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MULTIPLE DECISION PROCEDURES BASED ON RANKS
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1. Summary. This paper is concerned with single-sample multiple-decision
procedures based on the ranks of the observations for selecting from ¢ continuous
populations (a) the “best ¢’ populations wethout regard to order, (b) the “best
t” populations with regard to order, and (c) a subset which contains all popula-
tions ‘“‘as good or better than a standard one.” The “bestness” of a population
is characterised by its location parameter; the best population being the one
having the largest location parameter; the second best being the one having the
second largest location parameter, etc. Large-sample methods are provided for
computing the sample sizes necessary to guarantee a preassigned probability of
correct grouping (or ranking) under specified conditions on location parameters.
It is shown that the asymptotic efficiency of these procedures relative to the
normal theory procedures (see, for example, Bechhofer [1] and Gupta and Sobel
[3]) is the same as that of the associated tests in one-way analysis of variance
model I problem. If the ratio of the sample sizes is equal to this efficiency, the
two procedures being compared are shown to have the same asymptotic per-
formance characteristic. Finally, in the case of problem (c) two alternative rank-
score procedures are proposed which are asymptotically equi-efficient.

2. Introduction. It is well known that in most of the practical situations to
which the analysis of variance tests are applied, they do not supply the informa-
tion that the experimenter aims at. If, for example, the hypothesis is rejected
in actual application of the F-test, the resulting conclusion that the true means
61,02, - -, 0. are not all equal, would by itself usually be insufficient to satisfy
the experimenter. In fact his problems would begin at this stage. He may desire
to select the “best” population or a group of the “best’” population; he may like
to rank the populations in order of ‘“‘goodness” or he may like to draw some other
inferences about the parameters of interest to him.

In parametric theory most of the work along these lines has been done by
Bechhofer [1], [2], Gupta [4], Gupta and Sobel [3], Lehmann [5], and Paulson [7],
among others. (See Lehmann [5] and Bechhofer [1] for references.) In nonpara-
metric theory, attempts to meet the need of decision procedures relevant to such
problems has been initiated by Lehmann [6] only very recently. In [6], Lehmann
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considered the problem of selecting the “best’ population, that is, the one having
the largest location parameter. He proposed a class of decision procedures which
may be regarded as the most direct predecessor of the procedures considered
here. In this paper we extend Lehmann’s procedures so as to cover the following
problems:

(a) The problem of selecting out of ¢ populations, the ““¢ best’” ones without
regard to order.

(b) The problem of selecting out of ¢ populations, the ¢ best” ones with regard
to order.

(e) The problem of finding a subset which contains all populations ‘“‘as good or
better than a standard one.”

The procedures developed here are compared with the normal theory pro-
cedures studied by Bechhofer [1] and Gupta and Sobel [3]. Following Lehmann
[6], the asymptotic relative efficiency of two procedures is defined as the ratio of
the sample sizes required to achieve the same minimum probability of selecting
the desired group. The same asymptotic relative efficiencies are obtained as for
the problem of testing the equality of means in one-way analysis of variance
model (see Puri [8]). The analogue of the efficiency statements for the Kruskal-
Wallis and normal score tests [8] applies. It is also shown that the procedures
based on rank scores are robust for selecting appropriate sample sizes.

3. The mathematical model and related definitions. Let X;; (j = 1,2, --- ,n;
i=1,2, ---,¢c) be independent samples from populations ITy , Iy, - - - , IL, with
continuous cumulative distribution functions F(z — 6;),¢ = 1,2, ---, c. Let
0 < 0 < -+ = 6, be the ranked 6’s. We assume that it is not known which
population is associated with 6;; . We further assume that a population is charac-
terised by its parameter value. Thus the ‘“best” population is the one which has
the largest parameter value; the “second best” being the one which has the second
largest parameter value, and so on. Our aim is to develop some procedures based
on the ranks of the observations for the problems (a), (b) and (¢) mentioned
in Section 2.

