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ASYMPTOTIC DISTRIBUTION OF MAXIMUM LIKELIHOOD
ESTIMATORS IN A LINEAR MODEL WITH
AUTOREGRESSIVE DISTURBANCES!

By Cuirrorp HILDRETH

Unaversity of Minnesota

1. Summary. It is shown that maximum likelihood estimators of parameters
of a linear model with autoregressive disturbances have an asymptotic multi-
variate normal distribution with mean vector equal to the true parameter values.
Inspection of the variance matrix shows that the estimators are asymptotically
efficient and that the estimates of coefficients of the independent variables have
the same variance matrix as the best unbiased estimates for a modified model
in which the autocorrelation parameter is known.

It is conjectured that the asymptotic distribution of the estimates of co-
efficients of independent variables may be a useful approximation for moderate
sized samples. Alternative approximations for the estimates of the autoregression
coefficient and the variance are suggested for further study.

2. The model and principal result. An observed vector ¥ of 7" components is
assumed to be a random drawing from a multivariate normal population with
mean vector

(1) w = Z,
and variance matrix
(2) Q = vA.

Z is a known T X K matrix of rank K; v is a vector of unknown coefficients to
be estimated. v is an unknown positive constant and 4 is a T X T matrix with
typical element

(3) ase = (1/1 — p")p!"™,
fors =1,2,---,T;t=1,2,---, T, where p is an unknown parameter with
lo| < L.

In the usual contexts for applying this model, the components of y are ob-
served values of a dependent variable, and the elements of Z are observations
on K independent variables. A particular observation of the dependent variable
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584 CLIFFORD HILDRETH

is related to corresponding observations of the independent variables by
(4) Yo = Drm12uvr + Ue, t=1,2 ---,T,

where the %, are unobserved random disturbances generated by a first-order
autoregressive relation

(5) e = pUus + ve, t=2 ---,T,

and the v, are normal, independent, with zero means and common variance ».
If, in addition, it is assumed that u. has a stationary distribution, the specifica-
tions given in (1) to (3) follow.

The model has particularly interested economists and a number of possibilities
for estimating the unknown parameters—y, p, »—have been noted. (See Theil
and Nagar [12], Zellner [13], Durbin [5].) Hildreth and Lu [6] proposed a method
for obtaining maximum likelihood estimates and showed that the maximum
likelihood estimators are consistent. In what follows it will be shown that the
maximum likelihood estimators (4, g, #) of (v, p, ») have asymptotically amul-
tivariate normal distribution with mean vector equal to the true parameter
values and variance matrix indicated in Theorem A.*

To state the result more precisely, let 8 = (v p ») and let

1 —p 0 0 0
—p (1409 —p 0 0
B—Al— 0 —p (140" - 0 0
(6) :
0 0 0 s (149 —p
0 0 0 —p 1
=1+ pI* — pH

where I is a T order identity matrix, I™ differs from I by having zeros instead of
ones in the upper left and lower right corners, and H has ones in the 2(7 — 1)
positions adjacent to the main diagonal and zeros elsewhere. It is shown in the
next section that |B| = 1 — ¢

Assume
(7 24| is bounded for k = 1,2, --- , K;t = 1,2, ---
(8) For any integers j, k with 1 < j, ¥ < K and any non-negative integer =

limgow T Dttt 2e26—r €Xists and is finite

(9) limz. T*Z'BZ is non-singular.

TueoreM A. If y has a multivariate normal distribution with the parameters

2 For v and p the maximum likelihood estimates considered here are asymptotically
equal to the least squares estimates considered by Durbin [5], p. 151. His expression for the
variance matrix is equivalent to that of Theorem A, but he did not investigate the form of
the distribution.
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given by (1), (2), (3) and if Z satisfies (7), (8), (9) as T increases, then the
distribution of T*(8 — 0) converges to the multivariate normal with mean vector zero
and variance matrix

y(limgsw T Z'BZ) " 0 0
0 1-=0) 0
0 0 %*

The proof resembles in broad outline Cramér’s ([3], pp. 500-4) proof for in-
dependently distributed observations. For the model given by (1)-(3) above,
the likelihood function is proportional to :

(10) qp(’y p 1/) - V—T/2IBI%6—(1/2V)(y—-Zv)’B(u—Zv)
with logarithm
(11) ®(v, p,7) = —34T logv + 3 log [B| — 37" (y — Zv)'B(y — Zv).

