).

(2.8) gus(N) = NN — w)™(1 — NH**? N = w.

. b . N N N . . o~ .
Since (N)../N“* is a continuous function with a unique maximum at &, and is
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strictly increasing for N < N, strictly decreasing for N > N, there exists a
unique real value N* such that

(29) g(N*) =1, g(N) > 1for N < N* and g(N) <1 for N > N*,

Thus N (w,b) = [N*(w, b)]*, except when N* is an integer, in which case N is not
unique, and can be taken to be N* or N* — 1.

For any function, k(w, b), one can determine whether N (w, b) = [k(w, b)]*
or N(w, b) < k(w, b) by computing g, »(k(w, b)) and noting if it is = 1, or < 1,
respectively. Notice that always N (w, b) = w.

3. Rule A. For a fixed sample size A, the asymptotic distribution of w, is

given in Theorem 1, for the various relationships between A and N. The exact
distribution is given by

(31) Px(ws = k) = () 2o (=D (HG/N)* = (N)S.P/N?,
k=1,---,N,

where S,* is a Stirling number of the second kind, and is defined by the identity
(3.1). See for example [4], p. 92. (Compare (3.1) and (2.1).)
AsseRTION 1. For every fixed A and Rule A

(32) Py(N = ©) >0 forall N = A, and limy,oPy(N = «) = 1.

(3.3) For every fixed N lim .., Py(N = N) = 1.

Proor. (3.2) is immediate from (2.2) and Case A of Theorem 1. The assertion
can actually be strengthened to a corresponding statement for every uniformly
(in N') bounded stopping rule, and other cases confirming with Case A of Theorem
1. We shall show that, for every fixed w, N(w, b) = w for all b sufficiently large.
Then (3.3) follows, since clearly for fixed N, lims,., Py(w, = N) = 1.

Set b = w’, and N = w + 1in (2.8), to get guw2(w + 1) < (w + 1)e™
< 2¢7' < 1. Thus N (w, w*) < w. But for any w, b N(w, b) = w, and the assertion
follows. (In Section 6 it will be clear how the value b = w* can be improved upon.)

4. Rule B. The distribution of ¢z is given by (cf. [3], (16))
(4.1) Py(tz = k) = (N)e—s(k — B)SY® /N, k=B+1,---,B + N.

This follows directly from (3.1), since tz = k if and only if wy; = k — B and
the last draw results in a black ball. The asymptotic distribution of ¢z is given by

(4.2) limy,e Py(ta/N < @) = Fap(2), — o <2< w»,

where Fyj5 is the distribution function of a x;5 variable. (4.2) is a special case of
[5], Theorem 6. (See also [1], Section 3).
AssERTION 2. For every fired B and Rule B

limN_,wPN(2BN/N = x) = F2B($), —oo {r < o,
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Proor. We shall show that
(4.3) [(ts — B)*/2B]" < N < t5°/2B

and thus the assertion follows from (4.2). (4.3) follows if we show that for
every w and b> 0

(4.4) [w'/20]* < N(w, b) < (w + b)*/2b.
To prove (4.4) it suffices to show that
(4.5) Gup(w/20) > 1  and  gus((w + b)*/20) < 1,

where ¢.; is defined in (2.8), and where the second inequality must hold for
all w and b > 0, but where the first inequality must hold only for w > 2b, since
if w < 2b then [w*/2b]" < w < N(w, b), and thus clearly the left hand inequality
of (4.4) holds for w = 2b.

Setk = w4+ 0b.Usingl — 2 < ¢ * we have

(4.6)  guas((w + b)*/2D)

=K — 2(k — b)7H (1 — 26kH* < B(K — 2b(k — b)) e,
Now for every fixed b the right hand side of (4.6) tends to 1 as k — o, and its
derivative with respect to k is positive. Thus the second part of (4.5) follows.
Similarly, (using 1 — 2 > exp {—a/(1 — 2)})
(4.7)  gus(w?/20) = wr(w® — 2bw) 7 (1 — 2bw )"

> wi(w® — 2bw) " exp —2b(w + b) (vt — 2b)7,

and the right hand side of (4.7) tends to 1, for every fixed b, as w — o, and its
derivative with respect to w is negative for all w > 2b, and thus the first part of

(4.5) follows.
Actually (4.4) can be strengthened to

(4.8) [(w+2b/3 — 1)*(20)7']* = N(w,b) = [w'/2b + w(3 — 1/3b) +b/6 — 3]

and (4.3) can be replaced accordingly. The proof of (4.8) is similar to that of
(4.4), but the algebra becomes tedious.