We shall denote the sample mean from 7th population by X, ; the sample
mean associated with the population having the mean 6;;; by X(; and the ranked
Xi:i =1,2, .-+ ,C,be[u < X[2] < -ee < chl'

4. Problem (a).
4A. Bechhofer procedure. When F is normal, Bechhofer [1] has proposed the
following procedure: Select the ¢ populations associated with

(4A.1) X[c——H—l] y T X[c] .

Most of the literature on selection problems is concerned with the determination
of sample sizes required to guarantee a preassigned probability of a correct
grouping, say v, so that

(4A.2) P(correct selection of ¢ best populations) = v,
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where 0j._; and 8j._;1) are subject to the condition that
(4A.3) Ote—tyy — Ope—sy = A*.

Here A™ is a given constant, and denotes the smallest value of the difference
fjc—ss1] — Or—g Which is “worth detecting.”

If the assumption of normality is considered unreasonable, we can find a
large sample solution of this problem, which as will be seen below, depends only
on the variance o® of F. To this end, as in [6] consider a sequence of situations for
increasing 7 and define the condition (4A.3) as

(4A4) Opo—tin) — Ope—gg = A®,
where A™ is given by (4A.7). Then for all F the left hand side of (4A.2) takes
on its minimum value when the following holds:
(4A.5) by = O = -+ = On = Opriy — A
Ot — Ore—t1 = O.

This follows from the stochastic increasing property of the family of distributions
F(z — 6.). We refer to the condition (4A.5) as the least favorable configuration
of #’s. The sample size 7 is determined by the relation

(4A.6) Plmax (X@, -+, Xen) < min (Xe—tns =, X))l = v,

under the assumption that (4A.5) holds.
The following lemma gives the large sample solution of the sample size problem.
LemMA 4A1. For fized v, and under the condition (4A.4), let n be determined so
that (4A.5) and (4A.6) hold. Then asn — o,

(4A.7) A" = Aont + o(n7h).

Here o is the variance of F and A is determined by the condition

(4A.8) v = tQ.a(a27% a274 ... A274 0,0, -+, 0)
(¢ — tY) times (t— 1§times

where Q._y is the cumulative distribution function of a normally distributed vector
(U, +ooy Uomty Weesgn, =+, We) with
(4A9) EU:) = E(W;) = 0; Cov (Ui, Us) = 3(8ir + 1);
Cov (W;, Wy) = 3(8;» + 1), Cov (Us, W;) = —%;
67 =1,2 - ,c—t4,5 =c—t+2 ¢

where 8’s are the Kronecker deltas.

The proof of this lemma, being an immediate extension of Lehmann’s Lemma
1 [6], is omitted. A similar expression for (4A.8) which can actually be used for
calculation is either of the following:

(4A.10) v o= 2,8z + A1 — ®(x)]" " dB(x),
= (¢ — 1) [2.07 (@)1 — ®(z — A)]"dB(x),
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where & is standard normal distribution function. The solution in terms of A
for fixed ¢, ¢ and v has been tabulated by Bechhofer [1].

Suppose now that we are given a value A* and we wish to find the smallest
sample size n for which (4A.2) holds subject to (4A.3). Then, from the above
lemma, a large sample size solution is given by

(4A.11) n = (Ac/A™)

4B. Procedures based on ranks. We shall now consider the procedures based on
the ranks of the observations. Let Z§) = 1, if the jth smallest of N = ¢n ob-

servations X,;;7 = 1,2, -+-,n;¢ = 1,2, -+, ¢ is from the ¢th sample and
otherwise Zi} = 0. Denote

(4B.1) Ti=n"2 3 E(V)ZE); i=1,2,--,¢
where V¥ < .-+ < V™ is an ordered sample from a given continuous distribu-

tion Fy and E denotes the expectation. Further as in Section 3, denote the sta-
tistic associated with the population having the mean 6;; by T'; and let the
ranked T';’s be denoted as Ty < T < -+ < T . Then the rank scores pro-
cedure proposed is as follows: Select the ¢ populations associated with

(4:B.2) T[c—t+l] y "7 T[c] .
The procedures based on the statistic 7';’s will be referred as Fy-scores procedure
T(Fo).