Let d®/39 be a column vector of partial derivatives of ® evaluated at the
true 6 and d®/96 be evaluated at a solution to the likelihood equations.’
Using similar notation for higher derivatives,

(12) 0P/90 = 0®/30 + (8°/96%) () — 6) + R = 0,
where R is a vector of remainder terms in Taylor expansions of components of
3%/30.

N £ 1. Let 0°®/6,00° be

IIA

Let & = N + (1 — \)é for an appropriate \, 0
the Hessian of d®/96; evaluated at §. Then

(13) R; = (6 — 0)'(8°/00,08")(6 — 0) forj =1,2,---,K + 2.
Writing

1 (6 — 60)'0°®/ 36,08
(6 — 0)'0°®/00x.4200"

yields B = G(§ — 6) and using (12),
(15) %/00 + (8°®/36°)(6 — 6) + GO —0) =0  or
(16) THb — 0) = —(T7'(8°/36%) + T'Q) ™ (T*9%/36).

With respect to the factors on the right side of (16), the following two propo-
sitions are verified in Sections 3 and 4 respectively.

3 Tt is hoped that this unconventional notation will be forgiven in view of the writing
saved in equations that follow. Conditions for the existence of a solution to the likelihood
equations have not been thoroughly investigated. The likelihood equations can readily be
solved (uniquely if Z is of rank K) for 4, # as functions of p If these expressions in  are
substituted for 4, » one is left with a polynomial in p of degree 4K + 1. In empirical cases
that have been investigated the existence of a solution is clear, but it has not been shown
that a solution must always exist. See Hildreth and Lu [6], pp. 11-13 and 20-39.
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ProposiTioN 1. T 10®/90 has a limiting multivariate normal distribution with
mean 0 and variance matrix

v Ylimzse T7Z'BZ) 0 0
0 1-" o0 |=cC.
0 0 1,7

PropostTioN 2. plim (77'9°®/06" + T'Q) = plim 8°®/96° = —C.

Theorem A follows from these propositions and two results of Mann and Wald
[11] which have been restated by Chernoff ([2], pp. 5, 6). These, using Chernoff’s
numbering, are:

TaeorEM 2. If L(X,) — L(X) (the distribution law of X. converges to the
distribution law of X) and g is a function that is continuous except possibly on a
set of probability 0 with respect to L(X), then L(g(X,)) — L(g(X)).

TureorEM 3. If L(X,) — L(X), then L(X, + 0,(1)) — L(X). X,, X may
be random variables, random vectors or other mappings to metric spaces.

An immediate consequence of these theorems is

CoNSEQUENCE. Let Wy = M X where {Wr}, {Xr} are sequences of random
vectors and {M 7} is a sequence of random matrices. If M/ is the probability limit
of M and the distribution of X, converges to the distribution of a random
vector X, then the distribution of W, converges to the distribution of MX.

To justify the consequence, let W, = MXr = g(Xr). Then the distribution of
Wy converges to that of MX by the Mann-Wald result restated as Theorem 2
above. Now write W, = MX, + (M, — M)X. Since plim M = M, the last
term is 0,(1), i.e., converges to 0 in probability, and the distribution of Wr
converges to the distribution of /X by Theorem 3.

Let Xr = T '9®/09. Applying the consequence and the two propositions to
equation (16), it is seen that the distribution of T} — 6) converges to the
limit of the distribution of —C X, . Xy is asymptotically n(0, C'), multivariate
normal with mean 0 and variance C, by Proposition 1 and therefore —C "Xz
is asymptotically distributed according to n(0, C') as stated in Theorem A.
Since C = E(6%/30)(9%/36)’, the maximum likelihood estimates are asymp-
totically efficient (Cramér [3], p. 489).

