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CALCULATION OF ZONAL POLYNOMIAL COEFFICIENTS BY USE OF
THE LAPLACE-BELTRAMI OPERATOR
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1. Summary. The zonal polynomials of the positive definite real symmetric
matrices, which appear in the expansions of the functions occurring in many
multivariate non null distributions and moment formulae are eigenfunctions of
the Laplace Beltrami operator. The resulting differential equation gives a recur-
rence relation between the coefficients from which they can be calculated.

2. Introduction. Many multivariate distributions involve functions which can
be expanded in zonal polynomials. Examples are the distributions of the latent
roots of the covariance matrix, (James (1960)), the non central distribution of
the latent roots in multiple discriminant analysis (Constantine (1963) and for
a special case, James (1961b)), the distributions of the canonical correlation
coefficients (Constantine (1966)), the non central multiple correlation matrix
(Srivastava (1968), the non central multivariate F or Studentized Wishart dis-
tribution (James (1964)), the non central Hotelling’s Ty (Constantine (1966)),
and other test criteria (Khatri and Pillai (1968)), the distribution of the largest
and smallest root of a Wishart distribution or a multivariate beta distribution
(Constantine (1963), (1968) Sugiama (1966), (1967a), (1967b) and Pillai
(1967) ), and distributions of quadratic functions (Khatri (1966) and Hayakawa
(1966)).

A number of moments of statistics in multivariate analysis are also expressible
in zonal polynomials, such as the non central moments of the generalized vari-
ance (Herz (1955)), and likelihood ratio criterion (Constantine (1963)), non
central moments of Hotelling’s T’ (Constantine (1966)), and other test criteria
(Khatri and Pillai (1968)).

Zonal polynomials have been studied by Hua (1963) and James (1961). For a
definition of them, see James (1964). They are a particular case of spherical
funections, a general theory of which is given in Helgason (1962).

3. The Laplace Beltrami operator. From its group theoretic-nature, a zonal
polynomial must be an eigenfunction of the Laplace Beltrami operator (see
Helgason (1962) p. 387 equation (4)).

(3.1) A = (det )7 2 % (9/9w) (det @)} 23 ™(9/0ws)

where z; , - - - , , are coordinates of a point in a space with metric differential
form

(3.2) (ds)? = Dt D fea gijdesday;
"(3.3) G = (g:5) and (¢ = G
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Maass (1955) has shown that the metric differential form on the space of
m X m positive definite symmetric matrices X which is invariant under con-
gruence transformation

(34) X — LXr
where L is a m X m nonsingular matrix, is
(3.5) (ds)® = tr (X 'dXX " dX).
If we write

(3.6) X = HYH'
with H orthogonal and ¥ = diag (y.), then the metric differential form becomes
(3.7) tr (Y'dYY ' dY) + termsin dH and hence

[y 0 T

0
(3.8) G = .
0 Ym
terms
B 0 ndH

Also we have
(3.9) (det @)* = invariant volume element
= ay T (e — yy) (dH)

where (dH) is the invariant measure on the orthogonal group O(m), as we know
from derivations of latent roots distributions.

Thus
(3.10) 9" =y,
and
(3.11) g7 =0, i # j.

On substituting in the part of the Laplace Beltrami operator concerned with
the roots, we have

(3.12) A = X [yi(8°/oy) — H(m — 3)yi(9/dy:)
+ 2 Y (s — y) T (8/ya)].

4. Eigenvalues and differential equation. Now any homogeneous polynomial
of degree k is an eigenfunction of Euler’s operator

(4.1) 2 yi(9/dys)
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with eigenvalue k, hence if we leave this term out of (3.12), we merely change
the eigenvalue. Thus the zonal polynomials must be eigenfunctions of the
operator

(4.2) "ayd(8Yoyt) 2t D iy — ya) T (8/8ys)-
The zonal polynomial C(Y") is of the form
(4.3) C(Y) = can™p® - yn'™ + terms of lower weight.

For a discussion of weights of monomials see e.g. James (1964) p. 491.
On applying the operator (4.2) to the monomial yi** -+ ym™ of highest
weight, and comparing coefficients, we see that the eigenvalue is

(44) Do ki(ki +m — i — 1).
Hence the zonal polynomial satisfies the differential equation
(4.5) 2 yX(8/oyd)Cu(Y) + 2T ict,iei ¥i(Ys — Y1) (8/0y)C(Y)
— > kiks + m — ¢ — 1)C(Y) = 0.

b. Recurrence relations. The term

(5.1) 2y (8°/9y:d)
is weight preserving and its effect on a monomial
(5.2) ity
is simply to multiply it by
(5.3) i Ll — 1),
The effect of the operator
(5.4) DTt Yi (ys — y5) " (8/8Y:)

can be seen by considering the expression
(ys — ¥3) " (¥(8/0ys) — v (8/0y:)) (w'ys” + yiy,")
= L{yly;" + symmetric terms}

(5.5) + (I — I){yd 'y 4T 4+ symmetric terms}
+ (I — I){y ;" + symmetric terms}
4o
It can be seen that the operator multiplies the monomial (5.2) by
(5.6) T lm—9),
and adds on (I; — [;) times the monomial
A5.7) gty T Ty

for any such admissible monomials.
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The recurrence relation determines the zonal polynomial uniquely once a
normalizing constant, such as the coefficient of the term of highest weight is
given.

The recurrence relation betweens the coefficients Cy, C, of the monomial sym-
metric functions M), M, which corresponds to the differential equation is thus

(5.8) o= 20 ((li+r) = 1 —1))al(pe — )7
where

(5.9) = Z?=1 L(l; — 1), A= (b la),
and

(5.10) w=WL+r--li—r--1)

for all 7 such that, when the partition u is arranged in descending order, u is
above A and below or equal to x. The summation is over all such u, including
possibly, non descending ones.