In what follows, we shall judge the relative merits of the procedures (4A.1)
and (4B.2) on the basis of the sample sizes required to guarantee (4A.2) subject
to the condition that the differences of any two 6’ is of order m* where for clarity
the sample size for procedure T'(F,) is denoted by m. Specifically, consider any
sequence of parameter points satisfying

(4B.3) Bre—tiy — O = A = Arm™h + o(m™),
t=1,2 ---,¢c;t#c—1t+1,

where the A’s are some constants, positive for ¢ = 1, 2, -- -, ¢ — ¢ and negative
for 2 = ¢ — ¢ + 2. Suppose now that the scores-procedure (4B.2) requires the
smallest sample size m if it is to satisfy (4A.2) subject to the conditions (4B.3)
and

(4B4) Oy — Ofmy = ™,

where A™ is given by (4B.15). Then to obtain the least favorable configuration
of #’s (subject to (4B.3)) for the procedure 7'(F,), we have the following theorem,
the proof of which being an immediate consequence of Theorem 6.1 of [8], is
omitted.

TaeorEM 4B.1. Form = 1,2, -+« ,let X;; (1 =1,2,--- ,m;z=1,2,---,¢)
be independently distributed according to Fi(z) = F(x — 6,"™) with the sequence
of parameter points 6™ = (6,"™, -, 6,") and suppose that the assumptions of
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Theorem 6.1 and Lemma 7.2 of [8] are satisfied. Then the limiting distribution of
the random vector
(m/2A*) [Ty — Ty — wi(8™) + wi(6™),
1= 1’2"..’c_t;j=c—t+]_, "‘,C],

where
(4B.5) w(8™) = JJH@)dF(z), H(z) = ZiaFu(@)/e, J=F,
is the distribution of a t(c — t) dimensional normal vector (Uij; 1 = 1,2, -+,

c—t;j=c—t+1,---,c)with
(4B.6) E(Ui) =0, Var(Uy) =1, Cov (Uij, Ui) = Cov (Ui, Usn;) = 3,
Cov (U, Uyj) =0, ‘
i 00 =12, c— 85,7 =c—t+1 ¢

where
(4B.7) A* = [8J%z) dz — ([3J (2) dz)’.
Now the probability of correct selection of ¢ best populations is given by
(4B.8) Plmax (Tay, *+, Tee—n) < min (Te-ssn, -+ Tw)l
=P[Tw —Ty <0,i=1,2 -, c—t;j=c—t+1, -,
= P{(m/24Y) Ty — Ty — o (0™) + v (8™))
< (m/24")} (w6 (87) = B (6)),
i=1,2-,c—tj=c—t+1,-,c.

Since, for large m (c.f. Lemma 7.2 [8])

(4B.9) m(py (0™) — wo(6™)) ~ m'BOF) — 6)
where
(4B.10) B = [ (d/dx)J[F (z)] dF (2),

the right hand side of (4B.8) by virtue of Theorem 4B.1 is asymptotically
equivalent to

(4B.11) P[U; < m'B(o{R — 6F) (2477,
i=1,2 -,c—tj=c—t+1,--,cl
Now in view of (4B.4), 6{7)’s satisfy

(4B12) 6 < 6 < -+ < 0 < 0y — A < 0y < -0 < 0(F.
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Among the values of §’s which satisfy (4B.3) and (4B.12), the least favorable
configuration of ’s for which (4B.8) takes on the minimum value is easily seen
from (4B.11) to be

(m) (m) (m) ~(m)
0 = -+ = 02y = Ol — AT

(4B.13) o -

fte1 — Ofe—erny = 0.
Hence for large samples, the sample size m is determined by the condition
(4B.14) Plmax (Tqy, -+, Teen) < min (Tee—t4ny, -+ Tw)l = v,

where the left hand side is derived subject to (4B.13). For the case of T'(Fo)-
procedure, the following lemma is the analogue of Lemma 4A.1.