If p were known, the best unbiased estimator of v would be

(17) vy = (Z'BZ)7'Z'By

which would be n(y, »(Z'BZ)™) for any sample size. Referring to Theorem A,
it is seen that T**? has the same asymptotic distribution as T .

One purpose of studying asymptotic distributions is to aid in the develop-
ment of distributions that may serve as useful approximations for moderate
sized samples. This question is tentatively considered in Section 5 and some sug-
gestions for further study are offered.

8. Proof of Proposition 1. Differentiating (11) and letting
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u = (us,us, -, ur), yields
0%/ dy vZ'Bu
08/30 = |9®/dp | = | — p(1 — )" — LW B*u
(18) ad/ v —{;—Tv:l + L% Bu
Z Bu
="' —1u'B*u + 0(1)

LY w'Bu — »T)
where B* = 0B/dp = 2pI* — H.

Define
(19) v=Mu
where
mu = (1 — p)},
(20) myg =1 for t=2,3,.---,7T,

Mee1 = —p for t=2,3,---,T,and
ms = 0 otherwise.

The last ' — 1 components of v then agree with those defined by equations
(5). Also

(21) M| = (1 —-0), MM=B, |[B=(1-p),
M7M™ =B =4, v =4n(0,r]).

Note that

(22) —%u'B*u = Zf;llutum - P Ettzl utz = E:T;ll U1 + pu12.

If we let B be equal to B* in every element except the upper left and set by = 2p,
then

(23) —%'Bu = > 15 uwin and
(2)  BBu=0, E@Bu) = TG Bultn = (T — 1)1 — o)™
Define
Z'Bu
gp = v T —$u'Bu
L7 (w'Bu — »T)
Z'M'
=T | — WM TBM | = T7%8/00 + 0,(T7).

L 37 (0" — oT)

(25) ,
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Clearly Etr = 0,

(»T)'Z'BZ 0 0
(26)  Varép = Eiptr = 0 (T —1)/T(1—p% 0
0 1,7
and
27 limg,., Var ¢z = C

as defined in the statement of Proposition 1. Since the sequences of second mo-
ments are uniformly integrable’ (Logve [10], pp. 182-3), C is also the matrix of
second moments of the limiting distribution. To prove Proposition 1 it remains
to show that £r, and therefore T *0®/00, is asymptotically multivariate normal.

This is done by showing that the distribution of an arbitrary linear combina-
tion of the components of £r is normal in the limit (see Anderson [1], p. 37).
Let the arbitrary linear combination be

(28) ¢r = T HaZ' My + 8'M™BM ™ + v'v — »T)
where « is any vector of order K and g is any scalar.’

Suppose @ is an orthogonal matrix which diagonalizes (8M “IBMT + I).
Let

(29) Q' (BM'7BM ™ + 1)Q = A,
(30) w= Q.

w is n(0, »I) and

(31) ¢r = T HdZ'M'Qw + w'Aw — »T).

Let Nz fort = 1,2, - -+, T be the diagonal elements of the matrix A correspond-
ing to sample size T.° From (31) and the fact that {» has mean zero

(32) Dt = T.

Hence

(33) EWAw)® = 20" 21N + V" 2t g Nrhgr = 207 D im Nir + 0T
From the definitions of A and w we have

(34) wAw = —28 Z’Z’:f U1 T+ Zf=l o

4 This may be confirmed by noting in (24) that Z’M’ is bounded and the latent roots of
M'-1BM-1 are bounded. The latter is proved below.

5 Since multiplication by a scalar does not change the form of a normally distributed
random variable, the only loss of generality in this expression is that the coefficient of the
last component of £7 has been tacitly assumed nonzero. If it is zero, the final two terms of
(28) vanish and the argument which follows applies with the deletion of appropriate terms.

6 If the notation were to be made complete, T subscripts would have to be added to
Z,M,Q, A, w. These have been omitted to make expressions in which they enter less cum-
bersome.
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SO

(35) E(wAw)? = 468%°(T — 1)/(1 — o) + /'T(T + 2)
and, using (34) and (35),

(36) s Ner = 268°(T — 1)/(1 — o) + T.

