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MOMENTS OF A STOPPING RULE RELATED TO THE CENTRAL
LIMIT THEOREM'

By BruceE M. Brown

La Trobe University

0. Introduction. The main objective of this work has been to try and solve
the following problem, which was introduced by Blackwell and Freedman and
made the subject of further work by Chow and Teicher, Breiman, and Gundy
and Siegmund.

Let S, = X1 4+ -+ 4 X, be the sum of independent random variables {X.,}
with EX, = 0, EX,’ = 1,n = 1, 2, ---, with the stopping time t»(c) =
inf {nin = m, |S.| > en'},0 < c< 0o,m=1,2, -

(i) Is Pltn(c) < o] = 1? (i.e.is tn(c) a stopping rule?)

(i) For fixed k(=1,2, ---),is Et,f(c) < o?

We have sought conditions on {X,}7, and values of m and ¢, such that (i)
respectively (ii) hold. Before reaching a solution, which is given in Section 3,
it was necessary to obtain some results in the related areas of martingales, stop-
ping rules, and the Central Limit Theorem, so that Sections 1 and 2 are self-
contained and possibly of independent interest.

1. Convergence of moments in the central limit theorem.

1.1. Summary. Let {X,} be independent rv’s with EX, = 0,8, = Xj + ---
+ X.,and s, = ES, forn = 1,2, ---, and ui; = EX/, vi; = E|Xj| for j,
i=1,2 .

In (1.2) the Lindeberg condition of order », L, , is defined and in (1.3) it is shown
that, when the central limit theorem holds, Ly is necessary and sufficient for the
convergence of ¥ (S./8,)" to the 2kth moment of a N (0, 1) distribution.

Von Bahr, [11], has delved more fully into the question of convergence of
moments in the central limit theorem, but his more involved results do not con-
tain the present ones.

1.2. Definitions. A sequence of independent rv’s {X,} with EX, = 08, =
Xi+ - + Xo, 8. = ES,5,n =1,2, -- -, issaid to obey a Lindeberg condition
of order » = 2 (i.e. L, holds) if s, < w,n = 1,2, -+, and

1) Do Juxjizen 1 X7 = 0(s”) asn — o« forall e > 0.

L. is the classical Lindeberg condition which is necessary and sufficient for the
asymptotic normality of S,/s, , and maxi <z <n EX, W = 0(ss’), asn— oo, Consider
also

@) Dt [uxjizen X" = 0(s’)  asn— o, alle > 0;
and
3) D BIX) = o(sd) asn — .
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When » = 2, (1) and (2) are equivalent to each other (this is shown in [5] for
the case EX;” = 1,7 = 1,2, -- -, and the same method is applicable here) but
evidently not to (3). On the other hand, when » > 2 all three conditions are
equivalent as will now be shown.

Clearly (3) = (2) and (2) = (1). It remains to show that (1) = (3) and
this follows directly from the fact that, for v > 2

220 BIX Ty xjicon + Tuxsizea)
S €7 T 0 BIXGT 4 200 EIX i Tx i ze0
= ¢, +o(s)), from (1), forall e > 0.
Moreover, if « > v, then L, = L, , since
o 2= fuxjizen 1Xil* 2 € s 20w [uxjizea 1 XA
1.3. Results.

TureorEM 1.1 Let {X,,} be independent with EX, = 0,8, = X1 4+ --- + X,
sat = BS.E forn = 1,2, . If Ly, holds for some k = 2,3, - -- , then

@) E(80/8:)" —noe Mo = [Z0 (2r) 7 2™ exp (—27/2) d.
Conversely, of the central limit theorem (£ (S,/$n) —ns0 N (0, 1)) and
®) maxigign BXi'/82" —no 0

both hold, then (4) implies that Ly, holds.
Proor. E(S.}/s.’) = 1,n =1,2, ---, and L, holds (being implied by either
Ly, or, in the converse, by the central limit theorem). »
Assume inductively that E (Sa/s,)* —psw mejforj = 1,2, - -+ k — 1, and that
sz_z holds.

