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ASYMPTOTIC NORMALITY IN NONPARAMETRIC METHODS'

By KumaAr JoGDEO

Mathematisch Centrum, Amsterdam and Courant Institute of Mathematical
Sciences, New York University

0. Summary. Let U;, Us, -+, Uy be a random sample from a population
with a continuous distribution function and B;,7 = 1, --- , N, be the rank of
U, among the N observations. Asymptotic normality is studied for the statistics
of the type

(0.1) 2o 23 cijan(Ri/N, Ri/N),

where constants c;; satisfy certain negligibility conditions and the score function
an(+, +) is derived from a function a(-, -) satisfying certain monotonicity and
integrability conditions. It is shown that the statistic (0.1) is asymptotically
equivalent to

(0.2) o 2 csa(Us, Uy),

so that the problem is reduced to a simpler one, viz. studying the asymptotic dis-
tribution of (0.2).
Similar results are obtained for the two sample analog of (0.1) viz.

(0.3) o1 D75 Cisaww(Ri/N, 85/M)

where S;,j7 = 1, .-+, M, are the ranks corresponding to another independent
random sample of size M from some other population. Few more variants of the
above and applications of these statistics are given.

The present study is a generalization of a paper by Héjek (1961).

1. Introduction. In the present day literature on nonparametric methods one
finds three basic methods to study asymptotic distributions. The first one, known
as the U-statistic method, was suggested by Hoeffding (1948). Although this
method established asymptotic normality of many useful statistics, the class of
rank score statistics was still outside its framework. A conjecture of Hodges and
Lehmann regarding the superiority of the normal scores test over the i-test (4 la
Pitman efficiency) inspired Chernoff and Savage (1958) to study the asymptotic
normality for the rank score statistics employed in the two sample location prob-
lem. .

A third approach initiated by Wald and Wolfowitz (1944) was studied by
several authors. Hijek (1961) led it to completion by giving useful necessary
and sufficient conditions for the basic theorem regarding the asymptotic nor-
mality. This study was exploited further by Héjek (1962) to study the regression
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problem. By using the concept of contiguity due to Le Cam (1960), Hajek (1962)
obtained asymptotic relative efficiencies for various pairs of statistics.

The last two methods mentioned above have become basic in studying the
asymptotic distribution of a nonparametric statistic. The Chernoff-Savage
method has an advantage of yielding results for the so-called fized alternative.
However, the necessary computations become too involved for certain generaliza-
tions. If the aim of the study is to find Pitman efficiency then Hajek’s method
could be considered to be simpler and at the same time the class of statistics is
wider.

In the present paper we have adopted the H4jek approach. The class of sta-
tistics is broad enough to embrace rank score functions having more than one
argument; a typical need while testing independence in a bivariate population or
testing serial independence of the observations in a sample. Wald-Wolfowitz
(1943), Noether (1950) and Ghosh (1954) studied tests for serial dependence
based on permutations of observations. The present method has a wider basis of
applications and also has the following advantage. Typically, a nonparametric
test statistic is shown to be asymptotically equivalent to a statistic of a simpler
form which may be handled easily under the null hypothesis. This equivalence
may be further exploited by appealing to the contiguity techniques of Le Cam
and Hijek (see [6]).

Although not a prerequisite, some familiarity with the paper by Hajek
(1961) would facilitate the reading of this paper.

2. Applications.

(a) Testing the hypothesis of independence in bivariate populations against
linear alternatives. Let (X;, Y;) be a random sample of N paired observations
from a continuous bivariate distribution function. Let R; and 8, be the ranks of
X;and Y, among X and Y observations respectively. It is desired to test the in-
dependence of X and Y.

Various linear alternatives may be considered. Bhuchongkul (1964) studied
the following model,

(2.1) X=0Zi+ (1 =07, Y=06Z-+ (-0,

where 0 < § < 1and Z;, Z, , Z; are independent random variables. It was shown
that the normal score test statistic

(22) Ng% Zziv=l ERiESi ’

leads to an asymptotically efficient test for normal alternatives and has the same
asymptotic properties as those of the normal score test statistic for the two sam-
ple problem. Here E; is the expected value of the sth largest observation in the
random sample of size N from a standard normal population.

The statistic (2.2) is clearly a special case of (0.1) and it will be seen later that
the function

(2.3) ax(t/N,j/N) = EE;
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satisfies the conditions for being asymptotically equivalent to a statistic of the
form

(2.4) N7 Y e(Ude(V),

where the function ¢ is related to the normal distribution function and {Uj},
{V.} are two independent random samples from the uniform distribution on
(0,1).