Lemma 4B.1. For fized v, let m be determined so that (4B.14) holds subject to
(4B.13), and suppose that F and J = Fo " satisfy the regularity conditions of
Theorem 6.1 and Lemma 7.2 of [8]. Then as m — «

(4B.15) Am) = am~*A/[ (d/de)J[F (z)]} dF (z) + o(m™),

where A® is given by (4B.7) and A satisfies (4A.8).
Proor. Let

(4B.16) Fiz) = F(z — 6,™)

where 0™ = Op_spy — A5 A are as defined in (4B.3) with A = 0.
Denote

(4B.17) pi = [JH@)dF(z), J =Fs,
where H(z) = D _iaFi(z)/c.
Then from [8], the random variables m (Ts — ue(6™),5=1,2, -+, ¢, have

asymptotically a joint normal distribution with zero means and covariance
matrix

(4B.18) g = (8 — ¢ A,

where the 8, are the Kronecker deltas, A” is given by (4B.7) and where 6" =
(OIW), Tt oc(m)>'
Now the equation (4B.14) in the limit is equivalent to

¥ =l 2 imetga Plmax (Tay, =+, Tion)
<min (Tgy;l#rl=c—t+1,---,¢)l
(4B19) = limpew i P[(Tay — Ty — me(6™))/A2}
< a0 /A2 (Toy — Ty — 10a(6™))/A2} < 11, (™) /42,
k=12 --,c—t;l#r;l=c—t+1,-,cl
where

(4B.20) 1as(0™) = p@w(8™) — ney(6™).
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From Theorem 6.1 and Lemma 7.21 of [8], itl follows that the random variables
m(Tw — Tw — m.(0™))/A2" and m (Toy — Tay — 2,.(0™))/A2%

k=1,2,---,c—t;l=#=r;l=c—1t+ 1, --,c, have the limiting joint distri-
bution of a (¢ — 1)-dimensional normal vector (Ui, -+, Ue—s, Wetya, -+,
W, Wepa,y - W) satisfying (4A9) with 4, ' = 1,2, -+, ¢ — t; J,
o
J=c-—t+1 ¢4, 0 # o

Now under the least favorable configuration (4A 5) with A<") equated to
A™ wehaven,,(6™) = 0forl=r,l=c—t+1,---,c and 7, £(6"™) is inde-
pendentof rand kforr =c —¢t+1,--- ,cand k = 1,2, .-+, ¢ — t. Thus using

(4A.8) and (4B.9), we obtain limm.e 7,.(0™)/A42" = A/2* that is, omitting
details

limy,e m*A™ [ (d/da)(JIF (x)]} dF (z)/A2} = A/2".

The lemma follows.

4C. Asymptotic relative efficiency. We are now in a position to make large
sample comparison between the score-procedure T'(F,) and Bechhofer procedure
(hereafter referred as B-procedure). We shall adopt a method developed by
Lehmann [6] who defined the asymptotic relative efficiency of the two procedures
as the limiting ratio of the sample sizes to attain the same minimum probability
of correct selection subject to the same condition (4A.3) in both the cases.

TueoreM 4C.1. The asymptotic efficiency of the T(F,) procedure relative to the
B-procedure s

(4C.1) ercry 5(F) = A7 ([ (d/de){J[F ()]} dF (z))".

The proof follows by equating A™ defined by (4B.15) to A™ defined by (4A.7),
as both are set equal to A*.

The relative efficiency er(r,),» of the Fo-scores procedure T'(F,) to the Bechhofer
procedure is the same as that found by Puri [8] for the corresponding tests in the
c-sample problem and also shown by Lehmann [6] to be valid for the problem of
selecting the best population. For the ease of reference we give below the effi-
ciency comparisons of the T'(F,) and B-procedures for different F’s and two Fy’s.