ES.* = X ra D%, CHES™E where Sy = 0,
(6) — Z?—-l EX, 2% + Zr~l (Zk)E,Szk—zE,Xz
+ > %R CHESETEX
Forj =3, ---,2k — 2,
1 |BSTS)|EXY| £ 200 E|SJ[*TE| X,
< (E|Snl2k—2)(2k—j)/(2k—2) Z:=1 Eerlj
= 0(s ) 0(sa”) = o(sa™).

(5) holds by hypothesis in the necessity part, and is implied by Ly in the
sufficiency. (5) implies that A, = o(s,) as m — o, where A; = s; — s;1, and
thus

@)

ret C8)E (Sr—1/s01)" - EX 5357
= 0(1) + {(22k)m2k—2 + o(1)} Z,=1 (s,2 — sf_l)sfsz
8) ~0@1) + {F)mu—s + o(1)} Doy 24,8777
~O0@1) + {F)mas + o)} Dora (5™ — s,_l)/lc
= 0(1) + {2k — 1)ma_s + 0(1)}8,> ~ maus,™.
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(7) and (8) enable (6) to be written as
ES.* = >y EX.* + mas,™ + o0(s.), as n— o,

Therefore Ly, implies B (S,/5,)" —nse Max , and conversely, when the central
limit theorem holds, E (Su/sn)* —>nsew Ma implies that > ry EX,™ = o(s.),
as n — o ;i.e. Ly holds.

2. Moments of stopped martingales.

2.1. Notation, summary. Let (Q, , P) be a probability space, {S,}n=1 a se-
quence of rv’s on @, and {F,}»-1 an increasing sequence of sub-o-fields of &,
such that S, is F,-measurable, with Sy = 0, Fo = {¢, 2}. Assume that {S,, F.,
n = 1} is a martingale with X, = S, — S, and E|X,|" < « for some fixed
positive integer m = 2 and n = 1, 2, --- . Write u;; = E(X;" | F;-1), and
vi; = BE(X;|*| Fj=1). Thus us,; = 0 a.s. forj = 2,3, - - - and we assume u11 = 0
without loss of generality.

If ¢ is a stopping rule (i.e. ¢ is an integer valued rv such that [t < n] € F,,
n=12---,and P[t = ] = 0) then for each fixed m = 2 there is a natural
identity connecting moments of S; and ¢; this is called the “moment identity of
order m” and is given by

1) 0 =EZ{, m),

where

@) Z(n,m) = 8" + ram!((m — 1)) 7 2o, (—1) (@ ! -+ @)™
’Zl§i1§-~~§i1_s_n Uwy,iy *°* Uwy,ig

with @ = { (w1, -+ w;): each w; is an integer = 2, w1 + -+ + w; = 7}, 1.e. @ 18

the set of ordered partitions of r into integers > 1.

Theorems 2.1 and 2.2 give conditions under which the moment identity (1)
holds; it was first given for m = 2 by Chow, Robbins and Teicher (Theorem 1 of
[3]) under conditions equivalent to that of Theorem 2.1, and form = 2k, k = 1,
2, - - - by Teicher ([10]; where the notation is different to ours) under a condition
which is stronger than the one obtained here.

2.2. Lemmas, main theorems.

LemMA 1. IF E|S|™ < « and B (3 i=1 v;)™ < o for2 < j < m, then

ED ia |Siuisl < ©  for 2= m.

Proor. S, < E(S{ | ) a.e. on [t > n] by Doob’s submartingale theorem
([4a), p. 302), since [i>n 8. — 0 as n — o (from Theorem 1 of [3]). Thus
IS.]" = E(|Si|" | $.) a.e. on [t > n], by Jensen’s inequality for conditional ex-
pectations ([4a], p. 34), and
E X i |8t £ E D hen |Sea™ sk

=E th=1 E(8™ | Fr-1)vin
E Y ialSd" i, by Lemma 6 of [3],
< EISI™)TME (Cha vi)™ ™ < oo,
by Holder’s inequality.
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CoroLLARY. If E[S,|" < o and E(Q ia v;:)™? < o for 2 £ j < m, then
EY, = 0, where

(3) YV,=28"— 2 i ES" — Siaa | Faa)
=8 = Do Dot (F)Siui

Proor. As in the proof of Lemma 1, |S,|" < E (|S:|"F.) a.e. on [t > n], giving
Jism 18a" £ [iomlSd™ —new 0, since E[S|® < . Thus (from (3))
Jtisn1 1Y a| =nse 0, and E|Y;| < oo, since B Y pes |Spiujs] < o for2 <j < m
from Lemma 1.