Asymptotic normality of (2.4) and hence that of (2.2) follows from well-
known central limit theorems. In the case of regression alternatives,

(2.5) Y = a+ BX + o2,

where X and Z are independent, the author (1962) has shown that the
test statistic

(2.6) N7 XL XuEs,

has some attractive asymptotic properties. Again (2.6) is another variant studied
in the present paper and considerations of the asymptotic equivalence lead to a
direct application of the standard central limit theorems.

(b) Spearman’s “foot-rule.” With the same notation as above, a measure of
dependence based on

(2.7) NPV 4+ 1) R — S,

is known in the literature as Spearman’s foot-rule. Although this is thought to be
a crude measure, it can be shown that the test based on (2.7) is asymptotically
efficient for testing independence of X and Y against contiguous nonlinear al-
ternatives given by the bivariate distribution function

(2.8) H(z,y) = F()G(y)[1 + « [F(z) — G,

where « is a small positive number.
The results of this paper can be applied to prove that (2.7) is asymptotically
equivalent to the statistic

(2.9) N7 UL F(X) — QYY)

where X and Y are independent. The asymptotic normality of (2.9), when
properly normalized, can be handled very easily.

(¢) Tests for serial dependence. Suppose X1, -+ , Xy are N observations on a
process taken at N successive times. It is desired to test the null hypothesis that
the N observations constitute a random sample, against the alternative hy-
pothesis of serial dependence of the first order.

Under the assumption of joint normality, it was shown by Anderson (1948)
that the test based on the statistic

(2.10) N7 (X — Xaw)?

is UMP unbiased. However if the underlying distribution is not normal then the
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rank analog of (2.10) becomes
(2.11) NN+ D72 RiRiyy,

where R; is the rank of X;. The statistic (2.11) is a special case of (0.1). (The
author has been informed that the results of the present paper have been used by
Aiyer (1968) to study the nonparametric tests for serial dependence.) It should
be noted that under the assumption of normality, the distribution of the statistic
(2.10) does not have a closed form even in the case of null hypothesis. Thus the
rank analog has the added advantage of having a null distribution which can be
computed exactly.

3. Inequalities. Let Uy, - -+, Uy be independent uniform random variables
on[0,1]and R; be the ranks of U;.Let Z; < Z, < - - - < Zybe the corresponding
order statistic, so that

(3.1) Ui = Za, .

Let {a.;} be a set of N* real numbers and a.. be their average.
DeriniTION 3.1. A collection of N® numbers a,; is said to possess A-mono-
tonicity if

(32) Aij = Q41,541 — Qi41,; — Q441 + Q;j é 0 for all ’L', j,
or
A;; =0 forall (4,7).

The condition of A monotonicity is satisfied in most of the practical applica-
tions. For example the rank scores used in the statisties (2.2), (2.7) and (2.11)
do satisfy this condition.

TaEOREM 3.1. If the set {ai;} is A-monotone then

(3.3) Elay(Ui, Us) — ax(Ry/N, Ry/N)I £ C (N + 1)*max (a:; — a..)’,
where C 1s a positive constant and ay is defined by
(34) ay (N, 0) =ay; (1—1)/N<N=Z1iN, (j—1)/N <\=j/N.

The proof will be based on the following lemmas.
Lewvwma 3.1. For the special case,

(3.5) e0) =1 4 X>0 and 6> 0.
=0 othe;wise,
(3.6) Ele(Uy — k/N, Uy — I/N) — (R, — k)/N, (R, — 1)/N)I?
< 3(N — )TN HN — BN — D),

where k and 1 are fixed positive integers.
Proor. For Z, < -+ < Zy fixed, let K and L denote the number of Z less
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than k/N and less I/N respectively. If K < k and L < [ then it is obvious that
eZ; — k/N, Z;—1/N] — (i —k)/N, (j—1)/N]

(3.7) =1 if either K < 7 <k, L < j,
or K<i, L<j=l,
=0 otherwise.

By obvious geometric considerations it can be seen that for the case K < &,
L = I, the number of pairs (7, j) such that the difference (3.7) is unity is
(k—K)@—L)+ (N—k(—-L)+ (N -0k —K).

In general, for any values of K and L the upper bound on the number of pairs
(%,7) with difference (3.7) equal to &=11is |[K — k||[L — 1| + (N — k)|L — 1| +
(N — 1)|K — k|. Hence for Z; < Z, < --- < Zy fixed, the left side of (3.6) is

(N(N — 1)7'> >isi{dZi — k/N, Z; — I/N]
(38) — d(i —k)/N,(j —1)/N)}’ = (N(N — 1)) 4K — Kk||L — I
+ (N = BIL =1 + (N — DK — kf}.