For Rule B there exists a unique uniformly minimum variance unbiased esti-
mator, (UMVUE), given by Goodman [5], Section 3. Set W = { — B = number
of white balls seen until stopping. Goodman shows that the UMVUE is given by

(4.9) Ws/2B + (3 — 1/6B)Ws + P./P;

where P; and P are polynomials of degree 2B — 1 in Wjp. The MLE and the
UMVUE thus have the same asymptotic distribution. (4.8) yields for the MLE

Wi /2B+ (3 — 1/B)W5s+ Ciu(B) = N £ W5'/2B + (3 — 1/3B)W 5 + Co(B)
where C1(B) and Cy(B) do not depend on Wjp. This should be compared with

(W B)

(4.9). Darroch [3], p. 351, shows that the UMVUE equals Si» 2 /8{»% . This
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follows directly from (4.1), since summation of (4.1) overk =B +1,---,B+ N
yields 1 for every N and B. Darroch also considers the MLE, but does not obtain
its asymptotic distribution.

5. Rule C. Let W, denote the number of white balls seen until stopping. t¢
can take on only the values [(C' 4+ 1)k], k¥ = 1, ---, N, (the square bracket is
superfluous for integer C'), and ¢¢ = [(C + 1)k] if and only if W = k. Set
C + 1 = v. The exact distribution of ¢ is given by

(5.1) Py(We = k) = Py(tc = [vk]) = (N)sho(k)/N™™, k=1, ---, N,
where h¢(k) are constants given by A
(5.2) he(1) = 1, he(k) = {1 — 252 (k) she(D)E "™ ()7, & = 2.

The proof of (5.1) is as follows. There are (N); possibilities of drawing k distinet
white balls, and N"* ways of drawing any sample of size [yk]. We have denoted
by he(k) the number of ways of ordering k distinct elements, (allowing repeti-
tions), in [vk] places, in such an order that counting from the left, the number of
repetitions among the j first elements remains less than C times the number of dis-
tinct elements among the 7 first, for all 7 < [vk]. Since for every N = 1,2, ---
(5.1) is a distribution, i.e. the sum over its elements is one, the induction for-
mula (5.2) follows.

It is easily seen that a unique UMVUE exists also for Rule C. It is a function
of W, which we denote by a¢(W¢). The sequence ac(k) is the (unique) solu-
tion of the equations

(5.3) > (@) (k)ihe(D)E™ =k, k=1,2 -
The solution is given by the inductive formula
(54) ac(l) =1, ack) = {k — D52} ac(e) (k)ihe(D) ™" K" /he(k)k!

k =z 2. (The UMVUE is not only integer valued. For example a:(3) = 4.8)
Consider now the MLE. If upon stopping we have w white and b black balls
then w, b must satisfy b = Cwand b — 1 < Cw, and thus

(5.5) (v + 1/w)™" <w/(w+b) Sy

and equality holds on the right hand side of (5.5) whenever C is an integer.
Thus for Rule C the approximation (2.7) yields approximately N = te/m(y "),
i.e. the MLE is approximately proportional to the stopping time, with the propor-
tionality factor depending on C only. How close this approximation actually is
can be seen from

AssERTION 3. Let s be fixed, let m(s) be as in (2.6) and let

(5.6) H(s) = (1 — sm(s))/(s — 1 + sm(s)).
Then
(5.7) [(w+ b)/m(s) — H(s)]* = N(w, b) < (w 4+ b)/m(s)
forall w,b with w/(w 4+ b) = s.
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Proor. The right hand side inequality follows since for w/(w + b) = s
Gus((w +b)/m(s)) = (1 — sm(s))™(1 — m(s)(w + b)™)***
< (1 —sm(s)) e ™ =1,

On the other hand, substituting (w + b)/m(s) — H for N in (2.8), where H > 0
is some fixed constant, and writing ¢ = w + b, w = s7 yields for ¢ > Hm(s)
(the only values of interest)

Gus(w + b)(m(s))™ — H) = (i — Hm(s)){i(1 — sm(s)) — Hm(s)} "
(1 —m(8)(Z — Hm(s))™")* - 1.