Since (Y,, F., » = 1) is a martingale (obvious, from (3)), this implies
EY, = 0 by a theorem of Doob (Lemma 1 of [3]).

LemMa 2. If m is an even integer and E (D it ;)™ < « for 2 < § < m,
then E|S)|" < «

Proor. Since {Y,} is a martingale, EY;, = 0, where { = min (¢, n), i.e.

ES? = E X ha 2 5w (7)Sicius
< 2 (OE Db [Sea™ i
< 2 () EISe|™ ) IME (ke via )™,

as in the proof of Lemma 1.
But ESY: = E|Su|", so that E|Sy|" < some K < « for alln = 1, giving

E|Sy|™ £ lim supn.« E|Se|™ < .

TuEOREM 2.1 If m is an even integer and B (D i1 v;,6)™7 < o for 2 < j < m,
then EY; = 0. If m 1s odd, and in addition E|S;|" < o, then EY, = 0.

Proor. We can suppose E|S:|™ < o, since it is postulated in the odd case,
and holds, by Lemma 2, in the even case. Then the theorem follows by the corol-
lary to Lemma 1.

TuavorEM 2.2. Under the hypotheses of Theorem 2.1, the moment identity (1)
holds.

Proor. By Theorem 1, EY; = 0, which from (3) may be written

B8 = X G)E Xim 85 (Uin — Ujaa),

where
Uik = Ef=1 Ujyr o
Therefore
= 20 E Zia (5 — 8" )Usa + BSIUs 4
= D a2 mlGlri(m — 5 —r))TE Xiciise Wi e sSed
+ X OESS Yk i,
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by taking conditional expectations within the summation in the previous line
(Lemma 6 of [3]).

The procedure can be repeated by writing Z 1= U ey = Ujpp — Ujrp—in
the first term; after [m/2] repetitions we arrive at (1). At each stage, absolute
integrability is needed to justify taking conditional expectations inside summa-
tions, and this is provided since the terms of (1) are absolutely integrable, as
follows (ef. (2)):

BIZ@,m)| £ EISI" + Xream!((m — 1)) EIS|"™ Xa, (@i ! -+ o )7
3§ EEN ORI
BIS|™ 4+ Xt m!((m — )17 (BISL") T
e, O (B Ok vay.i) y™eies"y by Holder’s inequality,
< .

I\

The initial assumption of Sy = 0, Fo = {¢, @} may not always hold, and S
may be a non-degenerate rv which is Fo-measurable, Fo being a non-trivial o-
field. In that case we can follow our working through with practically no change,
arriving at:

CoroLLARY. If E|Sy|™ < w, BE(Q i v;)" < o for 2 £ j < m, and in
addition E|S:|" < « if m is odd then

E(Y,| o) =ae 8" =ae. E(Z({E, m) | %), and EY, = ES" = EZ(t, m).

92.3. Remarks. The moment identity of order m has been presented in two dif-
ferent forms in Theorems 2.1 and 2.2. The first form is the simpler, while the
second corresponds to Teicher, [10], where it is given form = 2k, k = 1,2, ---,
under the assumption that Etk '3 i va,: < . This condition implies the one
used here, for, using the inequality

Crlad)y = w7 2l e, r=1,
and the conditional Holder inequality, we obtain
E(X i v,,)™ < BT i ol < BET Y i vmi

3. On moments of a stopping rule.

3.1. Introduction and summary. On a probability space (@, &, P), let {X,} be
independent rv’s with X, = 0, EX =18=Xi+--+X,,n=12---,
and ui; = EX, vi; = E|X,|'. Define t = tn(c) = inf{nn = m, [S.| > en'},
0 < ¢ < o, m = 1. Then it is known that

(i) whenc¢ = 1, Et = » (Chow, Robbins, Teicher, [3]),

(ii) when ¢ < 1 and the {X,} are uniformly bounded, then E¢ < « (Chow,
Robbins, [3]), :



MOMENTS OF A STOPPING RULE 1241

(iii) when ¢ < 1 and the {X,} obey the Lindeberg condition (ensuring
£(8./n*) =0 N(0, 1)) then Et < » (Gundy, Siegmund, [5]), and

(iv) when the {X,} are uniformly bounded, ¢ < 3 — 6! implies B < o for
all m and ¢ > 3 — 6' implies that B = o for m sufficiently large (Chow,
Teicher, [4]).

