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1. Introduction. The epsilon-entropy of a probability distribution on a metric
space was introduced in [4]. If C is a countable covering of the space by measur-
able sets we write ||C|| = max,.c (diameter (4)), #(C) = number of sets in C
and

H(C) = 2accP(4) log (P(4))7.
Then the epsilon-entropy H. is given by
H. = infncuge H(C).

In this paper we derive estimates of the asymptotic behavior of H for certain
singular measures on [0, 1]. The metric will be the usual length and we will
write |4 | for the length of an interval 4.

It will be convenient to use the notation ¢(x) = z log 1/z. The function ¢
is convex and has the property that if p; = O, St ps = 1then D 1 é(p:) <
log n.

The theorems of this paper give asymptotic comparisons of H, with log €'
which is approximately the e-entropy of Lebesgue measure on [0, 1]. The asymp-
totic ratios are given in terms of various information theoretic quantities.

2. Measures related to N-adic expansions. Let N be a fixed integer, N = 2
and let (a;,% = 1,2, ---) be a stationary ergodic stochastic process taking the
values 0, 1, --- , N — 1. We assume that no fixed sequence (¢),i=1,2,---,
has positive probability. Define k:(z) for irrational x in [0, 1] by

= Qi ki(z)N'
where the sum on the right is the N-adic expansion of z. Write
Lil, L) =[|kiz) =L, -, k) =1L,
L(z) = L(ky(), - -+, k().

The probability measure P associated with the process induces a measure, which
we also call P, on [0, 1] through the formula

P(Ia(lyy -+, ) = Play =L, -+, 0 = ).
According to the Shannon-Macmillan-Breiman theorem
limpae 7" log P(I.(z)) = —h(P) a.e. (P) .
where h(P) is the entropy of the shift operator.
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Since we are going to work with coverings by intervals we will need the fol-
lowing lemma.
Lemma 2.1. If we set

H! =inf [H(C) | ||C|]| £ ¢ and C 1is a covering by intervals]
and if € = n* for some n then
iH' < H. < H/

Proor. The second inequality is obvious. Let D, be the interval covering
[[k/n, (k+ 1)/a]|k =0, ---,n — 1] and let C be an arbitrary covering with
Ic] £ n. Let Ay, ---, A." be the sets of C which intersect I, =
[k/n, (k + 1)/n]. Then

$(P(I)) = ¢( 271 P(A]))
< 2e(P(A)).
Summing on k and noting that each A can hit at most two I’s wehave H(D,) =
2H(C) and the result follows.
Let C, be the covering of [0, 1] by N-adic intervals, i.e., C, = {J, = [kN ",

(k+ 1)N*),k=0,1,--- ,N" — 1}.
LemMma 2.2. For e = N7,

1H(C,) £ H' < H(Cn).

Proor. The second inequality is obvious from the definition of H ¢, since
|C.ll = N™™. Let C = {I} beany covering by intervals with [|C]| < e If Ik ...,
I{, are the intervals intersecting J; then

Yrae(P(I5)) = ¢( L P(I7)) = ¢(P(Ji)).

Summing on k and noting that each I; hits at most two Ji’s we have 2H(C') =
H(C,) from which the result follows.
Now fix § > 0 and set

¢ = [Jx||n" log P(Jx) + R(P)| < 4],
C. = [Ji] |n " log P(Jx) + R(P)| > 8],
H/ = H(C), H =HC"), qmn8) =P(UsecyJi).

By the Shannon-Macmillan-Breiman theorem ¢(n, 8) goes to 0 as n goes to <.
LemuMa 2.3. H)” < q(n, 8)nlog N + ¢(q(n, 8)).
Proor. Set ¢ = g(n, §) and

P, = P(Jx)/q if JreC.

=0 if JeeC, .
Since »_ P; = 1 we have

nlog N = D0 " ¢(Ps)
= ¢ 2o d(P(J1) + ¢ e P(Jw) log ¢ = ¢ 'H," — log ¢
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'THEOREM 2.1.
1n(P)/log N £ lim inf.,o H./log €' < lim sup..o He/log € * < h(P)/log N.

Proor. With the notation as above,
(1 — g(n, 8))n(h(P) — 8) S 2o $(P(J))

= H) = (1 = g¢(n, 8))n(h(P) + 3).

Thus, since ¢(n, §) — 0,

lim infp.e H(C,)/nlog N = lim inf,.. H, /n log N = (h(P) — 8)/log N
and

lim SUpnaw H(Cpn)/nlog N = lim Supn.w (H. + H,")/nlog N

A

lim sups.. [g(n, &)n log N 4+ ¢(q(n, §))
+ (1 = g(n, 8))n(H + 8))(n log N)™*
= [a(P) + 6]/log N.
Since § is arbitrarily small this proves
1h(P)/log N £ lim inf.., H'/log €' < lim supe.o H'/log €' < h(P)/log N

and an application of Lemma 2.1 proves the theorem for the sequence e» = N~ ".
In general if we define n(e) by

N <« O
then
lim inf..o He/log €' = lim infe.o [Hy-nc0]/(n(e) + 1) log N
= lim infp,eo Hy-/(n + 1) log N = 1h(P)/log N
and
lim supe.o H./log €' < lim supe.o Hy-»o-1/n(€) log N
= lim Supn.e Hy-»-1/nlog N < h(P)/log N.