It is also useful in what follows to know that the \;r are bounded.

From (29), it is sufficient to show that the latent roots of M 'BM™" are
bounded. These are the same as the roots of BM'M'™ = BA where a,, =
(1 — p")7%" ™! A root of BA, say \ir , satisfies

(37) BAx = Ny
where z is the latent vector corresponding to Az . For given T let & be a maximal
element of {|z/|:t = 1,2, ---, T} and let & be the maximal absolute value of
elements of;BAx. Clearly
(38) | Niz| < &/

Consider a typical component of Az, say 4z,
(39) Apr = (1 — o) (i p ™2 + Dsmer1p’ @),

l[Awz| = 2(1 — o)7L — |o)) '

Since no element of B is greater than two in absolute value and no row contains
more than three nonzero elements, it follows that

(40) ¢=<12(1 —p)7'(1 —[p)7'2  and
(41) NG| < 12(1 — o971 — [o]) 7

Since the bound does not depend on T the conclusion follows.
Next consider the moment generating function of ¢r.

Yr(s) = Ee®T

(42) = (21r)_mfexp (sTHEZ'M'Qw + wAw — »T) — L 'w'w} dw
= e—svT5(21r)—T/2
Jexp { = w'(I — wsT N)yw — 2T o’ Z" M’ Qu]} duw.
Let
(43) J= (I — 22T ), d=QMZa

and let L be a bound for |A;r|. Then for s ¢ (—1/4vL, 1/4vL), J is positive
definite for all T' and ‘“‘completing the square’” of the exponent of e under the
integral in (41) yields

(44) Yr(s) = exp {—oT* + LT ATy
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Now
(45) I = T1% (1 — 20T \r) ™ = exp {—2 > Talog (1 — 20T '\ir)}
and
(46) log (1— 20sT Niz) = —2wshe T —3 - 4" \p T — 3 - 8N —
= — s\ T} — 27N T — kur
where, still taking s ¢ (—1/4vL, 1/4vL),

hez| < 3857 s N T2(1 4 20ls| Nea| T + 4SNP 4 --0)
(47) = %'81/3'8'3')\“"37'_3/2(1 - 2V|S| [)\”‘[T—%)_I
< 1.164°s% [Neof'T% = O(T™?).
Thus

(48) X Tilog (1 — 20T *hir)
= —2sT Y TNy — 27T DTNl + O(T )
and together with (32), (36), (44) and (45) this implies
(49) Yr(s) = exp (LT dTd + 48T — 1)V’(T(1 — &))" + '
+ o(T™).
It is easily verified that
(50) J = (I — 2sTA)™ = (I + 2vsT'AJ )
and therefore
(51) dJ7'd = dd+ sTdAJ " d.

For se (—1/4vL, 1/4vL) the absolute value of a typical element of AT?
satisfies

Ner oI
(52) RTINS
'\/T tT
Therefore
(53) 2sT d'AJ'd < dwsLT d'd = O(T?)

since assumption (9), p. 4 implies that d' d = o'Z'BZa = O(T).
Combining (49), (51), (53)

2 20m _ 2.2 )
) ) = e {3 dta ~ EL DN gy o)
and

(55) lim ¢s(s) = exp {_2_2 (T '%' Bl + (4‘32 2 5+ >}
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which is the moment generating function of a normally distributed random
variable with mean zero and variance indicated by the coefficient of s*/2 in
(55). By Curtiss’ [4] extension of a Theorem of Lévy and Cramér it follows that
the limiting distribution of {7 is

n(0, (v/T)a'Z'BZo + 48%°/(1 — o°) + 2°).
4. Proof of Proposition 2. This consists of two parts: (2a) plim 77" (6°®/6°) = C
and (2b) plim T77'G = 0. Concerning (2a),
’®/dy" 0°®/dyop 9°®/dyov
(56) (9'®@/06") = --- ®/0p"  9°®/dpdy