The stopping rule ¢.(c) was first introduced by Blackwell and Freedman, [1],
for coin-tossing rv’s. In (3.2) it is shown that ¢, (c) is a bona-fide stopping rule
(i.e. Pltw(c) = «] = 0) as long as the Lindeberg condition holds on the {X,}.
In (3.3) the definition of the Lindeberg condition of order 2k given in Section 1
isrepeated (k = 1,2, - -+ ) and it is shown (Theorem 3.2) that if ¢; is the smallest
positive root of the Hermite polynomial of order 2k and the {X,} obey a Linde-
berg condition of order 2k, then Et,"(c) < « for all m = 1if ¢ < ¢, while
Et*(¢c) = o« for all sufficiently large m, if ¢ > ¢ . Then, use of a truncation
enables Theorem 3.3 to give the same result as Theorem 3.2, assuming a Linde-
berg condition of order 2, and hence the central limit theorem, instead of one of
order 2k. The result is similar to one of Shepp, [8], for the continuous analogue of
the present (discrete) problem, and Shepp’s conjecture ([8]) is verified, in con-
junction with a related result of Breiman, [2], for iid rv’s with E|Xi|* < o.

3.2. The stopping rule t = t.(c). It is not a prior: clear if or when #,(c) is a
bona-fide stopping rule. Evidently some conditions on the {X,} are needed, for if
PX,=0l=1—a, , P[X, = —a,] = (20,) ' = P[X, = a,], with D>_ a, * <
and a, > cné,n =1,2,:--- ;then Plta(c) >n] =P[X1 =0,X, =0, --- X, = 0]
=]/~ @ —a;? | b>0,asn— oo;and t(c) is not a bona-fide stopping rule.

Tuarorem 3.1. Let {X,} obey the Lindeberg condition. Then Plt,(c) < «] = 1,
i.e. tn(c) is a bona-fide stopping rule, for all ¢ > 0 and m = 1.

(This is already known for ¢ < 1, since it is shown in [5] that then Et,(c) < « ).

Proor.

P M=t Uben [Sk] > '] = limpaw P Uion 118k > ¢k
2 liMmaw P[|Sn| > cml].

Therefore P[|S,| > entio.] = 1 by the zero-one law and the central limit theorem.

3.3. Definition, results and corollaries. A sequence of independent rv’s {X,}
with EX, = 0, EX,’ = 1,n = 1,2, -+ - , is said to obey Ly , a Lindeberg condi-
tion of order 2k, if

i Juxpzet 1 Xi™ = o(@®) as n— o« forall ¢ > 0.

When k& = 1, this is the classical Lindeberg condition.

For k > 1, the condition was shown in Section 1 to be equivalent to
1) Divmy = 2 BIX " =o@"), as n— w.

Before giving Theorem 3.2, we need three preliminary lemmas.
Lemma 1. If t is any stopping rule with E&* < «, and the {X,} obey La , then

(2) 0 = ES™ + D%, @k)1((2k — r))'ES*I?A @, 1),
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where

@) Amr)=n""Y¢ (=) (! o) Digis
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cegiggn Uoy,ip 000 Yo,

and where Q, is the set of ordered partitions of the integer r into integers >1, with

(w1, -+ wi) atypical element, ie. @ = { (w1, -+~

w1+ +wz = 7‘}.

Proor. By Ly, D i1 Ve = 0m*"*) asn — o for 2 £ w £ 2k. Therefore
E(Z§=l vw,i)”"‘” = O(Et"’) < o for 2 £ w = 2k. Theorem 2.2 (Section 2) is
applicable, and (2) follows.

Levma 2. Leta = 0,b > 0 be integers with a + b/2 = k, and let {s;}5=1 be a
sequence of stopping rules such that Esf < w,j=1,2,--- and Esf 1 ©asj— .
If {X,} obey Lo , then

Proor.

