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ON ESTIMATING MONOTONE PARAMETERS

By Tim RoBERTSON! AND PAUL WALTMAN?
University of Towa

1. Introduction and summary. Suppose for each ¢ = 1, 2, --- , k the random
variable X, has density function f(z; 6;) where each of the parameters
6, 0, -+, 0 is known to belong to some connected set ® of real numbers.
Independent random samples are taken from the distributions of X;, X,, - -+ , X,
and we wish to find estimates 6;, 6., ---, 6, of 6;, 6, ---, 6 which satisfy:

(1.1) bhhzbz =06

Brunk [3] considered such a problem when f(z; 6) belongs to a certain exponential
family of distributions which includes the binomial, the normal with fixed mean
and variable standard deviation, the normal with fixed standard deviation and
variable mean, and the Poisson distributions. A discussion of the history of
this type of problem is given by Brunk [4].

In this paper we assume that the density function f(x; 8) has certain properties
and develop a procedure for finding the restricted estimates. The above mentioned
densities have those properties as do certain others. One in particular, not covered
by Brunk’s formulation, the bilateral exponential distribution (i.e. f(z; 0) =
177"y is considered in Section Four.

In Section Two we list those assumptions, describe our procedure for finding
restricted estimates and prove that they are maximum likelihood estimates.
In Section Three we give a representation theorem for our estimates and a
theorem which implies that they are consistent in the special cases which we
consider. In Section Five we describe an alternate method for obtaining restricted
estimates and in Section Six we discuss another special case not considered by
Brunk [3], which does not satisfy our regularity assumptions but for which the
procedure described in Section Two clearly works.

2. A procedure for obtaining restricted maximum likelihood estimates. Sup-
pose that n; items are drawn from the distribution of X; and that they are de-
denoted by Xu, X, --+, Xi,. We assume that the family of functions
{f(x; 0); 00} has the following properties:

(2.1) f(x; 6) has support S which is the same for all § ¢ 0,

(2.2) foreachzin S, f(z;0)is a continuous function of 6 on 0,
(2.3) ifxi, s, -+, x, are any members of S then there exists a number
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M in O such that if 6 and 6" are in the closed interval with endpoints
g and M then [[iof(zi;6") = J[faf(zi; 0) (ie. the likelihood
function L(0; z1, @5, -+, 24) = | [f=1f(z:; 6) is unimodal with
(not necessarily unique) mode M),

(24) ifx, 22, -+, Tu, 1, Yo, +**, Ym are in S, if M,(M,) is the
mode of L(6; 1, &2, -+, ) (L(0; y1, y2, **, Ym)) and if
M., is the mode of L(0; 21, %s, -+, %n, Y1, Y2, *** , Ym) then
M, is between M, and M, .

It should be pointed out that although we are not assuming in (2.3) that the
mode of L(8; z1, 22, - -+, ,) 1S unique, we are assuming in (2.4) that we have
a procedure, as in Section Four, for uniquely selecting one of these modes, M,
and that this procedure yields a Borel measurable function of 2y, s, -+, z,.
On the other hand if we assume in (2.3) that the mode of L(6; z1, x5, - -+, )
is unique then this implies (2.4). As noted by Boswell [2], Van Eeden [6] obtained
results similar to ours by assuming that the mode of L(8; 21, 22, ---, z,) is
unique. By assuming (2.4) instead of the uniqueness of modes we include as a
special case the bilateral exponential distribution discussed in Section Four.
Furthermore, Van Eeden discusses convergence in probability and Theorem
3.2 gives convergence with probability one.

As an example of a situation where (2.1)-(2.4) are satisfied suppose, as in
[1], that ® = [0, 1], S = {0, 1} and f(z; ) = 6°(1 — 6)'" for z & 8. Clearly
properties (2.1)-(2.3) are satisfied where M = n™"- > 7 z; = Zin (2.3). Also
in (24) M., = (n& + my) =+ (m + n) is between £ and 7.

Let M: be the mode of L(8; zs, i, -, Tin;) and let S; be that subset of
Euclidean k-space defined by:

v

Sh={(al,az,---,ak);aié‘@,algazg~-- Olk}.

We wish to find a point (6;, 6;, -+, 6;) in S, which maximizes
Loy, oz, -+, on) = [Tica [170f (i 5 es).