(Throughout the paper the suppression of the limits would mean that the sum-
mation is taken over all possible values.)

When the statistic Z; < --- < Zyisnot fixed, K and L are binomial random
variables and the inequality (3.6) follows by taking the expected value on both
sides of (3.8) and applying the Schwarz inequality. The proof of Lemma 3.1 is
completed.

Remark. When the elementary function e has one argument the right
side of (3.8) becomes (1/N)|K — k|. In the present case, in addition to an
analogous term there are terms of higher order in (1/N). This makes the upper
bound (see (3.6)) tend to zero at a slower rate when compared with the one
argument case (see (3.9) below). Consequently, this results in a higher moment
condition on the function a(A, ) (see Theorem 4.2).

For the sake of future reference and to facilitate the comparison between the
present case and the one argument case the following upper bound obtained by
Hijek (1961) is stated.

(3.9) Elax(Uy) — ax(Ry/N)I’
< CN* maXi<;<wz |ai - al[ >:i‘v=1 (a; — a-)Q]%:

where C is a positive constant and the other notation is obvious. (Throughout the
paper the letter C with or without subscripts will be used as a generic notation
for a positive constant.)

The elementary function e is used in the following construction. Let

(3.10) bij = ai; — aaq — a1; + au
b(\, 0) = ax(\, 0) — ax(\,1/N) — ayx(1/N, 0) + ax(1/N, 1/N).
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Recalling the definition of A;; in (3.2) it readily follows that
(3.11) byw = Gyy — Gy — Gy + A = Dok D1 Au
Dvw = 2ok 201 Dom Dn Al
bij = 2ok 21 Aue( (i — k)/N, (j — 1)/N),
(3.12) b\, 0) = Dk D1 Ae(h — k/N, 6 — I/N),
0<A<1,0<0<1.
Using the expression (3.12) it follows that
(3.13)  Ds 20 bl = 2k 201 2om 2on AilAme
© 206 2256((0 = )/N, (= D/N)e((i = m)/N, (j — n))/N).
Since
e((¢ — k)/N, (j —1)/N)e((t —m)/N, (j —n)/N)
(3.14) ) for 4 > max (k, m)
and j > max (I, n)
=0 otherwise,

for a fixed (k, l) and (m, n), the number of pairs (7, 7) such that the left side of
(3.14) is unity, equals [N — max (k, m)] [N — max (I, n)]. Hence

(315) 20 2obi = 2ok 200 2om 2on Ailbm
- [N — max (k, m)][N — max (I, n)].

Lemma 3.2.
{e(Zi — k/N,Z; — I/N) — e((¢ — k)/N, (j — 1)/N)}
(3.16) {e(Zi — m/N,Z; — n/N) — e(( — m)/N, (j — n)/N)}
< {e(Z; — max (k, m)/N, Z; — max (I, n)/N)
— ¢(¢ — max (k, m)/N,j — max (I, n)/N)}".

Proor. Since ¢( -, -) takes only two values, 0 or 1, it suffices to prove that the
left side is not +1 when the right side is 0.

The right side is 0 implies one of the following:

(i) Both e terms on the right side are 0. In this case it can be seen that the
two terms which make up the product on the left could not be 41 or —1 simul-
taneously.

(ii) Both e terms on the right side are 1. In this case all the entries on the
left side are 1 and the left side is zero.

These being the only cases, Lemma 3.2 is proved.
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LemmA 3.3. With the above notation if the set {a;;} is A monotone then
(3.17) E[b(Uy, Us) — b(Ry/N, Ry/N)J?
< 3lbun|NHN — 1) 2508
Proor. Using (3.12) and Lemma 3.2 it follows that
Eb(Uy, Us) — b(Ry/N, Ry/N)T?
= (N(N = D)TE{2 2iei 0(Zs, Z;) — b(i/N, j/N)T}
= (NN — 1)) 25 220 2om 20 Avilhn
"B{2. 2 ieile(Zi —k/N,Z; = 1/N) — e((¢ — k)/N, (j — 1) /N)}}
{e«(Z, = m/N,Z; — n/N) — e((i — m)/N, (j — n)/N)}
SNV = 1)) 20 220 2m Do A
(3.18) ‘E{2. 2 ieite(Z; — max (k, m)/N, Z; — max (I, n)/N)}
— (¢ — max (k, m))/N, (j — max (I, n))/N)}*
= 2% 2t om 2w A mnEle(U; — max (k, m)/N,
U, — max (I,n)/N) — ¢((R; — max (k, m))/N,
(R: — max (I,n))/N)I’
S3NHN — )7 200 2w 2 Akl N — max (k, m)]?
[N — max (I, n)]".