’®/ v’
Z'BZ — Z'B*u v'Z'Bu
—_ »(1 4 p") /*> _1.-1 rp%
= —y <(1_p2)2+u1u 3v uBu
ce - (v*u'Bu — %Tu—l)
Thus plim T7'(6°®/07*) = —» " lim T'Z'BZ. T (8°®/9vdp) is normal with

mean zero and variance T % 'Z’B*4 B*Z which converges to zero under assump-
tions (7) and (8). T '(6°®/dydv) is normal with mean zero and variance
T~ %*2'BZ which also converges to zero so

(57) plim (8°®/9vdp) = plim (9°®/dydv) = 0.
(58)  plim T (8*®/8p") = —v ' plim T Y. tu’ = —(1 — p)7

since T D i=s u.’ has mean (T — 2)»/T(1 — p°) and variance 2(T — 2)%/
T(1 — p")" + 4(T — 3)"/T'(1 — p°)* + 0,(T)

(59) plim T7(9°®/dpdv) = —v *(plim T D 1o uwers + plim pwT™") = 0
since T D721 w41 has mean 0 and variance (T — 1)*/T*(1 — o°) = O(T™).
(60) plim T (3*®/av") = —v ™ plim T D imol + W2 = =L~

since 7" 2. 1—1v. has mean » and variance 2T%*T > = O(T ™).

(2b) can conveniently be verified using the knowledge that the maximum
likelihood estimators are consistent.” Referring to (14), a typical row of G may
be written
(61) Gw = (6 — 0)'(8°®/00,06°) for k =1,2, ---, K + 2

and where 6°/86,06" is a matrix of third derivatives involving 6; and evaluated
at & which lies between § and the true 6. With consistency of § the problem thus
reduces to checking that third derivatives of T '® are O,(1). Inspection of the

7 Consistency of 4, p was shown in Hildreth and Lu [6], pp. 52-4. Since
= T-%' B4 = T-WBu + 0,(1) = T2 2. 7_; 02 + 0,(1),

it is clear that # is also consistent.
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matrix of second derivatives in (56) indicates that third derivatives either vanish
or are proportional to expressions evaluated in (2a) and found to be O,(1)or
smaller.

5. Conjectured approximations. An alternative expression for the relevant
terms of the log likelihood funection is

®(y,p,v) = —3T log v + % log (1 — %)
(62) =N —NZZ(v =) +5+0 G —1ZTZ( — )
+ 0% — (¥ — ¥)Z'HZ(Y — v) — p§]
where
v = (2'2)72'y, s=(y—Z9) (y — Z¥),
(63) ¥ = (22721, §=(y—ZV)T"(y — Z7),

Y = (ZHZ)"Z'Hy, ¥=(y—Z¥)Hy - Z7).

From (63) and (1) it is seen that v, ¥, ¥ are unbiased, normally distributed
estimators of . Inspection of (62) reveals that the likelihood function depends
on y only through (7,4, ¥, $, 8, '§’,) and the latter is therefore a sufficient statistic.

Furthermore, by the Lehmann-Scheffé [8] ratio test® this array is minimal
sufficient. Equating derivatives of the log likelihood to zero and rearranging
terms yields

(64) $=[2'Z+p'Z'I*Z — pZ'HZ] [Z'Z~ + $°Z'T*Z~ — pZ'HZ ]

(65) p=3%y — ZN'HWy — Zv)Iy — Z)I*(y — Z9]™
— (1 — By — Z9) (y — Z9)],
(66) » =T 'y — Z%)'(I + p'I* — pH)(y — Z4).