F
Fo
Normal Uniform Double exponential
Normal N(0, 1) 1 0 4/~ 1.273
Uniform R(0, 1) .955 1 0.927

More generally, if Fis a uniform distribution over (0, 1), err,,» = 0.864 for
all F, and if Fyis a standard N (0, 1) distribution, ezcr,,s > 1 for all nonnormal F.
4D. Comparison of performance characteristzs. We have shown above that the
T(F,) and B-procedures have approximately the same performance characteristic
if the sample sizes m and n are determined such that (4C.1) holds and the param-
eter point satisfies (4A.5) or equivalently (4B.13) since A = A™. We shall
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now study the performance characteristics of the two procedures when the param-
eter point does not satisfy (4A.5).
To discuss this, consider any sequence of parameter points satisfying

(4D.1) Bty — 01 = A™ = Awn™ + o(n7),
1=1,2,---,¢; t#c¢c—1t+1,
where not all A; = A for s = 1, 2,---, ¢ — t and/or not all A; = 0for
i=c—1t+1,---,c. However, the condition (4A.4) still holds, so that
(4D.2) 6ff) < Off) < -+ < 620 < 0(Puy — A" < O{Pem < -o- < 6L
Then for the B-procedure
lim,.. P(correct selection of ¢ best populations)
= limy.e Pmax (Xay , -+, Xeeen) < min (Xepyn , -+ X))
= liMuse 2 pmesrs Plmax (X , -+, Xemny) < X
(4D.3) <min (Xp;r=c—t+1,---,¢;r#1)]
= Dt limeu P Xy — Xy <038 =1,2,--- , ¢ — ¢,
X —Xp<Oyr=c—t+1,--,¢cr#]
= i limw PIU, < 825 W, < 6758 = 1, 2,5+, ¢ —
r=c¢c—t+1,---,¢c;r # ]

where £ = (n/20*)}(6{% — 6{})), and where the last equality follows from the
central limit theorem and the fact that the convergence is uniform with respect to
the argument of the distribution function, and where the vector (Ui, - -+, Ue—t,
Weisa, -, Wia, Wi, -+, W,) is normally distributed with the cdf given
by Q.1 and with the variance covariance matrix given by (4A.9). Furthermore,
using (4D.1)

(4D.4) i = /29,0 + o(1); s=12--,¢c—1
w o= (/2900 + o(1); r=c—t+1,0 rEl
with p;j = (A: — A;); whence (4D.3) is given by
(4D.5) D iceirs Qealpr/2t, -+ s et/ 2 proenn/2h -+, praa1/2},
pru/2 o, pe/2Y).

Consider now the T'(F,) procedure based on the samples of size m = g(n) satisfy-
ing (4C.1). Then the following theorem gives the limiting behavior of this
procedure.

TueoreMm 4D.1. Forn = 1,2, --- , let X;; (j=1,2,--- ,n;2 =1,2,--- , ¢)
be independently distributed according to F (x — 0.™) with the sequence of parameter
point 6% = (6™, -, 0. and suppose that the assumptions of Theorem 6.1
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and Lemma 7.2 of [8] are satisfied. Furthermore, let m = g(n) be determined so that
(4C.1) holds. Then if, for any fixed | between ¢ — t + 1 and c,

Vs(n) = (%nA_2)%[T(s) —Ta — ns,z(o(m))]; s=1,2,---,¢c—14
V" = AT — Ty — ma(6™)]; 1 =c —t+1,--, ¢ 1 %1,

where T’s and n’s are defined by (4B.1) and (4B.20) respectively, the joint limiting
distribution of the random wvariables (Vy'”,---, V&, Va4, -, Vil,
Vﬁ'-i, SN V.\™) s the distribution of a (¢ — 1) dimensional normal vector
(U, Usy o s Uty Wetgn, o+, Wia, Wiy, -+ -, ) satisfying (4A.9).

