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MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE
COVARIANCE COMPONENTS FOR THE BALANCED
ONE-WAY LAYOUT

By Jerome Krorz' anp Joseps Purter’
Unaversity of Wisconsin

1. Introduction. Unbiased estimators of variance and covariance compo-
nents for the balanced one-way layout have been extensively investigated in
the literature. Unfortunately, they possess the unpleasant property of taking on
inadmissible values such as negative variances and, more generally, non-positive-
semidefinite covariance matrices. This in turn can lead to correlation coefficients
that are imaginary or greater than one. .

In the univariate case, the maximum likelihood (ml) estimators, which are free
from these drawbacks, have been derived by Herbach [3] and shown in [5] to
have uniformly, and in many cases considerably, smaller mean square errors than
the unbiased estimators. Hence it is of interest to consider ml estimation in the
multivariate case. Searle [7] computed the information matrix for the bivariate
case, but did not derive explicit expressions for the estimators.

In this paper, we define (in Section 2) and derive (in Section 3) the maximum
likelihood estimators for the geneal P-variate case. In Section 4 the methods of
computation are described, and in Section 5 explicit formulae are given for the
bivariate case.

2. Model, notation, and extended definition of ml estimators. Denote the
P-variate observation row vectors by x; . The variance component model cor-
responding to the balanced one-way layout is

(21) xik=9+b.1'+wik (j=1)2,"'7J;k=1’27"'7K)7

where u is a fixed mean vector, and the J (K + 1) random multinormal vectors
b;:N (0, =) and wi:N (0, =,,) are independent. The within-groups covariance
matrix X, is assumed to be positive definite (pd), but the between-groups covari-
ance matrix £, may be positive semidefinite (psd). Denote x;, = Zix;/K and
I = =, + K=, . Reduction of the sample space by sufficiency, using the factori-
zation theorem, yields the complete sufficient statistic (x.., Sy, Sw) defined by

x. = 2.2 %3/ (JK),
Sy = K> &, —x.) (®. —x.) and
Sw = Z,Zk (x]'k bt Xj.), (Xjk - Xj.).
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The three statistics x. N (u, T'/(JK)),Se: W ([T, J — 1),Su: W (2, J(K — 1))
are independent where W (M, n) denotes a random matrix following the Wishart
distribution with matrix parameter M and degrees of freedom n (see for example
[1] p. 158). The likelihood is thus given by

L(l% Eb, Ewlx,,, Sb’ Sw)
(22)  =a|r[ P |B,[ 7" P P exp {—iJK (x.. — w)I ' (x.. — u)’
+ tr (T7'Sy 4+ =,7'Sw)]}

where a is a constant depending only on Sy and S,, .

The likelihood given by (2.2) is meaningfully defined only when =, is pd and
r — 2, = KX is psd. However, as in the univariate case, the supremum of the
likelihood function may not be attained for pd values of =, . Also, it is not enough
to define a ml estimator as a limit of a sequence of parameter values for which the
likelihood tends to its supremum, because when S, is singular, the supremum is
infinite and may be attained by different sequences with different limits. A similar
type of difficulty involving infinite suprema, of likelihood functions is mentioned
by Kiefer and Wolfowitz ([4], p. 905).

To avoid these difficulties, we define a ml estimator as follows. Denote a sample
point by X, a parameter point by 8, and the correspondmg likelihood function by
L(0 | X). When supy L(#|X) < o, then § = §(X) is a ml esimator of 01f

= lim, 0, where lim, L6, ] X) = supp L(0| X). When sups L(6 | X) =
then (X) is a ml estimator if § (X) = lim, § (X,) where sups L(0 | X,,) < = and
lim, X, = X. (For the purpose of the definition the limits are considered in the
pointwise sense although weaker types of convergence may give equivalent
results in some cases.) This extended definition gives the solution of Herbach
[3] in the univariate case.

We shall denote by (H), the positive semidefinite part of the matrix H, which
is defined by extending the function (&), = max (0, #) to a matrix function in
the standard way (see, for example, [2], p. 96). We have

(2.3) H)+ = ¢(H)

where ¢ is any polynomial which satisfies ¢ (e;) = (e:)s for all the eigenvalues e; of
H. If M is nonsingular, then

(2.4) (MHM ), = MH), M™.