Differentiating the above with respect to 7 and using the inequality log (1 — z) <
—z (0 < o < 1) yields, after some algebra, that the derivative is less than
(1 = m(s)(G — Hm(8))™) " (m*(s) G{ (1 — sm(s))(H + 1) — sH)
= (1 — s)m(s)H(H + 1))(¢ — Hm(s)){s(1 — sm(s)) — Hm(s)} >
For this to be negative for all ¢ > Hm(s) the value in the curly brackets in the
numerator must be nonpositive. Equating the curly bracket to zero and solving
for H yields (5.6) which is easily seen to be positive. (5.7) follows.
In order to consider the asymptotic distribution of N, we need to know (when-
ever C is not an integer) how close m((y + 1/w)™) is to m(y™"), for large w.

(See (5.5)). This can be obtained by differentiating m(s), as given by (2.6).
Some algebra yields

(5.8)  limumwyfm((v + Lw)™) — m(v ™)} = m(™)/(m(x™) — 0).
We have not succeeded in obtaining an exact asymptotic distribution for i

and N, but we proceed to give bounds on the limiting distribution in terms of the
standard normal distribution. Let

(6.9) o =m(y ™)y — m(y™))/(m(x™) =€), and ** = %/ (m(y ™))

It becomes apparent later that there are good reasons to believe in the correct-
ness of the following
Congecture. For Rule C and every fixed C > 0

(5.10) liMysw Py((te — Nm(y ™)) N %™ < 2) = &), —0 <z < o,
and

(5.11)  limy.e Py((N — N)N ™ < 2) = @(a), —o <z < .
If the correctness of (5.10) is esta,blished; then (5.11) follows from Assertion 3,
(5.5) and (5.8).

We have
AssERTION 4. For Rule C and every fixed C > 0

(5.12) lim infyow Py((tc — Nm(y )N 2 2) 2 ®(z), —o <z < o,
and
(5.13) lim infy. Py((N — NN %*' < 2) 2 ®(2), — < 2z < .
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Proor. (5.13) follows from (5.12), Assertion 3, (5.5) and (5.8). To show
(5.12), notice that, for every k, weyx < k implies t¢ < vk. Set ky = [aN + 8N 2],

We shall find the values of « and g for which Case C of Theorem 1 yields a useful
approximation, namely

(5.14) P (wiyey) S k) — @(2).
We have
(5.15) Ewpey = N(1 — ) 4+ NizyBe™ + o(N?),

Var wiyiy = Nfe (1 — (1 + ya)e ™)} + o(N).
Hence for (5.14) to hold we must have a = (1 — ¢ *"), which together with
(2.6) yields a = m(y™")/y. With this value of & we have from (5.15), (2.6)
and the definition (5.9) Var wiey = No'(m(y™) — C)*/¥* + o(N). Solving
for 8, substituting the value m(y ") /v for a, now yields 8 = o¢/v. Thus we get,
for ky = [Nm(y™) /7 + oN*/~I,

Py(te £ Nm(y™") + 2oN?) = Py(wipy < ky) — ®(),

which yields (5.12).
We proceed to obtain an upper bound on Py(tc = [vk]). For simplicity we

shall assume that C is an integer. Then t; = ~k implies that the last v balls
drawn were black, and the first v(k — 1) draws resulted in exactly & white balls.
Thus, by (3.1)

(5.16) Py(We = k) = Py(te = vk) = B'(N)SVosy/N™

= () (k/N )™V 8300y /E"*
with strict inequality for all & > 1. Set
(5.17) velk) = k!S'(yk()k—l) 7D

We shall obtain an approximation of v¢(k), using the result of Moser and Wyman
[7], by which

