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RANDOMIZED RULES FOR THE TWO-ARMED-BANDIT WITH
FINITE MEMORY!

By S. M. SAMUELS

Purdue Universily

1. Summary. In the ‘“two-armed-bandit with finite memory”’ problein, each
rule which has been proposed (see [2], [3], and [4]) can be improved by using a
corresponding randomized rule. The performance of various randomized rules
is computed.

2. The problem and the rules. The “two-armed-bandit with finite memory”
problem was proposed by Robbins [3] and is as follows: We are given two coins
with unknown probabilities, p; and ps, of heads. At each stage, based only on
the results of the previous r tosses, we must decide which.coin to toss next. Our
goal is to find the rule which maximizes the limiting proportion of heads. A
more precise definition of the worth of a rule makes the problem well-defined
and avoids trivialities.

The rules which have been proposed may all be described as follows: First
toss one of the coins until it gives 7 consecutive tails. This is a long block. Then
test the other coin. If it passes the test, toss it until it, in turn, gives r consecu-
tive tails. If it fails, return to the original coin and repeat the process.

The following tests have been proposed:

Robbins [3] test: Start with the other coin and toss the two coins alternately
until one of them gives heads. If this coin is the other coin, it passes; if not,
it fails.

Isbell [2] and Smith and Pyke [4] tests: Let 6§ = (81, 62, -+ - , 8 ) be a binary
vector. At the kth stage of the test toss the other coin if §; = 1, the original
coin if 8, = 0. The test continues until either the other coin gives tails, the
original coin gives heads, or the end of the é-vector is reached. In the latter case
the other coin passes; otherwise it fails.

Isbell uses the simplest 8-vector: § = (1) Smith and Pyke first gener-
alize Isbell’s test to &’s consisting of s ones (1 £ s < r — 2), then consider
the longest possible &’s: maximal-length memory wheels. (The constraints on §
are imposed not only by the finiteness of the memory, but also by the desire
to avoid having the same memory state occur in both long blocks and test blocks.
The latter constraint rules out, for example, & & consisting of » — 1 ones.)

Isbell’s test is uniformly better than Robbins’. Moreover, as s increases from
1 to r — 2, the test gets uniformly better. Smith and Pyke offer numerical
evidence which suggests that a memory-wheel test is still better.

Received 22 January 1968.

1 This research was supported in part by the Aerospace Research Laboratories Contract
AF 33(657) 11737 at Purdue University. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

2103

%Jg
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ 2

S

The Annals of Mathematical Statistics. IKOJN ®

WWW.jstor.org



2104 S. M. SAMUELS

To each of the preceding rules we associate the following randomized rule:
If a coin gives r consecutive tails, start the test with probability 1 — b (i.e.,
with probability b toss the same coin again). Otherwise follow the rule as stated.

If b = 0, there is no randomization; if b = 1 we stick with one coin from some
point on, which is not allowed.

We shall show that the bigger b is, the better the rule, so that by being suffi-
ciently reluctant to get on with the test we can bring the performance of our
rule arbitrarily close to the (unattainable) maximum at b = 1.

3. The. performance of the rules. The limiting proportion of heads is an
increasing function of the limiting ratio of the number of tosses with the better
coin to the number of tosses with the worse coin. Denote this ratio by ni/n,,
assume that p; is greater than p, andlet ¢y = 1 — p1, g2 = 1 — p,.

For the nonrandomized rules,

(3.1) n/ny = [m(h + o) + mao]/Ima(\e + 02’) + o
=[hN+ o)+ baoil/[t2(Ne + 02,) + tioy]

where \; is the expected length of a long block with the better coin, o; is the
expected number of tosses of the better coin during one of its tests, o1’ is the
expected number of tosses of the better coin during a test of the worse coin
(6 = 01in the “s-test” rules), my is the expected number of tests of the worse
coin until a test is passed, and (= 1/my) is the probability that the worse coin
will pass its test. The quantities Nz, o2, o5, ms, and # are correspondingly
defined.

Equation (3.1) was derived in [4], Theorem 4.1, by considering the process
as an irreducible recurrent Markov chain, choosing an appropriate state, and
computing the expected numbers of tosses with each coin—denoted by n; and
N, respectively—between successive returns to this state. Note that the nu-
merator and denominator in the right side of (3.1) are equal to n; and n» respec-
tively. If they were merely proportional to ny and n,, formulas (3.2) and (3.3)
below would not follow. (I thank the referee for stressing this point.)