3. Derivation of ml estimators. For any fixed pd values of £, and T,
the likelihood (2.2) is maximized when u = x .., and hence the ml estimator of
pisd = x ... To find £ = £,(Ss, S») and £, = £,(Ss, S») we have to
maximize
(31) L*(T, 2,|S,Ss) = —JIn|r| — J(K — 1) In|=,|

— tr (T7'Sy + =u 'Sw),

wrt £, and =,.
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LemMA 1. Let Sy be psd and S, pd. If £, (Ss , Su) is pd then for any non-singular

matriz C,

£,(CSyC’, CS,C') = CL,(Ss, Su)C’
and

£, (CS,C’, CS.C') = C£4(Sy, Su)C'.

Proor. Since L*(T, =,|CS:C’, CS,C') = —JKIn|CC| + L*(C'rC,
C'2,C"|Ss, Su), we have C'E,(CS,C’, CS,C)C™ = £,(S, S»), and
similarly for I" and therefore for £ .

LemMMA 2. Let Sy and S, be symmetric psd, S; = Sy 4 Su, and A = uS, + vS,, .
Let S; be any generalized inverse of S; , and H be any solution of SH = A. Then

S:(H),. = S:(S: A); and the common value of these two products does not depend

upon the choice of S; and H.

Proor. The general solution of S;H = AisH = SfA + (S:S: — Ip)Z where
Ir is the P X P identity matrix and Z is any P X P matrix (see, for example,
[6], p. 26). The lemma is trivial if S, is nonsingular or S; = 0. If the rank of S; is

Q,0 < Q < P, then
L, 0

S,=T<Q >T’,
0 0

where T is non-singular. Writing S, = TUT' and S,, = TVT’, we have

U+ V= )
0 0

and since U and V are symmetric psd, it follows easily that

Uu 0 V11 0 A;.kl 0 ’
U = ) V = ) and A = T T P}
0 0 0 0 0 0

where Uy, Vi are @ X @ matrices and A, = wUy + oVy. Writing
S = T"'WT " and using the property S:S; S; = S (see, for example, [6],
p. 24), we obtain

I, W Af, 0
= < ° 12) and S,7A =T < " >T’,
21 W22 W21A11 0

where Wiz, Wz and W, are some matrices of the appropriate orders. Hence
A, O
H=T" < " ) T = T7'GT, sy,
G21 G22

where G and Gy, are also some matrices of appropriate orders. By (2.3) and
(2.4) it follows that (H), = T ¢ (G)T’, where ¢ is a polynomial satisfying
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e(\:) = (\;)4 for all eigenvalues \; of G (i.e., of Aj; and Gs). Hence

I, O\/e(Af) 0 , (Al)+ 0\ -
St H =T T =T T =St t )
(D <0 0>< Gy ‘P(G22)> < 0 0> (SR

because ¢ (Af;) = (Al}),, with the value of G3; immaterial.
TrEOREM. The maximum likelthood estimators of w, =y , and =, are given by

g=x.
(3.2) = (JK)'S.(S:A),
£, = (JK)7SfI, — (S7A)4]
where S;” is any generalized tnverse of S, , andA = S, — (K — 1)7'S, .

Proor. As shown above & = x .., and to obtain £, and £, we have to maxi-
mize (3.1). Consider first the case where S, is pd. Then S; = S + S, is also pd
and there exists a non-singular matrix C such that S, = JKCC' and
S, = JKC diag (di, ds, - -+ , dp)C’, where dp(m = 1,2, --- , P) are the eigen-
values of S,7'S; and satisfy 0 < d, < 1 since S, is pd (see e.g. [1], p. 341). By
Lemma 1, the problem is reduced to that of maximizing
(3.3) L*(=, 2. |JK diag (dy, -+ ,dp);JKdiag A—=di, -+ ,1—4dp))

=JInr Y+ JE =1 |27 = JKD pid¥™" dn + oo (1 — dn)],
where (v™) = I and (¢%") = =, . By Hadamard’s inequality (see e.g. [6]

mm

p. 45) we have [T = J[iay™ and |2, = J]nw 02", with either in-
equality strict unless the corresponding matrix is diagonal. Hence the matrices
%, and X, which maximize (3.3) must be diagonal, and it remains to find the
values ¥™" and o7, which maximize