The last inequality follows from Lemma 3.1.
Finally using the fact that Axdn, = 0 for all k, I, m, n the Cauchy inequality
simplifies the upper bound of (3.8) as

Eb(Uy, Us) — b(Ry/N, Ro/N)T
(319)  =3NI N — DI S . S AvAn]
A2 2 22 20 Auln(N — max (k, m))(N — max (I, n))J}
= 3NN — 1) bwal[ X X b1

The last equality follows from (3.11) and (3.15).
Proor of THEOREM 3.1. From the elementary inequality

(3.20) (x+y+2)° =<3+ 37+ 3
one obtains
Elay(Uy, Uy) — ax(Ri/N, Ry/N)|* £ 3Elax(Uy, U,)
(3.21)  — ax(B:i/N, Ry/N) — an(Ui, 1/N) + an(Ri/N, 1/N)
— ay(1/N, Us) + ax(1/N, Ry/N)|* + 3Elax(Uy, 1/N)
— ax(Ry/N, 1/N)* + 3Elay(1/N, Uy) — ax(1/N, Ro/N)J%.
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Lemma 3.3 when expressed in terms of the ay function is applicable to the first
summand on the right side of (3.21). The inequality (3.9) can be applied to the
other two summands and the required upper bound in (3.3) is obtained after
some obvious simplifications.

Using the same procedure as above and under the same conditions as in Theo-
rem 3.1, it follows that

(3.22) Elay(Ri/N, Ro/N) — ax(Uy, Ro/N)J*
< C (N — 1) max (a;; — a..)%

REeMark. Note that the joint distribution of (R, - - , Ry) remains the same
under any permutation and thus the statistic (0.1) is invariant under any changes
in the subsecript labels of the a.; . Hence, A-monotonicity condition will be auto-
matically satisfied if we can arrange the numbers a,; in a matrix such that
A;; =2 0, for all 7, j. In the one argument case this can be done trivially; how-
ever, it is not clear whether an arbitrary set of N* real numbers can be arranged
A-monotonically. It should be noted that if the a;; are generated by a smooth
function a(), ) then A-monotonicity is equivalent to requiring a constant sign
for the determinant

d’a/oN'  d’a/oN 90
d’a/oN 90 9°a/36”

For the present purpose the following condition is sufficient and is less restrictive
than the requirement of A-monotonicity.

DerINITION 3.2. A set of N numbers {a;;} issaid to be piecewise A-monotone
if a;; can be expressed as

ay = aii +aif + - + aif,
where the sets {a{”},] = 1, - - - , k, are A-monotone, and k& does not depend on N.

It is clear that by the repeated use of inequality (3.3) one can obtain an upper
bound of the order O(N™?) if the set {ai;} is piecewise A-monotone. The main
idea is to find the regions where A,;; has the same sign and then express a;; as
above. This is similar to defining positive and negative parts of a function.

In order to avoid complication of the notation, the assumption of A-mono-
tonicity will be made instead of piecewise A-monotonicity, always keeping in
mind that the results hold with the latter assumption.

The inequality corresponding to (3.3) for the two sample case can be obtained
more economically. Note that the arguments of the function ayy(Ry/N, Si/M)
are independent. This fact can be exploited by conditioning one of the arguments
to obtain a slightly sharper upper bound as given by the following theorem.
Since the proof is straightforward it is omitted. (To simplify the notation
axu (-, ) will be written henceforth as ax(-, -).)

TueorEm 3.2. Let {Us},2=1,---, N,and {V},j=1,---, M, be two sets
of mutually independent random variables, R; be the rank of U; among Uy, --- , Uy
and S; be the rank of V ;jamong Vi, --- , V 4 and let ay be the step function defined
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previously. Then
(3.23) Elaw(Uy, V1) — ax(Uy, Sy/M)T*
< [C(VM)™ 20 max; of P I(NM) ™ 205 205 (a — )T
Elay(Uy, Vi) — ay(Ry/N, Si/M)T
(324) = C{(NM)™[ 2V max; a; + DX, max; o]}
ANM)T 2 205 (e — @)

4. Asymptotically equivalent statistics. Let {X,} and {Y,} be two sequences
of random variables having finite variances, defined on a probability space
(Q, @, P). The sequence {X,} is said to be asymptotically equivalent to {Y,}
in the mean, or simply asymptotically equivalent to { Y} and the equivalence is
denoted by X, ~ Y, if