The proof of this theorem is analogous to that of Theorem 1 [6] and is therefore

omitted.
Finally for the parameter points satisfying (4D.1) and for [ betweenc — ¢ + 1

and c,
limy (%nA—Z)%nl,S(o(m)) = PS,Z/Z%; § = 1, 2, e, —

and

i

limpsw (3047)H,(0) = 1,2%; r=c—t+1---,¢ 1l

and therefore in view of (4D.4) using the above theorem it can be easily seen
that if the ratio of the sample sizes is equal to (4C.1), the T'(F,) and B-procedures
have the same asymptotic characteristics, given by (4D.5). The reader may refer
[6] for analogous details.

5. Problem (b). We shall now consider the problem of selecting out of ¢ popu-
lations the “¢ best” ones with regard to order. Our aim as in Problem (a) is to
make large sample comparisons between the procedures based on the ranks of the
observations and the means procedure proposed by Bechhofer [1]. The discussion
runs parallel to the Problem (a) and is therefore indicated briefly.

5A. Bechhofer procedure. When F is normal, the “¢ best” populations with re-
gard to order are the ones associated with X , Xtey , - -+ , Xjessn) respectively.
As before, our object is to choose the sample sizes in such a way that under
specified conditions, the proportion of correct statements associated with the
decision procedure is at least some predetermined value v; that is

(5A.1) P (correct selection of ¢ best populations with regard to order) = +,
where 6’s are subject to the conditions
(5A.2) Oy — O = 3ln); t=¢—t,---,c—1,

and where 5™ is given by (5A.5). Then for all F, the least favorable configuration
of s is given by

(5A.3) Oy = Oy =+ = Oy = Opo—en) — 8

0[¢]—0[¢+1]=3(n); i=c—t+1,--~,c——1;
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and the sample size is therefore determined by the condition
(5A4)  Plmax (Xoy, -+, Xeeep) < Xe—ign < -+ < Xl = 7

where (6py , - - -, 01) satisfies (5A.3).

The large-sample solution of the sample size problem then follows from the
following lemma, the proof of which is omitted.

Lemma 5A.1. For fized v, and under the condition (5A.2), let n be determined so
that (5A.3) and (5A.4) hold. Then asn — «

(5A.5) 8™ = sont + o(n7H).
Here o is the variance of F and § is determined by the condition

(5A.6) (¢ — £)Qea(0,0,---,0,627% 627 627 =; 15t = ¢ — 1

~—

¢ — t — 1 times t times

where @ 1s the cumulative distribution function of a mormally distributed vector
(Ury oy Ustery Wey, -+ -, Wea) satisfying

E(Uq,) = E(W,) = 0; COV (U,’,U,") = %(1 + 5,‘;');
Cov (W,;,W;i) =1 or —% accordingas j=3j or |j—j|=1
(5A.7) and O otherwise;

Cov (U;,W;) = —% if 7 =c¢—1t and zero otherwise;
i =1,2---,¢c—t—1;, 4,5 =c—t-,c—1L1.
5B. Rank procedures and their performance characteristic. Let T,
t=1,2, -+, ¢, be defined as in (4B.1). Then the T(F,) procedure for selecting
“t best”” populations with regard to order calls for the selection of the populations
associated with T(c] , T[c_l] y Tt T[c—t+1] .

As before, we shall confine ourselves to the set of 8’s such that the difference of

1

two of them is of order m . More specifically, we shall consider sequences of
parameter points satisfying

(5B.1) Opryy — 08 = 8™ = ot + o(m™); i=1,2-,¢c—t
60Ty — 6 = 8l = din.m + o(m™);
i=c¢c—1t+1,---,¢c—1.

Then arguing as in Section 4B, it can be shown that the left side of (5A.1) subject
to

(5B.2) 0\, — o) = &, i=c—1t - ,c—1,
takes on its minimum value when the least favorable configuration of 6’s is given
by

(5B.3) OF = 05 = - = 02y = Oprgy — 6"

( x(m) .
o = oty — 5, Pme—td1 e,
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where 5§ is given by (5B.5) below. Thus for large samples, the sample m is
determined by the condition

(5B.4) Primax (Ta, 5 Tet) < Ttyny < -+ < Tio)] = v

where (6, -+, 6,"”) satisfies (5B.3). Furthermore proceeding as in Section
4B, it can be shown under the conditions of Lemma 4B.1, that

(5B.5) §™ = em™A/[ (d/dx){J[F (z)]} dF (z) + o(m™?),

where A and § are as defined in (4B.7) and (5A.6) respectively.