Elejl2k

I\

Esj“|Xs,.|b = o(Bs")

E2.

Sy X = E DL BIX ™

=o(Bsf) as j— o,

Then by Holder’s inequality,

Bsf| Xl < (BsF)* (B Xo, "™ = (Bsf)"* (o (Bs))"™
= o(BEsi*),

as J— .

as j— «,

since Ly holds.

w1): each w; s an integer =2,

(Lemma 6 of [3])

COROLLARY. If t = tu(c), ta = min ¢, n), Bt,' T E* =  asn— «, and {X,}
obeys Loy , then

Bt 1 X0 180 Tiom = o (Bta")

for integers j, b with 0 < b = 2k — 2j.
Proor. Use the inequality |Si,—1| < ct.’ on [¢ > m], then apply Lemma 2 with
{s,} replaced by {t.}.
LemMA 3. Lett = t,(c), t, = min (¢, n), 2 < r < 2k, and let {b,} be a bounded
sequence which — 0 as n — . If { X} obeys La , then
(i) Ef* = o implies ES¥ "t %, = o(Bt*) asn — «;
(i) Eff < o forallm = 1,2, - -+ implies that S {""b, = o (Bf") asm— .

Proor.

|ES

2k—r
tn

tnrﬂbt,,l

=

as n— o,

0(1) + o(Bt) + E|Sea/™ "t eI tom

by expanding and using the corollary to Lemma 2,

0(1) + o(Bt."),
o (Et.").

since |84, 1| < ctat

on

< b [ tocm [Sal™ " + B84t + Xo[* b0 Lieom

[t > m],

»
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For (ii), choose m > no where n > ny = b, < e. Then

IESZ 7] < em’™ [1emm [Sul™ " + ElSis + Xo® 70 (1o
e PE|Su* " + eElct 4+ Xo/* T T iom
0 (m*) + ™ Et* I iom + o (EL*),

since E|S,|* = 0 (m") by Theorem 1.1 (Section 1), and by expanding the second
term and applying Lemma 2 with s, replaced by ¢,

IA

IIA

= o(Bt*) as m — =, since t = m.

THEOREM 3.2. Let ¢, be the smallest positive zero of the Hermaite polynomial of
order 2k (k = 1,2, ). If {X,} obey Ly , then Et,'(c) < « for allm = 1 if
¢ < ¢, while Bt,' (c) = o for all sufficiently large m if ¢ > ¢ .

Proor. Let t = tn(c), t» = min (¢, n), ¢ < ¢ and assume that Bt," T B = «»
asn — . For 2 < r < 2k, define A1 (n, r) = A (n, r) if r is odd, or

=030y (=D (@il e @) Drgi e iz Yoy 0 Yor i
if r is even, where

’

Qr = Qr - {(2,27 tre 2)}
r/2 entries
Therefore
4) [A1(n, )] = 200 (! ++o @) [Tja 07" i va;0),

where Q = Q,,r odd,or =Q,’, r even, = Y _q o[H,Ll 0(1)],asn— o« since Ly is'
obeyed, and at least one w; > 2, =0 (1) asn — oo,

By Theorem 2.2 (Section 3), (2) holds with ¢ replaced by ., since ¢, is a
bounded stopping rule. By grouping together those terms of (2) with r = 2j,
Il=j,andw = wy = -+ = w; = 2, we can write

0 = BS® 4+ >k, (—1)7(2k)! ((2k — 2)1 (21)7) BSH
gz L+ Dt (26)1 (2k — 7)) EST LAy (b, 1)
() = oo (—1)(2k)! (2k — 2j)15! (1)) ESIY
(4G — DG — DY
+ 3%, k) ((2k — r)) BSR4 (¢, 1)
= D50 (—1)7(@k)! ((2k — 27)151 (21)7) 7 BSL " + o (Bt."),

by applying (i), Lemma 3 to both terms, with b, = n™", n™%, - .- in the first, and
in the second, b, = Ai(n, r) = o(1), from (4). But