(4.1) EX, — Y. ])/Var X, -0 as n— .
Lemma 4.1. (a) X, ~ Y, implies

(4.2) VarY,/Var X, > 1 as n— o.
(b) If

(i) E[X, — Y.]'—0
(ii) Var X, (or Var Y,) remains bounded away from 0 then
(1) Xo~Y,,
2) Xpu—>p XY, —op X,
(3) £(Xa) — £(X) & £(Y,) — £(X).
Proor. Let g, = EX, and %, = EY,. The convergence (4.1) implies
EKXn — ) (Yo — Xn)I/Var Xa
(4.3) S {E(Xn — w)E(Y, — X.)3/Var X,
= [E(Y, — X)) VarX,} >0, as n— .
Hence,
E(Y, — ua)’/Var X,
(4.4) = E[Y, — X» + Xa — ua)/Var X,
= E(Y, — X,.)¥/Var X, + 2E(X, — ) (Ve — X,)/Var X,
+1—1, as n— o, '
Further
(4.5) (o — m)?/Var X, < E(X, — V,)"/Var X, -0 as n— o,
and hence
(4.6) VarY,/Var X, = [E(Yn — pa)® — (un — 72)71/Var X, — 1

as n — oo,
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This proves the assertion (a). The assertions in (b) are obvious.
It should be noted that X, ~ Y, alone is not sufficient for the assertion (2) of
(b). Also, some simple examples could be constructed to show that

(47) Xo~VYa, Zn ~ W, does not imply that X, + Z, ~ Y, + W, .

Thus the asymptotic equivalence without conditions (i) and (ii) of (b) needs
some caution in its use.

In the present section it will be shown that with certain assumptions regarding
the coefficients c;; , condition (b)(i) of Lemma 4.1, holds for the following statis-
tics,

Sy = 221 201 i,
(48) Tw = 20 2iei (cii — O)an(U., Uj) + 2oi (e — &)aw(Us, Uy)
+ 820 2eeiai + & 2iau,
Sy' = 221 2o cijan(Us, Ry/N),
where
(4.9) E= (NN —1)7"2 Xisey, &=N"2Ticu.
The two sample variants of the above statistics are
Sy* = -1 Zﬁil CijQR;,8; »
(4.10) Ty = 200 2ok (eos — e.)an(Us, V) + c. ooy ¥ a5,
Sy = 220 2 ey an(Us, Si/M),
where
(4.11) c. = (NM)' 2%, D™ ¢

TurEOREM 4.1. With the same notation as above assume that the coefficients c;;
satisfy the following conditions uniformly in N (and M in the two sample case)

(1) 226 25ty < Oy,
(i) 2 [l < Coy 2ol icil* < Cs.
(a) In addition to (i) and (ii) f
lim (NM)™' 32 max; a?; = lim (NM)™' 2% max;al; = 0 as N, M — .
Then
(4.12) E[Sy" — Ty'T—0, E[Sy* — Sy —0 as Nand M — =.
(b) In addition to (i) and (ii), if
(by) {a;;} are A-monotone,

(bz) limN»w ]V—_1 maXi<(i,j)gwn (aij - a..)4= 0
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then
(4.13) E[Ty — Sy’ =0, E[Ty — Sy''—=0 as N — =.

REeEmARKs. The conditions (i) and (ii) of Theorem 4.1 are satisfied in all appli-
cations cited in Section 2. These conditions make the coefficients ¢;; play the role
of normalizing constants for the statistics which are represented as sums.

Although the conditions on {a;;} in the present form look artificial these will
be found satisfied if the step functions ay satisfy certain uniform integrability
conditions.

In the one argument case Sy and Ty reduce to

(4.14) Sy = X Vacar,, Ty = 2 i(ei — c)an(Us) + ¢. 2 1 as,
where the notation is obvious. In this case,

(4.15) Var Sy’ = (N — 172N (e — ¢) 2 (ai — a.)?

and

(4.16) E[Sy — Tw'[' < 22 (ci — ¢.)"Elax(Ur) — ax,]"

Thus with some mild conditions on the a;, and almost without any restrictions
on the ¢; (excepting that they are not all the same), the ratio

(4.17) E[Sy — Ty'’/Var Sy’ -0 as N — =.

Due to this fact, Hijek (1961) could separate the conditions for the asymptotic
equivalence of Sy’ and Ty and those for the asymptotic normality of Sy'. Un-
fortunately, for the present case which involves two arguments, the expression
for Var Sy (see A; of the Appendix) is too complicated to afford such an ele-
gance.

