INADMISSIBILITY OF THE BEST INVARIANT TEST WHEN THE MOMENT IS INFINITE UNDER ONE OF THE HYPOTHESES

By Martin Fox² and S. K. Perng¹

Michigan State University and Mathematics Research Center, U.S. Army

1. Introduction. Let $(\mathfrak{Y}, \mathfrak{A}, \lambda_i)(i=1, 2)$ be probability spaces. For each i=1, 2 and $y \in \mathfrak{Y}$ let $F_i(\cdot, y)$ be a distribution function on the real line R such that $F_i(\cdot, \cdot)$ is $\mathfrak{B} \times \mathfrak{A}$ measurable where \mathfrak{B} is the σ -field of all Borel subsets of the real line R. Assume the distribution of $(X, Y) \in R \times \mathfrak{Y}$ for $\theta \in R$ and i=1, 2 is given by usual extension of

$$P_{i\theta}((X, Y) \in C \times D) = \int_{D} d\lambda_{i}(y) \int_{C} F_{i}(dx - \theta, y)$$

to measurable subsets of $R \times \mathcal{Y}$.

Consider the problem of testing $H_1:i=1$ versus $H_2:i=2$. For any level of significance a best invariant test φ_0 is of the form

(1.1)
$$\varphi_0(x,y) = 1 \quad \text{if} \quad \frac{d\lambda_2}{d(\lambda_1 + \lambda_2)}(y) > c$$
$$= 0 \quad \text{if} \quad \frac{d\lambda_2}{d(\lambda_1 + \lambda_2)}(y) < c.$$

We restrict attention to the case that the $F_i(\cdot, y)$ are absolutely continuous with respect to Lebesgue measure for each $y \in \mathcal{Y}$ and i = 1, 2. Denote the density of $F_i(\cdot, y)$ with respect to Lebesgue measure by $f_i(\cdot, y)$.

Lehmann and Stein [1] have shown that if $E_{i0}|X| < \infty$ for i = 1, 2 and if

(1.2)
$$\lambda_1\{y: \frac{d\lambda_2}{d(\lambda_1 + \lambda_2)} (y) = c\} = 0$$

then φ_0 is admissible. Condition (1.2) guarantees that φ_0 is the essentially unique best invariant test at some level. Perng [2; Sections 4 and 5] has given examples showing that, with either the moment condition or (1.2) violated, φ_0 may not be admissible. The purpose of this note is to improve Perng's example concerning the moment condition.

Perng has shown that given any $\delta > 0$ one can construct an example in which $E_{i0}|X|^{\alpha}$ is, for i = 1, 2 finite or infinite according as $\alpha < 1 - \delta$ or $\alpha \ge 1 - \delta$ and for which φ_0 is inadmissible. His example satisfies (1.2). The present example, given in Section 2, also satisfies (1.2) but is such that $E_{10}|X|^{\alpha}$ is as in Perng's example while $E_{20}|X|^{\alpha} < \infty$ for all $\alpha > 0$. This suggests the intuitive idea that knowledge of X is useful when the distributions of X under H_1 and H_2 are very different.

Received 25 April 1968.

¹ This paper was prepared under Contract No. Nonr-2587(02) Office of Naval Research.

² Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.

2. The example. Let y = R and let λ_i (i = 1, 2) have density g_i with respect to Lebesgue measure where

$$g_1(y) = g_2(-y) = c_1/y^2$$
 if $y > 1$;
= c_2/y^2 if $y < -1$;
= 0 if $|y| \le 1$

with $c_1 + c_2 = 1$.

Let a > 2 and $\eta > 0$. For η sufficiently small,

$$[(a-1-\eta)/(a-1+\eta)]a > 2$$

and

$$(2.2) [(a-1-\eta)/(a-1+\eta)](a-1) > 1.$$

Fix $\epsilon > 0$. For a sufficiently close to 2 we have

$$(a-1)^{1/(1+\epsilon)}(a^{1/(1+\epsilon)}-1)<1$$

so that, for η sufficiently small,

(2.3)
$$[(a-1)(a-1-\eta)/(a-1+\eta)]^{1/(1+\epsilon)}$$

$$\cdot \{ [a(a-1+\eta)/(a-1-\eta)]^{1/(1+\epsilon)} - 1 \} < 1.$$

Fix ϵ , $\eta > 0$ and $\alpha > 2$ satisfying (2.1), (2.2) and (2.3). Let

$$f_1(x, y) = \eta^{-1}$$
 if $y > 1$, $y^{1+\epsilon} < x < y^{1+\epsilon} + \eta$
or $y < -1$, $-\eta < x < 0$;

= 0 otherwise,

and

$$f_2(x, y) = \eta^{-1}$$
 if $y > 1, -\eta < x < 0$
or $y < -1, 0 < x < \eta$;
= 0 otherwise.