Et,’S7 7% = Bt (Si1 + Xo)* Tiom + M [ pom Swt
= Etan%::%jI[t>m] + O(Etnk) + 0(1), as n — oo,
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by expanding and using lemma (2), with ¢, replacing s, , and its corollary. There-
fore (5) becomes
0 = o(B*) + (=) i (m1)(@2k)! (@h — 2151 @)Y Bt’S e T om
0(Bt") 4+ (—=1)""E (t" Hut (Stp-1/ta ) 1i5m ),
where Hy, is the Hermite polynomial of order 2k (see Appendix, (A2))

< o(BLF) + (= 1)*"'Hu(e) fusm ",

since |S,—1| < ct,! on [t > m], and since (—1)*"'Hy (z) is an even function, in-
creasing in (0, ¢; ), by the Proposition of the Appendix. By the same proposition,
(=1 Hy(c) < 0for0 < ¢ < ¢ , thus contradicting the assumption that
Et' 1 E* = ©,asn — . Therefore Bt < o when ¢ < ¢ .

Next consider the case ¢ > ¢ . Assume that Et* < o« for infinitely many, and
therefore all, m. By lemma (1), (2) holds and may be written (cf. (5))

0 = 250 (—1)j(2k)! (2 — 27)14! @D)TESH ¥t 4+ 5 — 1)1 (¢ — 1))~
+ Dor (2k)) ((2k — r))TESH T4, (¢, 1)
= D %0 (=1)7(2k)! ((2k — 2)15! @) ES Y + o (B,

asm— o, by applying (ii), Lemma 3 to both terms, with b, = n™, n™>, -+ ,in
the first, and b, = A (n, r) in the second; thus

(6) 0 = (—1)""EfH% (S,/8) + o(Bt), m— w.

Now et < |8 < ¢t + |X4| on [t > m], so if |8:| = ct* + e, (e is the “excess” ),
e; = |X,| on [t > m], and Lemma (2) holds with s, replaced by ¢ and X, replaced
by e (z>m) . Therefore

(= 1)""E (" Ha (Se/8)1om )
= (=" BT iom{Hu (c)
+ (e/HHn(e) + -+ + (@B e/ EVHE ()},
using the Taylors series expansion of Hy, ((ct + e.)/8),
@) = (—1)*"Hu(c) [uom & + o (BE),
using Lemma 2, cited above. Furthermore
®) (=L "E @ Hu S/t tem) =" 1" [ussents (=1)" Hap(Sn/m').

But from Theorem 1.1 (Section 1), E (Sm/m*)” — EY”, m — o, for integers r,
1 =r =k, where Y has a N (0, 1) distribution. Therefore

EHo, (Sp/m*) —moes EHa (Y).

Il

Since 8,,/m! converges to Y in distribution (central limit theorem) the Helly-
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Bray lemma (see [6], p. 180) ensures that
Jtsmt semtt Hae (Su/mM) —meo [ 1171 <01 Hoe (),
whence
Jusnisemts Has (Sn/m*) = fuiria Hu(Y) = — (2/m ) Hyus (c)e™"
((A7)) of Appendix).

Therefore (8) becomes

©) (=B (" Hu (S ) ) 11 ) = Bm* + o(m*), m— o,
where B = (—)*(2/7 ) Huy1(c)e . In view of (7) and (9), (6) becomes
(10) 0 =A4 [i5mt + Bm* + o(B) + o(m"),

where A = (—=1)"Hy(c).

When ¢; < ¢ £ 1, B > 0 (since (—)*Hyu_1(c) > 0, (A4) of Appendlx) But
A > Ofor ¢t < ¢ = k-1 by the Proposition of the Appendlx giving a contradic-
tion in (10) by letting m — o . Therefore Et* = o« for m sufficiently large when
¢ < ¢ = ¢x1, and since inductively, Et" = o for m large enough, ¢. < ¢ < ¢,4,
r=1,2 --- k — 1, we conclude that Ef* = » form large enough when ¢, < c.

COROLLARY If {X.} obey Lu, then Et,*(ci) = omum", where omp —smow o
(possibly, amy = o« for some finite m).

Proor. The statement of the corollary is equivalent to

»

mt = o (Et") as m-— o, where ¢ = tn(ct);

which follows from (10) since A =
TrEOREM 3.3. Let {X,} be independent,

EX,=0, EX, =1, Sa=Xi+ - +X,, n=12 --

If { X.} obey the central limit theorem (1 e. £(8u/n') =mw N (0, 1)) then
Et,f (¢) < » forallm = 1 if ¢ < ¢ , while Bt (c) o for all sufficiently large m
ife>aa, k=12 Bty (cr) = omam® where amp —smacw o (possibly,
Qm = o for some ﬁm’te m).