Proor or THEOREM 4.1. From (4.8) it follows that

Tw — Sw = 2 Diei (cij — O)an(Us, U;) — any .z
(4.18) + 2 (cii — Oan(Us, Us) — ar; 2]
= D D (cij — Olan(Zr; , Zr;) — ar; r}]
+ 20 (cis — Olaw(Zn, , Zn,) — O, 2);

so that
(419) E[Ty — Sx|Z1, -+, Zy] = 0;

ElTy — Sy |Z1, -+ ,Zy = Var [Sy — Tw | Z1, -+, Zx)
(4.20) < C{Elax(Zn, , Zr,) — Qnymy | %1, -, Zal'

+ Elax(Zz, , Zr,) — Qrypy | 21, -+, Zal},

where the last inequality follows from the Lemma A; of the Appendix. Taking
the expected value on both sides of (4.20), and applying equation (3.8) and
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Theorem 3.1 the first convergence in (4.13) follows. The second follows in the
same manner. The proof for part (a) of the theorem is along similar lines, and
is omitted.

Our main concern for the rest of this section is to find interpretation of the
conditions of Theorem 4.1 for practical applications. Usually the choice of rank
scores in a given situation is made according to the density function which is
suspected to be the underlying one. Thus the numbers {a;;}, or equivalently
the function ay , is constructed from a (), ) which is related to a density funec-
tion and the particular nature of the alternatives involved in the problem. For
example, suppose F is the distribution function which is thought to be likely for
the marginals of both the components of a paired random variable. Then, while
testing independence in model (2.1) one may consider

(4.21) a(), 8) = £(NE(D),

where

(4.22) EN) = ST OVVAF V), 0< A< 1.
Returning to the general case suppose a,; are defined by the relation

(4.23) a;; = a(i/(N + 1),j/(N + 1)), tj=1-,N;

then the step function ay(}, 8) will approximate the function a(}, ).

In what follows, we want to find (1) sufficient conditions on the function a (A,
6) and (2) some specific constructions of the step function ax(\, 6), which to-
gether will imply the condition (a) or (bs) or Theorem 4.1.

Let a()\, 6) be a nonconstant real valued function on (0, 1)® Let the step
function ax(X, 8), which is assumed to be constant over open squares (i/N,
(¢4+1)/N) X (j/N, (j +1)/N) fors,j =1,.---, N — 1; be such that
(4.24) ax(\, 0) = a(\, 0) as N — «,
pointwise.

LemMA 4.2. The conditions (a) of Theorem 4.1 are satisfied if [ax (), 0)]* are uni-
formly integrable and the ratio N /M s bounded away from 0 and « , while uniform
integrability of [ax(), 0)]° suffices for (bs).

Proor. Recall that a;; = ax(¢/N, j/N). The uniform integrability of ax'
implies
(4.25) {(NM)7'2-, max; af;)® < M~ max; ; ai;

=NM 20 [0y w ax'(\ 0) dNd9 —0 as N, M — w.

The rest of the assertions follow in the same manner.

The uniform integrability conditions will be satisfied if a(\, 8) is piecewise
monotone in A and 6, belongs to the space Ls, and ay(, 0) is defined suitably.
The following are two such constructions

(4.26) ay(\, 8) = a(i/(N + 1),5/(N + 1));
(4.27) ax(\, 0) = N*[%n [1%0m a(, 6) dX db,
where in both cases (7 — 1)/N <A =2 4¢/Nand (j — 1)/N < 6 £ j/N.
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Lemma A, of the Appendix shows that construction (4.26) above gives uni-
form integrability while from the proof of Lemma 4.2 it is clear that (4.27) also
satisfies the conditions (a) and (bs).

The condition of monotonicity in Lemma A, , required of a(\, 6) can be re-
laxed and replaced by that of piecewise monotonicity, i.e., a()\, 6) should be ex-
pressible as a linear combination of monotone functions. This amounts to re-
stricting oneself to those functions which do not oscillate too much.

Finally, the conditions (i) and (ii) of Theorem 4.1 may be interpreted as
those required for the normalization of the sum. The order of ¢;; depends on how
many coefficients are nonzero. For example, if there are N such then c¢;; is usu-
ally O(NY). ‘

The above discussion leads to the following statement of the main theorem.

TuvoreMm 4.2. Let Uy, Uy, -+, Ux; Vi, -+, Vy be independent uniform
(0, 1) random variables. Assume that

(i) DD < G,

(ii) 22l < Cs, 2 [ 205 e’ < Cs,

(iii) a(\, 0) is piecewise monotone,

(iv) ax(\, 0) s constructed either from (4.26) or from (4.27).
In addition to the above assumptions, if
(a) [5 [5a*(n, 8) drdo < oo

then as N — «,

(4.28) ElSy* — Ty — 0.
(b) Under more stringent conditions viz.