(5.18) S0 ~ (v(b — 1)1 ("® — 1)*({n(k)}"* k)™
AP = 1) 2y — 1) — 1 = n(k) 7,
where, for abbreviation, we have let n(k) = m(k/y(k — 1)). (See (2.6).) (The

approximation to S, given in [7] cannot generally be taken as a limit statement.
It can, however, when k&, n tend to « so that k/n — « where 0 < a < 1.) By
Stirling’s formula, (5.17) and (5.18) we have

(5.19) i)g(k) ~ {(e"(k) —_ 1)6‘7(1 _ e-—n(k)>—7}k
‘67(1 _ e—n(k))‘Y{(en(k) _ 1)(en(k) -1 = n(k))—l}g.

Clearly n(k) — m(y™") as k — . The rate of convergence can be obtained
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through differentiation of m(s). This yields
(5.20) k{n(k) — m(y™)} — —m(y ) /{m(x™) = €},
and some algebra shows that (5.20) implies

(1 — ™)1 — @)

— exp {—y(m(y™) =) (m(x) = )7,

(521) {(¢"® — D7 = DT = exp (—v(m(y) = )7,
Thus (5.19), (5.21) and some algebra yield
(5.22) ve(k) ~ PH(1 — ™ ) (m(y™) — )7,
where Po= ("7 — 1){6(1.— ey
Detailed analysis shows that (5.22) can actually be strengthened to
(523)  ve(k) = P&l — ™ ) (m(v™) — O)H1L 4+ 0GE™)).

This yields
AssERTION 5. For Rule C and integer C

(5.24) limSupyow Py((tc = Nm(v NN L 2) S MB(z), —w <z< o,

and
(5.25) lim supyow Py((N — NN %" £ 2) £ Mc®(z), —0 < 2 < o,
where

(526) Mo = {1 — ™ " m(y™) — ) | 1 as C — oo

Proor. (5.25) follows from (5.24) and Assertion 3. The proof of (5.24) is
similar to Feller’s proof [4], p. 169-173, of the DeMoivre-Laplace theorem, and
we therefore only outline it briefly. For fixed C set q(k) = (&) (k/N)"vc(k), and
k = & + m(y ")N/v. Stirling’s formula and some algebra yield

(5.21) q(k) ~ &P — ") (N(m(v™) = ©)
2r(m(v ) /v + 8%/N)(L — m(y™) /v — &/N)} 7,
where
k) = =8'@N) Y (m(v™) — O){m(y (v — m(xy" )N}
— 3N (m(y DT+ (v = m(TNT) +

Suppose 8°/N* — 0. (This implies 8:/N — 0). Let ¢(x)=(2r)"" exp (—z%/2).
Using the notation (5.9) and (5.26) we can rewrite (5.27) as

(5.28) q(k) ~ M N o o8N o).

Approximating the Riemann sum by the corresponding integral, yields, for any
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integers ay, By satisfying
(529) (ay — Nm(y™)/7)"/N* =0, (Bv — Nm(y")/v)"/N*— 0,
(530) 2y q(k) — Mcf@({By — Nm(y™ )y IN Ho/v)™)

— ®(fav — Nm(v )y N o/m) ™}

One can show that ay can be chosen as above to satisfy D % ' Py(We = k) — 0.
Therefore (5.24) follows from (5.16) and (5.30) upon taking By = [Nm(y ™) /v
+ zN's/y]. Tt is easy to see that lim M. = 1. Lengthy algebra also shows that
dM ¢/dC < 0, and hence (5.26) follows.

Some values of M. are of interest. We have M, = 1.070, M, = 1.013,
M = 1.003, My = 1+ 2 X 107

It is worth while to remark that the true variance, divided by N, need not
necessarily tend to the “asymptotic variance”, o°, given by (5.9). For example,
for C =1 (5.1) yields Py(tc = 2) =1 /N and thus the first term alone adds to
the actual variance approximately Nm(y")?, whereas it clearly has no influence
on the asymptotic distribution.