LemMma 2.1. There is a maximizing point [0y, 02, -+, ) in Si.
Proor. Let L:i(0) = [[/:f(zi;;6) and

8% = ((on, o, o, o) e O, max (My, M, -, M) 2 or 2 a
= Zop =min (My, Ma,---, M)}

Using (2.3) and the assumption that © is'connected it is easy to see that if
@ = (a1, @y, -+, ax) €8 — S then there is a point 8 = (B, B2, -+, Br)
in 8;* such that L(3) = L(a). Hence we may restrict our attention to Si*
and since this set is closed and bounded and L is continuous by (2.2) it follows
that a maximizing point exists.

A maximum likelihood estimate of (6, 6;, - -+, 6;) in S, may be obtained as
follows: If My =2 My = --+ = Mythend; = M,,7 = 1,2, ---, k. On the other
hand if for some ¢ we have M ; < M ;11 then the ¢th and 7 4+ 1st samples are pooled
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and M. is the mode of J[if} []7% f(ax; ; 6). Furthermore M ;= M,forj <i
and M,;* = M, for J > <. This procedure is repeated until a set of monotone
non-increasing set of modes is obtained. Then, for each j, §; is equal to that one

of the final set of modes to which z;1, zjo, - -+ , Zjn ; contributed. We note that this
procedure is very similar to the one described in [1].
TraporEM 2.1. If 61 = b = --- = & are obtained from the sample items by the
procedure described above then
L(él,éz, ,ék) ; L(Oq,otz, "‘,Oék)
fO?"(],ll (ixl, Qg, * ,Olk) Z?'LSk

Proor. (Induction on k). If ¥ = 1 then by (2.3) M is a maximum likelihood
estimate of 6; and the result is clear. Suppose the result is true for & = H and that
we have H + 1samples. If My = My, = --- = Mgy then (My, My, -+, Mg1)
provides a maximizing point as asserted since this is an unrestricted maximizing
point by (2.3).

Suppose that for some ¢ we have M; < M;. Let 8, = 6y = -+ = 6z1 be
derived from the sample items by the procedure described above. It follows
from the induction hypothesis that L(8:, 6, -+, fm11) = L(ou, s, -+, amy1)
for all (o, a2, -+, agy1) € Suy1such that a; = ai. By Lemma 2.1 there exists
a maximizing point (6, 6,*, - - - | 65 41) & S w1 . Then using the assumptions that
if 6" is between 6 and }; then L;j(8") = L;(6) and (2.4), and by considering the
three cases 6741 < 6, < My, 651 < M < My: < 6, and M; < 651 < 6,*

it is easy to see that there is a maximizing point (6, 6y, - - -, z1) such that
6; = 8;11. Hence we conclude that

L(élyé27 ;éH—H) = L(91y62y yélﬂ-l) = L(a17a2; yaH+1)
for all (eu, o, -+, any1) € Sgr1. This completes the argument.

3. A representation theorem for the estimates and conmsistency. If 1 < R
=< 8 = k then let M (R, S) denote the mode of [[5-r [[7<1f(x:;;6). Let (61, 6,
-++, 0r) be the maximum likelihood estimates given by Theorem 2.1.

TrEOREM 3.1. Forj = 1,2, --- |, k we have

éj = minléRéjmaxRésgk M(R; S) = minléﬁéj ma'xfésékM(R’ S)
= MaX;j<s<k minlégés ]‘l(R, S) = MaXj<s<k mjnlégé,- M(R, S)

Proor. First note that if My = M, = --- = My, then for any R such that
1=R < kwehave Mp = M(R,R +1) = --- = M(R, k) by (2.4). Hence
for any j we have

minlégéjmaXRésékM(R, S) = mjnléRéjMR = M]' = 0]'.

We prove the theorem by induction on k. The result is clear if £ = 1. Suppose the
theorem is true for k¥ = H and that we have H + 1 samples with corresponding
modes ]'[1, Mg, ey, MH+1-

Since we have already considered the case where My = My = -+ = M ran]
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suppose that M; < M,y for some 4. Pool the ¢th and ¢ + 1st samples obtaining

H samples with modes M,*, M,* --., My* where M;* = M@, © + 1),
M* = M;,j < and M; = My, j > i
Let

0, = min; cr<; maxe<s<u M (R, S).
Then by the induction hypothesis
b; =0,%, <1,
b; = bia = 0.,
b; =67y, j>4i+1.
Let
0; = minj<r<;maxpes<ay M (R, S), j=12 ---, H +

1
Note that if B < 7 and if maxer<s<zpn M (R, S) = M(R, ©) then M(R, i) =
M(R, v + 1). It follows from (2.4) that

M(R,?) 2 M(R,i+ 1) =2 M1 > M;.