Now if m and n for the two procedures are determined by (5A.1) and if 6
of (5A.2) and §™ of (5B.2) are equated to a common prefixed §*, then pro-
ceeding as in Section 4C, the asymptotic efficiency of the scores procedure T (F,)
with regard to order is the same as in (4C.1), and hence the concluding remarks
of that section may be carried along to the present case.

Consider now any sequence of parameter points satisfying (5B.1) and not
necessarily (56B.3). Then, proceeding along the lines of Section 4.D it can be
shown that if the ratio of the sample sizes is equal to the efficiency (4C.1) the
two procedures T'(F,) and B have the same asymptotic performance character-
istic even with regard to order. The details are omitted to avoid repetition.

6. Problem (c). We shall now consider the problem of selecting a subset of ¢
populations such that the probability, that all populations “as good or better
than the standard one” are included in the subset, is at least a predetermined

number 7.
Let {X,;;4=20,1,2,---,¢;5 =1,2,--- ,n} be c + 1 independent samples
from populations IIp, II;, - - -, II, having continuous cumulative distribution

functions F(z — 6o), F(z — 61), -- - , F(x — 6,) respectively. We further assume
that II, represents the standard population. We shall call a population II; “as
good or better than II, 7, if

(6.1) 0; = 0o + A™

where A"™ is given by (6A.5). Hereafter for convenience, we shall use the word
“good” in the sense “as good or better than the standard one.”

6A. The means procedure. For each ¢ = 1, 2, --- | ¢ select I, if and only if
X:2 X,,where Xoand X;,7=1,2, - - - , ¢, are the sample means corresponding
tOHo,Hi;i = 1,2, rer, C.

Suppose without loss of generality that the only good populations are
I, Iz, -+, I, (s < ¢), where s is unknown. Then 6; = 6, + A™ for
i=1,2 - ,sand ; < 6+ A™ fori = s 4+ 1, --- , ¢. As before, we wish
to determine the minimum sample size n such that

(6A.1) P [selected subset includes T, ---, II] = 7.

We may remark that the purpose here is not to avoid the non-good populations
for inclusion into the subset, but mainly to aim at the selection of good popula-
tions, subject to (6A.1). The fact that some of the non-good populations may
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get included into the subset is of no consequence to us. Again, when s = 0, the
condition (6A.1) is trivially satisfied by any subset. Thus we restrict our at-
tention to the case with 1 < s < ¢. Since s is unknown, we find a least favorable
configuration jointly of both 6’s as well as s, for which the left hand side of (6A.1)
is minimum. This we attain in two stages. Firstly, for any fixed s, the least favor-
able configuration of s is

(6A.2) O =0, = - =0, = 6+ A",
the left hand side of (6A.1) being independent of 6,41, - - - , 0, ; with the result
Ming, >00+6(m) ,i=1,2,---,s P [selected subset includes
(6A.3) o, -+, O, |, -- -, II, are good]
=PX:>Xo;i=1,2-,sl=0"+Aa";7=1,2,---,]

Secondly, since right hand side of (6A.3) is a decreasing function of s, the least
favorable value of s is s = ¢. The sample size n is therefore determined by the

condition

min, ming, »ee+a(m,iz12,...,s [P selected subset includes

7 =
(6A.4) I, -, O, |, --- , II, are good]
=PX:>Xo;i=1,2-,¢l: =60 +A%;¢=1,2-,¢.
The large-sample solution of the sample size problem then follows from the follow-
ing lemma. '

LemMa 6A.1. For fized v and with “goodness” of a population defined by (6.1)
let n be determined so that (6A.4) holds. Then asn — o,

(6A.5) A = AonF 4 o(n 7).