6. Rules D and E. The definition of 5, as given, rather than inf {¢]| b, =
w; log w; + w:D}, is necessary in order to prevent us from stopping with one ob-
servation only, i.e., with no black balls observed, which we would have to,
whenever D < 0, according to the latter definition. For D > 0 the modification
is redundant. A similar remark holds for Rule E. {5 can take on the values k¥ 4 1
fork =1, ---,[¢ "] and the values [klogk + k(D + 1)] for k = [¢7”]* + 1,

, N. We shall consider D as fixed, and abbreviate notation by setting

(6.1) ar =k + 1 for k=e?®
=klogk + k(D +1) for k>e”.

The exact distribution of ¢» can be obtained along the same lines as the distribu-
tion of {¢ was obtained in Section 5, and similarly the UMVUE can be obtained.
We shall not consider this in detail, but shall find the asymptotic distribution
of tp and N. It is immediate from Section 4 that Py(ip > ¢ °) — 1 as N — .
Tet Up be the number of unobserved white balls when we stop. Then ¢, = [a] if
and only if Up = N — k. Rule D was first considered by Darling and Robbins,
in a recent paper [2]. They prove that

(6.2) Pu(Up = 0) —> ¢ where N = ¢ @,

and thus suggest Wy, the total of white balls observed, as an estimator for N,
(for D chosen large enough). A slight modification of their proof yields the
strengthening of (6.2) to become

AsSERTION 6. For Rule D and every fived D, — o < D < o,

(6.3) Py(Up = j) — eNJ/jl, j =0,1, ---, where N =
Proor. If is easy to show that for every fixed k, k = 0, 1, - - -,
(6.4) lim SUPyow Py(Up S k) S D 5oe "N/jL.

—(D+1
e(+).
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Notice that Up = k implies %y_,; = k (where u; is defined in Section 1), and
thus Py(Up £ k) = Py(uay_1 = k). For fixed & define Dy by

(6.5) ay—x = Nlog N + N(Dy + 1).

Then by (6.1) and simple algebra it follows that Dy — D as N — «. The condi-
tion of Case D of Theorem 1 is thus fulfilled, and yields (6.4). It is much more
difficult to show that

(6.6) lim infyoe P(Up £ k) = D5 _oe "N/71.

Sinece the proof is very similar to the proof of [2], we shall not repeat it here, so
as to save space. .

As is well known, the maximal term (mode) of a Poisson distribution with
parameter \ is the [\]*th term (except when \ is an integer, and both the Ath
and (A — 1)st terms are maximal.) It therefore seems plausible that unless ¢,
stops very early the value of the MLE will be approximately W, + [¢®1]*,
We have

ASSERTION 7. Forany —o < D < o, w > e >,

>

(6.7) N(w, [wlog w + wD]) = w + [¢”P™*
and
(6.8) N (w, [wlog w +wD]) = w + [e"™)* for all w > Kp.
Proor. We use (2.8) with N = w + @, a > 0. This yields
(w + a)a (1 — (w + a)7})viesrrv®D
(6.9) 2 Gu,twlogutwn) (W + @)
> (w+ a)a (1 — (w + a))vlestvetotn

and as w — o all members of (6.9) tend to e ®*” /a. The derivative of the term
to the left in (6.9) is negative for all w = ¢ °*”, and thus setting @ = ¢~ @+
yields (6.7). Also the derivative of the right hand term in (6.9) is negative.
For any a > ¢ ™ the limit in (6.9) isless than 1, and thus (6.8) follows for all w
sufficiently large. The constant K, depends only on D. For all D > 0,w = 1 and
a = 1 the value of the left hand side of (6.9) becomes (3)” < 1, and since the
function on the left in (6.9) is for every a and D, a decreasing function, Asser-
tion 6 can be strengthened to yield

(6.10) N(w, [wlogw 4+ wD]) = w forl w=1,2,---, whenever D > 0.

Assertions 6 and 7 yield

ASSERTION 8. For Rule D and any — o < D <
(6.11) limy, Py(N = N —j + N*) = ™!, j=01,---,
where N = ¢ PP,

For Rule E
limN_,wPN(lv = N) = 1.
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Thus the estimator proposed in [2] coincides with the MLE, for D > 0, and its
distribution is given by (6.11).
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