Using the fact that M (R, ©) > M; and (2.4) we conclude that M (R, 7 — 1) >
M(R, Z) = maxR§S§H+1M(R7 S)-

It follows that if R < 7 then we can assume that maxp<s<wn M(R, S) =
M (R, Sz) where Sz # . Clearly M; < M (7,1 + 1) < M4 so that
(31> MaXe<s <H+1 M(R, S) = MAXr<s<H M*(R, S), R = 7.
Hence if j < ¢ then

. . * a
0]' = mlnlékéjmaxkéséﬂ+1M(R, S) = mlnlégéfmaxRéséyM (R, S) = 0]‘.

Now suppose maxiyi<s<wt1 M (2 + 1,8) = M (¢ + 1, 8,). Then M (i + 1, .S,)
Z My > M. Also M(3+1,8) =2 M(¢ 4+ 1,8) forall S = 7 + 1.Combining
those observations with (2.4) we conclude that M (2 + 1, Sy) = M (4, S) for all
S =i

(3.2) maxi<cs<an M+ 1,8)
2 maXics<a1 M (7, 8) = miny<r<imaxp<s<ui M (R, S).
Now using (3.1) and (3.2) we conclude that forj = ¢ + 1
6; = min [min;<r<; maxe<s<mn M (R, S), maxiy<s<upn M (R, S),
minge<r<; Maxr<s<m1 M (R, S)]

= min [mjnlékéi maxe<s<atl M*(R, S):

minﬁzéRéjmaXRés§H+1M*(R - 1, S — 1)]
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. . *
= min [mlnlgkéimaxR§S§H+1M (R, S),

Miniy<r<,1 Maxzzs <o M (R, S)]
= 61 = 0;.
The other parts of the theorem follow similarly.

The unrestricted maximum likelihood estimate M ; of 6; is generally a con-
sistent estimate of 6;. In a sense (see Section Five) the restricted estimate
(61, 8, -+, bi) is closer to (6;, 62, ---, 6) when 6 = 6, = --- = 6 than
(My,M,, ---, M;). Hence it would seem reasonable that if (M1, Ms, -+, My)
is consistent then so is (6;, s, ---, 6;) provided, of course, that 6; = 6, =

CZ O ‘

THEOREM 3.2. Let m = min (ny, ng, «++,nx). If 60 = 6 = --- = 6 and if

limm»w’Z];:l lMl - 0il =0
with probability one then

liMpeo 2 iy 6 — 6 = O

with probability one.

Proor. The notation here is slightly inconsistent in that we are now thinking
of M, and 8; as random variables and prior to this point they were numbers
obtained from the sample items. We will show that

(iMoo 2t [M s — 64 = 0] C [limpser D it 6 — 6i] = 0]

and the desired conclusion follows. Suppose liMp.e- > it |M: — 6 = 0 and
¢ is arbitrary. If all of the 6.’s are equal then it follows from (2.4) and Theorem

3.1 that
fa 6: — 6
= k‘maX1§z§k |0z - 0i| = k'maxlgi§k M; — 0i| = k'Z?:l le - 0il

and the conclusion follows. If not all of the s are equal then we can assume,
without loss of generality, that

e < § ming;>o,,, [0 — Oital.

Suppose we are dealing with a point in [lime- > % |M; — 6, = 0] and choose
M such that m = M implies that

Zlg=1 IM1 - 01[ < E/K < %minoi>ei+1 [05 - 0,;.;_1].

Suppose j is arbitrary, A is the smallest integer such that 6, = 6; and B is the
largest integer such that 6z = 6;. Then if m = M we have M;, > M;, > M,
forsy < A, A £ 4, < B and 73 > B, since ¢ < % ming;ss,,, [0: — 0:1].

It follows from (2.4) that for R < A we have

maxRésng(R, S) = maXA§S§kM(A; S)
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so that
b; = minjcp<;maxpcs<k M (R, 8) = ming<r<jmaxr<s<x M (R, S).
Furthermore if A < B < 7 and S > B then
M(R,B) 2 M(R,S) =2 M(B+1,8)
by (2.4) so that
maxg<s<x M (R, S) = maxr<s<s M (R, S)

so that §; = M(Ro, So) where A < Ry < Sy < B. However, if A < 7 < B then
0, — ¢/k < M; = 0; + ¢/k so that using (2 4) Theorem 3.1 and “the above we
conclude that for m = M we have

2il0; — 05 < e
since j was arbitrary. This completes the argument.