(by) the numbers ax(i/N, j/N) are A monotone,

(b2) [5 [5d° (N, 0) dNdo < o,

the following holds:
(4.29) ElSy — Ta' >0, E[Sy' — Ta' >0 as N — «.

Remark. The statistics Ty and Tx* could further be modified by replacing
an(-, ) with a(-, -) in (4.8) and (4.10). If the conditions of Theorem 4.2 hold
and if the variances of Ty and T are bounded away from zero, then by exactly
the same argument as used for the proof of Theorem 4.1, it can be seen that the
modified forms have the same limiting behavior. In the next section this modifica-
tion is taken for granted.

6. Asymptotic normality. The results of Section 4 reduce the problem of
finding the asymptotic distributions of the rank score statistics Sy , Sy, Sx™ to
the simpler one dealing with Ty and Ty".

In many cases the coefficients ¢;; take only two values allowing us to use some
standard limit theorems. To illustrate this consider example (¢) of Section 2
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where a rank analog of a serial correlation coefficient is proposed. This statistic
can be written in the form of Sy of equation (4.8) where

c; =N ifj=i+1
(5.1) =0 otherwise,
a; = (N + 1)7%.
It may be easily verified, that the conditions of Theorem 4.1 are satisfied. Hence
the statistic (2.11) is equivalent to
Ty = N2 UUin — NN 20 U,
+ NNV + D)7 P i
(5.2) =N 2 (Ui — H(Uin —
= NON7E e (Us = )(Us — ) + 3V + o(1)
= N2 (Ui = H)Uin — 1) + 1N + 0,(1),

where Uy, ---, Uy are independent uniform (0, 1) random variables. The
asymptotic normality of Ty can be established now by a well known theorem of
Hoeffding and Robbins (1948).

For testing independence in a bivariate population, the normal score test
statistic (2.2) proposed by Bhuchongkul (1964) can be shown to be asymptoti-
cally equivalent to

(5.3) N W,

where W;and V;,7 =1, ---, N, are two independent sets of random samples
from certain populations. The asymptotic normality of (5.3) follows easily.

6. Appendix.

Ay . An Upper Bound for the Variance. As in the text, let { U}, {V;} be the uni-
form random variables, { R} and {S,} be the corresponding ranks when ranking
is done separately among the U, and V; respectively. Let {d;;} and {e;;} be two
sets of constants. It is assumed that the d;; satisfy the following relations uni-
formly in N (and M, in the two sample case):

(6.1) 222 dij =0,

(6.2) DD di <0y

and

(6.3) 2 (22 di)? < Cy, D (20 i)' < C,

where Z,- Z ; stands for the summations over ¢, 7 = 1, --- , N, in the one
sample caseand ¢ = 1, -+ , N;j = 1, --- , M in the two sample case.
LeMMA A; . Under the assumptions (6.1), (6.2) and (6.3).
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(6.4) Var (Zi'v:l Z?:l dijezzizej) = C[Eegel,kz + Ee??,l,l?,z]
and
(6.5) Var (21 2k diser;,s;) < CE(ery,s,).

Proor. Since
(6.6) Var (Z?’:l Z?,=1 dijezei,zej> = 2Var (Z Zi;éj d’ifeRi,Rj)

+ 2 Var (Zz diieRl,Rl),
it suffices to show that the terms on the right side of (6.6) are bounded as indi-
cated in (6.4). Consider

(6.7) Var (22 D ies diserin;) = B(D D (dij — d)er; z;)’

where d = 20, 22 dij/N(N — 1), i 5 j. Conditions (6.1), (6.2) and (6.3)
imply that the same relations hold for the deviations (d:; — d), ¢  j. For nota-
tional convenience, we write d; instead of the deviation (d;; — d). (This nota-
tion will be adopted only up to the derivation of an upper bound for (6.7).)