A routine calculation yields

M= (1—-a)/pg, N=(1-¢")pg.
For the Robbins rule
o =1/1=qe), o =q¢/(l—qp), b=p/(l-—qge)
with corresponding formulas for o, o, #; .
Hence, for the Robbins rule,
m/ny = (1 4+ pi\)/ (1 + pode) = (go/an)"-
For the other rules, we let
=0, o= Do k=1, s
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Then,

_ s—1 Pk, k—pk

o = Zk-o O pige T,

r__ s—1 Pk, k—pk

o = 2= (1 — dupa)pe™ ™,
§—ps

t=p ",

as given in [4], with corresponding formulas for o3 , 03, and t, = 1/m, .
In the corresponding randomized rules, \; is replaced by

M= M(1 = @b)/(1 —b) +b/(1 —b),

and \; by a corresponding \,*. Hence, for the Robbins rule, the ratio ny/ny 18
replaced by

(3.2) m*/n* = (1 4+ piv®)/(1 + pake™)
(/@) T(1 — @b)/(1 — gzb)]

which increases with b to the (unattainable) upper bound, (g2/q1)" (p1/p2)-
For the other rules, ni/n, is replaced by

(33) m*/m* = [(M* 4 o) + torl/[(N + o)) + too)
= [(1 = b)ny 4 bti(1 + p\))/[(1 — b)ny + beo(1 + Dah2)]

which is a monotone function of b. To show that (3.3) is an éncreasing function
of b, we must establish that

m/ti(1 + pih) £ no/ta(1 + podo).
Now, since p1 > p2, ¢ > q1,
n/t(l + pid)
=[P (1 — @)/’ + 200=0 (1 — e )" ™ + po° ™"
Nt Seap™e " {pe" L + (1 — a')/a'l

(34) = (1 - Q1r)/p1 + ql’Z:i;ﬁ (1 — Ok )p2pk91k_pk
+ p2p3 qls+r—.o8 Zz:(l) 6k+1p1—(pa—pk) qz—(s—k—ps-i—pk)
(1 — ¢)/pe + ¢ 200=0 (1 — &uq1)p”qe" "
+ plpsqzs-{-r—ps Z;;& 6k+1p2—(03_0k)q1—(8—k—}73+ﬁlc)

= ﬂz/tz(]. + pQ)\g).

IIA

Thus (3.3) is increasing in b, to the (unattainable) upper bound:

(3.5) H(1 + pM)/6(1 + pohe) = (/1) 7" (po/p2)".

Note that (3.5) is very similar to (4.1) of [4], since, as b increases to 1, the con-
tribution to (3.3) from the test blocks decreases to 0.
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In the best s-test s = p, = 7 — 2; in the memory-wheel test, s = 2" — r — 2
and p, = 277 — 2.

The following table shows how much improvement can be made by ran-
domization (the columns headed ‘“Best s-test’” and ‘“Memory-wheel test” were
computed by Smith and Pyke [4]).

TABLE I
Limiting ratio of number of tosses with better coin to number with worse coin

Best s-test L.U.B. for Memory L.U.B. for

Randomized Version wheel test Randomized Version
p1 = 0.5, p. = 04
r =4 2.55 3.24 9.11 16.40
5 3.76 4.86 50.02 420.38
6 5.62 7.29 122.33 276121.52
7 8.46 10.94 . 250.36 1.19 X 10m
8 12.76 16.40 506.34 2.22 X 1022
9 19.23 24.60 1018.33 > 1038
10 28.98 36.91 2042.33 > 1038
11 43.64 55.36 4090.32 > 1038
12 65.67 83.04 8186.32 > 1038
13 98.76 124.56 16378.32 > 1038
14 148.45 186.83 32762.32 > 1038
15 223.03 280.25 65530.32 > 1038
16 334.96 420.38 131066.32 > 103
17 502.92 630.57 262138.32 > 1038
18 754.94 945.85 524282.32 > 10%8
19 1133.04 1418.78 1048570.33 > 1038
20 1700.29 2128.16 2097146.33 > 1038
= 0.5, T =
P2 = 0.499 1.01 1.02 1.06 1.06
0.490 1.15 1.17 1.75 1.82
0.400 3.76 4.86 50.02 420.38
0.100 53.21 2361.96 61.33 7.41 X 10
p1 = 05,r =10
pe = 0.499 1.03 1.04 7.68 7.72
0.490 1.40 1.43 2041.14 7.55 X 108
0.400 28.98 36.91 2042.33 > 1038
0.100 1841.32 1.39 X 108 2045.32 > 1038

4. Related problems. If the memory length is 7, then there are 4" possible
“memory states’” (for each toss we specify which coin was tossed and what
the outcome was). For some rules, however, it is not necessary to keep track
of all this information. For example, the Robbins rule can be restated as ‘“Switch
coins whenever the last 7 tosses all resulted in tails”; hence it “uses” only 2"
states. In an oral communication T. Cover has suggested substituting the num-
ber of states used for the memory length as a basis for comparing rules. He
notes that from this point of view the Robbins rule is better than the Isbell rule.
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Cover [1] has also shown that if we modify the problem by allowing ourselves
a “clock” (i.e., at each stage we know how many tosses we’ve made so far),
then there exists an optimal rule. This rule is in fact as good as one could pos-
sibly hope for: the limiting proportion of heads is max (p1, p).

5. Acknowledgment. I wish to thank A. Dvoretzky who introduced me to
the problem and H. Robbins who suggested looking at randomized rules.
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