Here o® is the variance of F and A is determined by the condition

(6A.6) Q.(A27H .-, A27) = 4,

where Q, is the cdf of a normally distributed vector (Ui, - -, U.) satisfying

(6A.7) EU; =0, Cov(U;,Us) =314 8w); 443 =12"-,c

The proof is straightforward. _
6B. Procedures based on ranks. Let Z$, = 1 if the rth smallest of

M = m(c + 1) observations X;; ;4 =0,1,---,¢;5 = 1,2, --- , m is from the
4th sample and otherwise let Z %> = 0. Denote

(6B1) T: = - Zil E(V('))Zﬁ.)r ) 1=0,1,2,--,¢
where V® < -+ < V™ is an ordered sample from a given distribution Fy and

E denotes the expectation. Then the proposed procedure is:

(6B.2) Select II; ifandonlyif T:= To; 1=1,2---,c
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Later, we shall propose an alternative procedure which is asymptotically equi-
efficient to the procedure (6B.2). To find the desired sample size m, as before we
restrict ourselves to the 6’s satisfying

(6B.3) 0™ — 0y = A™ = Am T +o(m™);  i=1,2-,c
Then subject to the condition
(6B.4) 0.™ = 6 + A™,

the least favorable configuration of ’s (amongst those satisfying (6B.3)) and s
subject to (6A.1) turns out to be

(6B.5) s=c¢ 0 =06, + A™; i=1,2 - ,¢
where A™ under the conditions of Lemma 4B.1 is given by
(6B.6) A" = am™* A /[ (d/de) (JF ()]} dF (z) + o(m™).

Here A and A are given by (4B.7) and (6A.6) respectively. The sample size m is
determined by the condition

(6B.7) P[Ti;To;i=1,2,"',C]='Y;

where the left hand side is derived under the condition that (6, , 6™, - - - , 6,"™)
satisfies (6B.5).

The asymptotic efficiency of the means procedure relative to the procedure
(6B.2) is again given by (4C.1) and finally, if we consider a sequence of parameter
points (6o, 6,9, --- | 6,) not satisfying (6B.5), it can be shown as in the
previous sections that if the ratio of the sample sizes n/m is equal to the efficiency
(4C.1), the two procedures have the same asymptotic performance. The details
are omitted to avoid repetition of the argument.

6C. An alternative rank procedure. As an alternative to the procedure (6B.2),
one might consider a procedure based on combining separately each of the ¢
samples, X;;,7=1,2,---,¢j =1,2,...,m,with the sample Xo;,7=1,2, -,
m, from the standard population, instead of combining them all together. Let for

i=1,2, -+ ,¢ Z%Y = 1, if the rth smallest of 2m observations
{Xij, Xojyj = 1,2, .-+, m},
is from the 7th sample and zero otherwise. Denote forz = 1,2, -- - , ¢,

s =m L B(VOYZEY and Tio = m MM E(VO)(1 — Z8D);
where V < .- < V®™ is an ordered sample from a given distribution F, . The
alternative procedure is then given by
(6C.1) Select II; ifand onlyif T:= T,o; +=1,2,---,¢;

which is equivalent to 7; = constant.

Again following Puri [8], it can be easily shown that under the normal regu-
larity conditions, the joint limiting distribution of the random variables
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(Zm)%[Tl — w, -+, Ts — wl)/A is the distribution of a ¢-dimensional normal
vector (Ur, Us, -+ -, U,), satisfying (6A.7) where 4 is given by (4B.7) and

i = fJ[Hi,o(x)] dF (z — 6,)
where
Hio(z) = 3[F(z — 6) + F(z — 0)]; J = Fo .

Using this, one obtains results parallel to those of the previous section with
regard to the asymptotic performance of this procedure. Omitting the details
however, it is sufficient to state that the present procedure and the one con-
sidered in the previous section are asymptotically equi-efficient.
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