4. The bilateral exponential distribution. Perhaps the most interesting case
not covered by Brunk [3] or Van Eeden [6] is when ® = S = (—, «) and
f(z;8) = %77, In this case it is clear that properties (2.1)—(2.3) are satisfied
where M in (2.3) is a median of the numbers 1, z3, - - , Z. . However if n is
even then this mode is not unique and we must be careful in our selection of M
if (2.4) is to be satisfied. When n is even we select I/ to be the average of the
two middle items.

TueoreMm 4.1. If f(z; ) = e " and the mode of L(8; x1, 2, -+, xn) 18
defined to be the median of x;, zz2, «++ , Tn , as above, then (2.4) s satisfied.

Proor. This result seems intuitively obvious and in fact the only difficulty
arises when both sample sizes are even. Suppose ;1 < T2 = ++ = Ton (Y1 = U2
- = Yom) has median M, (M,). Let the pooled sample be denoted by z; = zs
* = Zwmy2n . Then “

e = 3(@n + Toya), My, = 5(Yn + Ymt1), M.y = 3(&min + Zm+n+})f

We can assume, without loss of generality, that M, < M, . Suppose Mo, < M.
Then M., < Znp1 and My, < Ymy and since there are m + n 2’s no bigger then
M., we conclude that x, < M., and y» < M,,. Hence 2nin = max (T, Ym)
and Zmyngyr = Min (Toy1, Ymya). Now since Mo, < M, = M, we have either
Zmin = Tn DA Zminii = Ymil OF Zmyn = Ym A0A Zminy1 = Tuyqr . In the first case

M, = %(xn + ym+l) = %(ym + ym+1) =M,
which is a contradiction. In the second case
M:cy = ’%(ym + xn+l) g %(xn + xn-}—l) = Mz

which is also a contradiction. A similar contradiction can be concluded if
M, £ M, < M,,. If either sample size is odd a similar argument can be made.
This completes the proof.

Using Theorems 2.1, 3.1 and 4.1 we infer the following result.

O IA
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TueoreM 4.2. If f(x; 6) = e " and if M(R, S) denotes the median of the
ttems in the Rth through Sth samples pooled then b, = b, = --- = 6, where

6, = minicr<; Maxe<s<k M (R, S) = maxj<s<iminicr<s M (R, S),
provide maximum likelihood estimates of 61, 0z, - -+ , 6 subject to the restriction
(1.1).

If f(x; 8) = % """ then it follows from the Glivenko-Cantelli Theorem that
limy; . M; = 6; with probability one. This together with Theorem 3.2 implies:
TrEOREM 4.3. Under the hypotheses of Theorem 4.2 we have

liInmin ni—>0 le?-=l ,éz - 01, =0
with probability one.

5. Conditional expectations given o-lattices. Define the measurable space
(R, 0) by @ = {1,2, --- , k} and ¢ is the collection of all subsets of Q. We shall
restrict our attention to totally finite measures on ¢. Let £ be the o-lattice (cf.
[4]) of left subintervals of Q(i.e. £ = {9, {1}, {1, 2}, ---, @}). Then any k-tuple
a = (au, az, -+, o) of real numbers can be thought of as a function on Q
and a1 = @z = -+ = o if and only if « is £-measurable (i.e. [ > 7] € £ for all
real numbers ). Hence S; in Section Two is a collection of £-measurable func-
tions on Q.

Now let M = (M., M,, ---, M}) be the unrestricted maximum likelihood
estimate of 6 = (6;, 6;, ---, 6;) which is given by (2.3) and let § = (6, s,
-++, &) be the restricted estimate given by Theorem 2.1.

TaeorEM 5.1. There exists a measure u on o with the property that b = E,(M | £).

Proor. (Induction on the number % of elementsin Q.) If k = 1thend = M =
E,(M | £) for any measure u. Suppose the theorem is true for & = H and that
we have H + 1 samples. If My = M, = --- = Mpthend = M = E,(M | £)
for any u.