3. Measures related to continued fraction expansions. Every irrational
number in [0, 1] has a unique infinite continued fraction expansion

1
T= ay(r) + 1
o) +1
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where the a;(x) are positive integers. We will write
In(ky, -+ kn) = [z|an(x) = koy oo, an(x) = kil
and
In(z) = In(ai(x), - -+, aa(2)).

If (a;,7 =1, 2,---) is a stationary ergodic process taking positive integer
values then the probability measure P induces, as before, a measure P on [0, 1]
such that

P(In(kly cc ,kn)) = P(al = kl, crr 0 = ’C,.).
As before we assume that the induced measure has no atoms. We assume that
D1 é(P(ay = 1)) < » so that h(P) < « and that ho(P) = 2[5 log ¢ *P(dt)
< . Then, by Chung’s extension of the Shannon-Macmillan-Breiman theorem
1],
Limpaw n log P(I.(z)) = —h(P) a.e. (P)
and by Theorem 2.2 of [3] (with f(z) = z™)

limp,e 7" log |I.(z)| = —ho(P) a.e. (P).
Fix 6 > 0 and set
Co' = [Tn(ky, -+, ky) | In " log P(In(ky, -+ ka)) + h(P)| < 6
and [n™" log |Tn(ki, -+, ka)| + ho(P)| < 8.

Then #(C,) < "™®P* 4 1 and ||C,/]| £ ¢ "™P~? We can find a covering
C.” of the remainder of [0, 1] with #(C,”) < 2(e"™®*® 4+ 1) and ||C,"| =
e "M®=D 1n fact if we start with intervals of the form [ke "®*~?
(k + 1) "*®=?] and successively delete the intervals of C,’ each deletion
will add at most one interval and this will give the desired covering. L.et C, be

the combined covering. For convenience we take n so large that 2(e"**®*% 4 1)
< oniha(P)+20)

If we set H, = H(C,') and H,” = H(C,”) then we can prove exactly as in
Lemma 2.3, that

H." = q(n, 6)n(he(P) + 25) + ¢(q(n, 8))

where g(n, 8) = 2 rec,” P(I) goes to 0 as n goes to .
THEOREM 3.1.

lim supe.o He/log € < h(P)/ho(P).

Proor. The proof is almost an exact duplicate of the corresponding part of
the proof of Theorem 2.1. ,
It is not possible to get the opposite inequality by the same device as before

since an interval of length ¢ "*®~? could hit roughly ¢ intervals of C, .
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4. The case hy(P) = . In this section we are concerned with the case where
(@i, 1 = 1, 2,---) is an integer valued stationary ergodic process as in the
previous section, with P the measure induced by the process through the con-
tinued fraction representation and where

2md(Pla = 14)) <
so that h(P) < o, but
ho(P) = 2[slog t'P(dt) = .

To see that such cases exist, note first that ho(P) = o if and only if
flog a;(t)P(dt) =  sinceloga;(t) < logt™ < log (1 +a(t)) £ 1 + log a;(t).
Thus if we take the a; to be independent with P(a, = ¢) = p: we need only
choose the p; so that D ;y é(p:) < » while

Diapilogi = [ilogay(t)P(dt) = w.

We will need some facts about continued fraction expansions (see [2]). If
we write

1
a(x) + 1
a(x) +1

Po(z)/Qu(z) =

1
aa ()
then P,(z) and Q.(z) are generated by:
Py(z) =0, Q(z) =1,
Pria(2) = Guya(2)Pa(2) + Paa(),
Qni1(2) = an1(2)Qn(2) + Qua(z),
and we have
Ta(2)] = [Qu-1(2){Qn(z) + Qua(2)}] 7.
LevmMaA 4.1. There exist numbers Ay T o such that
lim infa.. 7" log |I.(z)|™ = Ay ae. (P).
Proor.
lim infp.e 77" log [Z.(2) ™" = lim infa.. 2072 log Qu(2)
2 lim infp.. 2077 D 75 log ai(x)
2 lim inf,.. 227% D 15 log (min (a:(z), N))
= 2[5 log (min (a;(z), N))P(dz) = Ay.
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Now let, for fixed N and § > 0,
C = [La(ks, -+ ko) | |07 log P(La(hs, -+, b)) + R(P)| <
and 7 log [Tn(ky, -+, ko)™ = Ayl
qg(n, 8, N) =1 — P(Uyq, I,).

By Chung’s theorem and the lemma above ¢(n, §, N) goes to 0 as n goes to .
[C.]| < ™Y and #(C,') < "™+ since

1 g ch' P(In> g #(Cn’)e—n(h(P)+5).

As before we can find a covering C,” of the complement with ||C,” || < ¢ ™*¥
and #(C,") £ ™Y + 1 4 "*P*® We take C, to be the combined covering
and assume for convenience that N is so large that e™¥ 4 1 4 "*P+d <
¢"*¥. As before

H," = H(C.") < ¢(n, 5, N) log #(C.") + ¢(g(n, 8, N))
=< q(n, 8, N)2nAx + ¢(q(n, 8, N))
and

H, = H(C.) = n(h(P) + 3).

nAN

This gives, for e = ¢ "%,
HJ/log ' = (H, + H.")/nAy < (h(P) + 6)/Ax

We can now proceed in the usual way to get the following extension of Theorem
3.1.

TueoreMm 4.1. If the stationary ergodic process (a; ,2 = 1,2, --+) hash(P) < o
but hy(P) = oo then

H. = o (log €V).
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