Elementary integrations yield $E_{10}|X|^{\alpha} < \infty$ if, and only if, $\alpha < 1 - \epsilon/(1 + \epsilon)$ while $E_{20}|X|^{\alpha} < \infty$ for all $\alpha > 0$. Finally, by (2.2) we can take

$$(2.4) c_1 < c_2 < c_1[(a-1)(a-1-\eta)/(a-1+\eta)]^{1/(1+\epsilon)}.$$

Since $c_2 > c_1$, the test of the form (1.1) for level c_1 is given by

$$\varphi_0(x, y) = 1 \quad \text{if } y \ge 0$$

$$= 0 \quad \text{if } y < 0.$$

Clearly (1.2) is satisfied so long as c is chosen so that $c_1/(c_1 + c_2) < c < c_2/(c_1 + c_2)$. Hence φ_0 is the essentially unique best invariant test at level c_1 .

We now define another test φ^* which will be shown to dominate φ_0 . Let

$$\varphi^*(x, y) = 1 \quad \text{if } y < -1, a - 1 \le x \le |y|^{1+\epsilon};$$

$$= 0 \quad \text{if } y > 1, \max(a - 1, y^{1+\epsilon}) \le x \le ay^{1+\epsilon};$$

$$= \varphi_0(x, y) \quad \text{otherwise.}$$

Abbreviate $\varphi_0(X, Y)$ by φ_0 and $\varphi^*(X, Y)$ by φ^* since in the sequel this will cause no confusion. We wish to show that $E_{1\theta}(\varphi^* - \varphi_0) \leq 0$ and $E_{2\theta}(\varphi^* - \varphi_0) \geq 0$ with strict inequality in at least one case for some θ .

Clearly for $\theta \leq a-1$ we have $E_{2\theta}(\varphi^*-\varphi_0) \geq 0$ and $E_{1\theta}(\varphi^*-\varphi_0) \leq 0$ with strict inequality in the former for $a-1-\eta < \theta \leq a-1$ and in latter for $-\eta < \theta \leq a-1$.

Let $\theta > a - 1$. In this case the curves $x = y^{1+\epsilon} + \theta$ and $x = ay^{1+\epsilon}$ intersect with $y \ge 1$. Thus,

$$\begin{split} E_{1\theta}(\varphi^* - \varphi_0) &\leq c_2 \int_{(\theta - \eta)^{\omega}}^{\infty} y^{-2} \, dy - c_1 \int_{[(\theta + \eta)/(a - 1)]^{\omega}}^{\infty} y^{-2} \, dy \\ &= c_2 (\theta - \eta)^{-\omega} - c_1 [(a - 1)/(\theta + \eta)]^{\omega} \\ &\leq (\theta - \eta)^{-\omega} \{c_2 - c_1 [(a - 1)(a - 1 - \eta)/(a - 1 + \eta)]^{\omega} \} \\ &< 0, \end{split}$$

where $\omega = (1 + \epsilon)^{-1}$. The last inequality results from (2.4). Now from (2.3) and (2.4) we obtain

$$c_2\{[a(a-1+n)/(a-1-n)]^{\omega}-1\} < c_1.$$

Thus

$$\begin{split} E_{2\theta}(\varphi^* - \varphi_0) & \geq c_1 \int_{(\theta + \eta)^{\omega}}^{\infty} y^{-2} \, dy - c_2 \int_{[(\theta - \eta)/a]^{\omega}}^{\theta \omega} y^{-2} \, dy \\ & = c_1 [1/(\theta + \eta)]^{\omega} - c_2 \{ [a/(\theta - \eta)]^{\omega} - (1/\theta)^{\omega} \} \\ & > [1/(\theta + \eta)]^{\omega} \{ c_1 - c_2 [[a(\theta + \eta)/(\theta - \eta)]^{\omega} - 1] \} \\ & \geq [1/(\theta + \eta)]^{\omega} \{ c_1 - c_2 [[a(a - 1 + \eta)/(a - 1 - \eta)]^{\omega} - 1] \} \\ & > 0. \end{split}$$

This completes the proof.

REFERENCES

- [1] LEHMANN, E. L. and Stein, C. M. (1953). The admissibility of certain invariant statistical tests involving a translation parameter. Ann. Math. Statist. 24 473-479.
- [2] Perng, S. K. (1967). Inadmissibility of various "good" statistical procedures which are translation invariant. Michigan State University RM-192. Unpublished Ph.D. thesis.