Assume that for some ¢ we have M; < M. Let % = {1,2, --- , H}, ¢* be
the collection of all subsets of * and £* be the collection of left subintervals of
Q*. Define the function M™* = (M,*, M,*, ---, Ms*) on @* by:

Mi*’:Mf: .7<’L.:
=M@+ 1), j=7i,
= Mjn, Jj >

It follows from the induction hypothesis and the procedure by which 4 is derived
from M that there exists a measure p* on ¢* such that 6* = E (M*| £*) where

é]':of*: .7<’£y
=0i*: ]=’L,Z+1,

=0j—1; .7'>Z+1-
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Now by (24), M (3, 2 + 1) is between M; and M ;.1 so that there exists an «
between 0 and 1 such that M (2, ¢ + 1) = aM; + (1 — a)M4y .
Define the measure g on @ by:

r({7}) = w*({5}), j<i
= ap*({3}), Jj=1
= (1 —ap*({d), j=1i+1,
= u* ({7 — 1), Ji>i+ 1L

Certainly 6 is £-measurable. To complete the argument for § = E(M | £)
it is sufficient to show that # has the following properties:

(5.1) fL (M —6)du 0 forall Leg
and
(5.2) [5(M — 8)du =0 forall Bed™(B)

where 8 denotes the collection of Borel subsets of the real line (cf. [5]). To verify
(5.1) suppose L = {1,2, --- , h}. If h < 7 then

Jo M = 8)du = [ (M* — %) dp* =0
since Le 8% If b = ¢ + 1 then

Jo (M —b)dp = [{1,..ha)} (M* — 6%) du™ < 0.
If h = dand if [, (M — ) du > O then since
JoM — ) dp = [{ronia} (M* — 6% du™ + (M; — 6.5)an™({5})

= [lipeid} (M = 0") du™ — (Miy — 0:7) (1 — )™ ({3})
we must have

M;—6">0 and My — 6" <0.
Hence M ;11 < M; which is a contradiction. (5.2) follows similarly and this com-

pletes the argument.
For example if we let

f(z;8) = (2r)Fexp [— & (z — )7,

then M; = X; = [nd™ D7 X and: the choice of u which will give 6 is
p({3})) = ne-[Dsand™ (ef. [3]). (Note that w({7}) = n; gives the same esti-
mate.)

In the case of the bilateral exponential distribution it seems impossible to write
the choice of u which gives § as a “nice’” function of the sample items as in the
normal case. In view of the apparent difficulty in calculating the restricted esti-
mates in this case, especially when the sample sizes are large, one might be
tempted to use a simple psuch as u({s7}) = 1,2 = 1,2, -- - , k, to obtain restricted
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estimates. Also p({7}) = n; might be a good choice because if 7. is large in com-
parison to 7.1 then M (7, ¢ + 1) tends to be closer to M ; than to M, .

In any case if u is an arbitrary totally finite measure on ¢ and if
EM|g) =6 = (6,6, ---,6) then it follows from Theorem 2.3 in [4] that
if 6 is £-measurable then

2o (00 — 0:)’u({3}) = [ (6' — 6)* du
S [ —0)du = 25 (M: — 6:)u({d}).

It follows that if D 5 (M — 6.)*u({¢}) converges to zero with probability one
then the same can be said for Y sy (8 — 6:)°u({7}).
Furthermore, it follows from Corollary 2.1 in [4] that

Dot (M — 6:)°u({d}) = 225 (M — 6/)’u({5}) + 2ic (8 — 6:)u({5})
= 2 (M — 0/)u({d}).

Hence 6’ is closer, in a sense, to the unrestricted estimates than §. The problem is
in the choice of w. If, for example, we choose u({7}) = 1,7 = 1,2, --- , k, then
¢’ has the advantage that it is easy to compute. On the other hand u({z}) = n.,

i=1,2, ---,k, gives § in several cases and does not seem to be unreasonable in
the bilateral exponential case. This choice then seems to be rather “robust.”

6. Non-regular cases. In certain non-regular cases (i.e., cases where f(z; 6)
has support which depends on 6) the procedure described in Section Two for
constructing restricted maximum likelihood estimates may still be valid even
though conditions (2.1) and (2.2) are not satisfied. (Van Eeden’s work also
covers such nonregular cases.) For example, suppose ® = (— o, ©) and

flz;0) =" 2z,
= 0, z < 6.

In this case the unrestricted estimates of 61, 6.,:--, 6 are given by
My, My, .-, M, where M; = min; <;<n, Zi;; . Even though for fixed z, f(z; 6)
is not a continuous function of 6 it is not difficult to see that the procedure de-
scribed in this paper yields restricted maximum likelihood estimates. A repre-
sentation theorem such as Theorem 3.1 is also valid since the minimum of the
pooled samples is between the minima of the individual samples (it is equal to
one of them). Furthermore, by the Borel strong law of large numbers M ; — 6,
with probability one so that our estimates are consistent.
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