E(2 D diserir;)’ = B(D2 2 oei diserin;) (2 it Aki€ry,r;)
(6.8) = DiE(er, rsrs.r,) + DoE(er, ryen, r,)
+ 2DsE(er,,rser; v,) + DiE(en, ryry.z,)
+ DsE(er, r,6r,,z,) + DsE(€r,,z,),
where
Dy= 20202 Yiwiat disdia,  Do= 5 0 Ve dijda,
(69) Ds = 20 25 Dieia dijdia, Di= 202 Yeiar dijdus,
Ds = 25 2 iw; disdys, Dy= 20 Xy dij.
All the expected values of the products appearing after the last equality sign

in (6.8) are bounded by Eex, z, . The uniform boundedness of Dy and Ds fol-
lows from (6.2). That the same holds for D, is seen from

(6.11) Dy = D0 [( Xy dis)(Diieny dir) — % jeeny di]
= 200 (X di)) — 2 Yoy dly.
The sums D; , D4 can be shown to be bounded by the same method. It remains

to show the uniform boundedness of D;. Recalling that d.; above are in fact
(dij - (Z))

(6.12) (22 2w di))* =0 =Di+ Dy + -+ + Ds,
and the uniform boundedness D, follows from that for the others. Consider now
(6'13) Var (Z{;;l diieRi,Rq;) = E( Z?:l (d“ b J)eki’gi)z,

Il

Il
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where d = D _; di;/N. Expanding the square it is seen that
Var ( 23’:1 diier; r;)
(6.14) = 2271 (di — d)’Ee, .,
+ 20 Vi (dis — d)(ds; — d)Eer, n,6r,.2,
< 2200 diBen, x,
where the last inequality follows by noting that d is the average of d;; , and thus
(6.15) |22 2 iws (dis — d)(ds; — d)| = Yilda — )" S Y di

Combining (6.14) with the other bounds the assertion (6.7) follows.

The proof of (6.5) follows along similar lines (in fact simpler), and hence is
omitted. :

A, . Uniform approximation theorem. The following is the two dimensional
version of a lemma due to Hijek ((1961), Lemma 2.1).

Let ¢(\, 6) be a real valued function defined on (0, 1)% Tt is assumed that ¢
is monotone in N and 6 and ¢ ¢ L, i.e.

(6.16) Js Jale(n, 0)[" dndb < wo.
Define
(6.17) on(N, 0) = ¢(z/(N + 1),5/(N + 1));
(¢ —1)/N <X=14/N, (7—1)/N <6 =j/N.
LEMMA A, . (i) The functions ¢x" are uniformly integrable for k = 1, --- | p,
and
(i) limy-w [0 [0 l6x(N, 8) — 6N, 0)]*dNd8 =0 for k=1,---,p.

Proor. It suffices to show that the assertion holds for £ = p. First assume
that ¢(0, 0) = 0 and ¢ is nondecreasing so that ¢” is also nondecreasing. The
uniform integrability will be proved by a successive application of an inequality
of Hajek ((1961), Lemma 2.1, expression (2.22) therein, or (6.19) of the present
paper) ) and Fubini’s theorem.

A slight extension of Hajek’s inequality may be stated as follows. Suppose
¥(\) defined on (0, 1) is nondecreasing, ¢(0) = 0 and ¢ ¢ L, . Let

(6.18) vv(N) = ¢(/(N + 1)) for (¢ —1)/N <\ = /N,

and 75 be the Lebesgue measure on the real line. Then for any measurable subset
A of (0,1)

(6.19) Javn®(0) S ¥7(D)n(A) + 4 [547(\) d)

where B = (1 — n(4),1).
Let A be an open rectangle A; X A, and consider the function

(6.20)  &v(N, 8) = ¢(4/(N + 1),6), (i —1)/N <\ = i/N.
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Applying inequality (6.19) it follows that
I Jascas &57(N, 8) dN do
(6.21) = [u [Jas &7\, 6) dN] d6
= [4,6°( 0)n(A1) + 4 [5,67(), 6) dN] do
(A1) [4,67(3,0) d8 + 4 [, [5,6°(N, 6) d) db,

where B; = (1 — n(4,), 1). A similar inequality holds if the first argument o(), )
is kept fixed. Rewriting ¢y as

(6:22)  ¢x(\ 0) = &x(\G/(N + 1)), . (j — 1)/N < 6 < j/N,
it follows that
Jar [as dx” (0, 0) d do
Ja n(A)E (N 2) + 4[5, 8700, 0) d6)
= n(A)n(42)9"(4, 2) + 4n(4z) [5, 6°(\, 2) dr
+ 49(A1) [5,6°(3,60) d6 4 16 [, [5, ¢(), 8) d\ db.

This shows that the integrals of ¢y” (X, 6) are uniformly absolutely continuous
and bounded, hence uniformly integrable. Assertion (ii) follows from the L, con-
vergence.

The restriction ¢(0, 0) = 0 can be removed by the consideration of positive
and negative parts of the function ¢. That the assumption of ¢ being nondecreas-
ing can be replaced by that of monotonicity is obvious. This can be further re-
laxed to piecewise monotonicity by using some elementary inequalities.

Il

(6.23)

I\
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