Do Iny™ + J(K — 1) Indy" — JK(dwy™ + (1 — dw)o™)]
subject to the restrictions 1/v™ = Ymm = Cwmm = 1/d% " > 0. But this is equiva-
lent to solving P separate univariate problems, and the application of the univari-
ate solution of Herbach [3] yields the value ¢omm = [dn — (K — 1) (1 — dn)]4 for
the mth diagonal element of £, and the value éymm = 1 — Gsmm for the mth
diagonal element of £,, . Thus, putting D = diag (di, da, -+ , dp),

(34) £,(JKD,JK(Ir, — D)) =D — (K — 1)@ — D)];,
$,(JKD, JK(I, — D)) = I, — £,(JKD, JK (I, — D)),

and the value of £, in (3.4) is pd because duwmm = K(1 — dn)/(K — 1) > 0.
Hence, by Lemma 1 and by (2.4), we have

£,(Sy, Sw) = C[D — (K — 1) — D)],.C’
= CC'(C'D - (K — 1)@ — D)IC).
= (JK)7Si(S{A)y,
and similarly for £, , which proves (3.2) for S, pd.

I
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If S, is singular, then the supremum of (3.1) is infinite and we apply the ex-
tended definition of ml estimators given in Section 2. Consider a sequence of pd
Su» converging to S, and a sequence of psd S, converging to S,, and put
Sin = Stn + Sun, An = Sp — (K — 1)7'Syn . Any limit point H of S72A, must
satisfy S;H = A, and an application of Lemma 2 completes the proof of the
theorem.

Remarks. (1) When A is positive semidefinite, then £, = A/ (JK).

(ii) If, following Thompson [8], the restricted maximum likelihood estimators
using the maximal invariant are desired, then for £;, A is replaced in (3.2) by
A=JJ —-1)7"8 — (k—1)"S,and £, = S,(JK — 1) — ;.

4. Computation of £p . In computing £ , the first step is to calculate A, S,
and H = S; A (for the construction of generalized inverses, see [6], p. 26). In
most cases (theoretically with probability one), S; will be non-singular and
S:” = S, Next, compute the eigenvalues e, e, - - - , ep of the matrix H and
denote by fi, fo, - -+, fr the distinet values of {en}. Define ¢ to be the unique
polynomial of degree B — 1 that satisfies ¢(f,) = (fr)+ = max (0, f.) for
r=1,2 -+, R. Then calculate

4.1) 2 = SwH)/(JK).

Any of the well-known representation formulae for ¢ can be used. For example,
using the Lagrange interpolation formula we have

(4.2) S = (TK)'S 2o Lo ® — fIe)/ (o — f),
where the sum is taken over all ' for which f» > 0 and each product is taken
over all s(=1, 2, --- , R) different from »". If f, = 0 for most r, it is more con-

venient to determine £, by taking the sum in (4.2) over the negative values of
fr , multiplying by S,/ (JK), and subtracting the result from A/ (JK).

6. The bivariate case. Many practical (e.g. genetic) applications of variance
components involve the bivariate case, with special emphasis on estimating
the “between” and “within” correlation coefficients p, and p, corresponding to
%, and X, respectively. It is therefore of interest to consider this simple case in
more detail, with some explicit formulae for the estimators. Two cases have to be
distinguished, according to the sign of the determinant |A|.

Case 1. |A| = 0. If none of the diagonal elements of A = (ax.) are negative,
then £, = A/ (JK). If either ai or az is negative, then £, = 0.

Case 2. |A| < 0. In this case compute the matrix S,”"A = H = (hyn,) and its
eigenvalues e = (hy + he — ¢)/2 < Oand e, = (hu + ke + ¢)/2 > 0 where
g = [(hu — hss)® + 4hishy]’. By (4.2), using SH = A, we have

21, = (A —_ elst)eg/ (JKQ)

With respect to estimating pp , the situation depends on the diagonal elements
of £ . If both of these elements are positive, then the maximum-likelihood esti-
mator of ps is the correlation coefficient #, corresponding to £, ; note that 5] < 1
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if |£5] > 0 (which will be the case if and only if |A] > 0 and both au and ax
are positive), and [g5] = 1if [£;] = 0. If one or both of the diagonal elements of
£, vanish, then no meaningful maximum-likelihood estimator of p, seems to exist.
The estimation of p, depends similarly on the diagonal elements of £,, .
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