(64) shows 9 as a random mixture (generalized weighted average) of three
unbiased, normally distributed estimators of v. If  were a constant, 4 would be
normally distributed with mean v and variance »T'Z'BZ (where B = I +
p’I* — pH) for any sample size. It therefore seems reasonable to conjecture that
4 is approximately normal for medium sized samples and that the asymptotic
parameters may also be pretty good approximations. Of course, such an offhand

8 See also Lindgren [9], pp. 191-200. If y and w are two sample points
o(y)/o(w) = exp {— 1 [(y — Zv)'B(y — Zv) — (w — Zv)'Bw — Zy)1}

which is independent of », p, v if and only if y'y = w'w, y'Z = w'Z, y'I*Z = w'I*Z, yHZ =
w'HZ. Thus these 3K + 1 quantites constitute a minimal sufficient statistic. Since the
statistic defined in (50) is a function of these quantities, it is also minimal sufficient. Note
that since y'Z = y'I*Z + y1Zay + yrZry where Z) is the tth row of Z, the minimal
sufficient statistic is generally of dimension 2K + 3.
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conjecture should be checked analytically and perhaps by Monte Carlo studies
as soon as possible.

From (65) and (66) one might conjecture that much larger sample sizes would
be needed in order that the finite sample distributions of 5 and # be usefully
approximated by their asymptotic distributions. Hence there seems a larger
incentive to examine (65) and (66) more closely to see if their forms suggest
alternative approximate distributions that might prove useful in moderate
sized samples.

Let 4 = y — Z4 and rewrite

(66") » = T '0'Ba.
If p were known the best unbiased estimator of v would be ¥ = (Z'BZ)™'Z'B
and the corresponding estimator of » would be # = 7' B# where @4 = y — Z7.
In this latter case it is known that @ B is distributed as x7—x . The present case
differs in that one additional parameter, p, has been fitted to the data. This should
make the corresponding sum of squares of residuals (4'Bid = (ﬁB%)'(Béa))
smaller than in the case where p is known. One might conjecture that the present
sum of squares is still approximately x° but with a smaller number of degrees of
freedom. 7 — K — 1 would be appropriate if p entered linearly in determining y
and might be considered a possibility even in the absence of linearity.

Similarly, rewrite
(65" p = LW Ha(a'T* )™ — po((1 — pH)a' T a)™
The second term on the right is clearly small when T is sufficiently large, and
unless || is very close to 1, the term becomes fairly small for moderate T'. (Note
that |3/(1 — 5°)| < 2.25 when [p| < .8 and that s/2'T"0 < (3 + )T +
3(0° + 4r) (T@'I*6)™".) Assuming that the first term on the right of (65)
dominates the form of the distribution, the problem of finding a useful approxi-
mation still seems formidable. However, some of the same considerations that
led Thiel and Nagar [12] to consider a transformed B-distribution as an approxi-
mation to the Von-Neumann ratio would also apply here.

Define

(67) li = Zf=2 (ﬁt - ﬁt-1)2/2f=l uz2
as the Von-Neumann ratio for maximum likelihood residuals and let

A

(68) p = W/ Hu(d'a)™" = 3 imatuflis/Y i=1%; be an approximation to p.
(69) d=2—2 — (&' + @r)/ X it
If d is approximately distributed as a linear function of a random variable having
a B-distribution then so is p whenever 7 is large enough that the last term of
(69) is small in probability.

If one pursues this, admittedly rather tenuous, hint that the distribution of 3
may be approximated by a transformed B distribution, the natural range is
(—1, 1) rather than (0, 1), the range of the standard B distribution.

]

It



594 CLIFFORD HILDRETH

If a random variable X has the usual 8 density
(70) f(z) = (B(p, ¢)) 2”1 — 2)*" for0 =2 =<1 and p, ¢ > 0
then the random variable W = 2X — 1 has density
(71) q(w) = 27" (B(p, ¢)) '(w + 1)P(1 — w)*" for —1 S w £ 1

and p,¢>0
and
(72) EW=(p -9+,
(73) E(W — EW)" = 4pg(p+ ¢)"(p+ ¢+ 17"

p and ¢ should be determined by studying the mean and variance of 4 to obtain
tolerable approximations for moderate sized samples. If one were to take the
asymptotic mean and variance as first approximations the following relations
would result

(14) -+ =5 4dpgp+ 9 p+g+ 1) =1- )T
or
(75) p=35(T—-1)A+0p), qg=3T-—1)(1~—np).
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