In calculating the polynomials, it is convenient to use a polynomial Z.(Y)
with a different normalization constant, which is given in terms of C«(Y) by
the equation

(5.11) Cu(Y) = [xwa(1)2°!/ (2k)1Z(Y)

from James (1964) equation (18) p. 478, where the symbol x(24 (1) is defined.
From equations (18) and (132) (ibid.), the coefficient of the monomial of highest
weight

(5.12) yy ey

and thus of the monomial symmetry function

(5.13) M(Y) = g9, -+ y," + symmetric terms,
in Z(Y) is

(5.14) 2 T e TTs B — 3( — 1) + ki — ka)aytrs
where p is the number of non zero parts in the partition

(5.15) k= (ko -+« km).

6. Example of the calculation of a zonal polynomial. Suppose we wish to cal-
culate Z 1) .
From equation (5.14), we have

(6.1) Zay = 120y14y2 + terms of lower weight.
From formula (5.9), we have the values of p
(6.2) partition 41 32 31° 241 213 1%
P P 11 6 3 0 —4 —10.
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Hence the coefficient of

(6.3) Mgy = 9’ys’ + symmetric terms
is given by
(6.4) (4—-1)/(11 — 6) X 120 = 72.

Now the coefficient of M 12y comes from the partitions (410), (401) and (320)
and is thus

$#2 X4 X120 + 2 X 72) = 138.
Continuing in this way, we have
Zuy = 120Mauyy + 72M s + 138M 2y + 108M ory + 126M sy + 120M s, .
The coefficient of the last term M g« in Z, seems to be k! and serves as a check.

7. The case of order two. This case is essentially treated by Helgason (1962)
pp. 405-406. He deals with the spherical functions of the real 2 X 2 unimodular
group, which are the same as our zonal polynomials with a power of the determi-
nant, ¥y , factored out. To show the connection, we shall transform our differ-
ential equation to agree with his.

In the case of order 2, the differential equation (4.5) for the zonal polynomial

C i) [yl ] becomes
Yo

(7.1) y'(8°C/oy") + y2'(9°C/ays") + (y1 — 2) ™ (1n’(8C/dys)
— 3°(0C/0ys)) — [kr® + ka(ka — 1)]C = 0.
Put
(7.2) o =Y+
A = Y1Y2,
and the differential equation becomes
(7.3) (6 — 202)(9°C/0ar") + 20105(8°C/dandas) + 205°(6°C/90s")
+ 01(8C/9a1) + 02(8C/30s) — [Ies” + ka(ks — 1)]IC = 0.
Now substitute
(7.4) u = $ama ",
v =a,
and upon multiplying by ( —2), we have
(7.5) (1 — u)(8°C/ou’) — v*(8°C/av") — 2u(dC/du)
+ 2k + ka(ky — 1)IC = 0.
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Since the differential equation is homogeneous in v, we substitute

(7.6) C = v*P(u).
Then P(u) satisfies the equation
(7.7 (1 — %) (&*P/du®) — 2u (dP/du) + p(p + 1)P =0

where p = k; — ko . This agrees with Helgason’s equation (16) p. 405 except

for the sign of p(p + 1).
The solution which is regular at « = 1, is the Legendre function of the first

kind
(7.8) P,(u) = o) 57 (u + (W — 1)} cos t)” dt.

Hence

(7.9) C(klkz) (I:yl yz])/C(klkz)(Iz) = (?/1 yz)%kpkl—kz (%(yl + yz) (yl Z/z)—%)

From Erdelyi et al. (1953) p. 150 equation (15), we have the formulae for the
Legendre polynomials Py, _x,(%) as

(7.10) Py = (—1)"(20) 12" (n)*) 5F(—n,n + 33 3;4°) for ki — k= 2n
and
(711) Poyr = (—=D"2n + DU (0)*)uFi(—nn+550°)

for kv — k = 2n 4+ 1.

For integral %; and k, , this agrees with the formula (130) of James (1964).
For non integral values of k; and k, , whether real or complex, the function on
the right hand side of (7.9) is the zonal function of an infinite dimensional repre-
sentation of the group.

8. Conclusions. Formulae (5.14) and (5.8) show that the coefficients of zonal
polynomials are all positive when expressed in terms of monomial symmetric
functions and hence that the zonal polynomials are positive on the domain of
positive definite symmetric matrices. The formulae would appear to give the
best method so far known, of programing the calculation of the zonal polynomials
on the computer.

The coefficients of the polynomials are listed up to order 5 in the appendix.
They check against the coefficients given in James (1964) for the polynomials
expressed as sums of powers and elementary symmetric functions.
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APPENDIX

Zonal polynomials Z, in terms of monomial symmetric functions. M, defined
by equation (5.13).

1st degree
Z(l) M(l)
2nd degree
Z(z) 3M(2) + 2M(12)
Z(lz) 2M(12)
3rd degree
M M a1y My
Z3) 15 9 6
Z(zl) 4 6

Z 3 6




1718 A. T. JAMES
4th degree
M 4) (31) (22) (21%) (1%
Zw 105 60 54 36 24
Z 31y 18 12 22 24
Z 24 16 24
Ze) 10 24
Z(l‘) 24
5th degree
M ) @y @) e @) @) 1)
Zs) 945 525 450 300 270 180 120
Zay 120 72 138 108 126 120
Z (32 72 48 88 96 120
Zn 42 28 78 120
Z ) 40 . 60 120
Z oy 36 120
Zas) 120