Proor. Let ¢t = t,(c) and Q* = [¢ > m] On Q* set Z, = Sl i>m and
Z,, = Spinlitsm , n = 1, 2, . Let 5,*, &* be the restrictions of ¥, and & to
Q*, where 5, = ® (X1, - - X Jand § = ®(X;, Xz, -++), and let P’l< be the
restnctlon of the underlymg probablhty measure P to Q*. Then Zn,Fn*n = 1)
is a martingale on (Q*, §* P*) and s = s, (c) = inf {n = 1:|Z.] > c(n + m)}
is a stopping rule on (Z, , §.*, n Z 1)

Letz, =Z, — Zpy,n=1,2, . Therefore z,, = n+mI[t>m] ,m=1,2-

The proof of Theorem 3.2 can be apphed to {QF, §*, P* Z,, 5., n = 1; s (c)}
instead of {Q, F, P, S, , Fn,n = 1;tn(c)} with a modlﬁcatlon of the analogue of
(2) to allow for the initial term of the martingale (see the Corollary of Section 2).
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The details are a repetition of the proof of Theorem 3.2 and are omitted; the
ensuing equations are identical to the original ones and we obtain the result that:
If >0 Ez™ = o(n + m)* (i.e. Ly holds) then

c< = Esn(c) < », all m=1
(11) ¢> = Esy'(c) = o, for large enough m
m* = o(Bsn’ (&), as m— o,
This statement, because of

(12) t = tu(c) = mly—m + (m + sn(€))>m ,
is equivalent to the statement of Theorem 3.2. A further allowable modification

is that (11) can be obtained when the properties Ez, = 0, Ez,” = 1 are replaced
by

(13) YiaBy=o(n+m)}) as n— e,
and
(14) YiaEB =n+om+m) as n— o,

Next, we set
Yo = —2c(m + 1) cseontmis + 2l fani<zeminyiy
+ 2c(m + 1) T, pr0mimin, 7 =1,2, -
Since[s >n — 1, |en| = 2c(m +n) ] C[s=nl,n =1,2, ---, we have
8= su(c) =inf{n = 1:|¥V1+ -+ + Y| > c(m + n)}}
i.e. 8u(c) is unaltered by replacing {2,}1 by {Y,}1 . Therefore the theorem will be

proved if we can apply (11) and (12) to {Y.}1 , and to do this we only need show
that

»

(15) S EY; = o((+m))  as n— o,
(16) SEY =n+o(m+m)) as n— o
(by the remark preceding (13) and (14)); and

(17) Z;LIEYJ'% =o(n + m)k as n— o;

i.e. that Ly, holds. Because of the independence of 21 , 25, -
work with P instead of P*, without losing generality.
For (15), we have

- and Ijsom , We can

EY; = 2¢(j + m)%{P[z,o = 2c(j + m)%] — Plz; £ —2¢(j + m)é]}
- f [l2n] Z26(5+m) 4125
= 20(j + mHP[Xjm Z 26+ m)] — PXpm < —2¢(G + m)'}
- f [1Xj4+m| 22e(4+m) ] X itm
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and

|2 EY|

IIA

¢ 20 G A M) [uxssmizreiimi X
T T [uxsimem X7
=o(n + m)?) as n— o,
because of the equivalence of L, to
(18) . i fuxizen X =o0@m) as m— @, all e>0;

which was shown by Gundy and Siegmund, [5].
For (16), we have

251 B — 2 BYS = 35 [tz smizsecitmin [Xom — 46 + m))],
= o((n + m)}),
invoking (18); and for (17),
2 BY ™ = 30 { [uzjican X2 + [t <ixs1<0m X7
+ @) PlIX; = 2}
< 2wl Em + 1)) fugieemXs + @ m + n))

Jensizjcean X + @ m 4+ )V [z X
@ +n))n 4+ @’m + n))o(m + n)
+ @l m + ) om + n),

IIA

»

(invoking (18) twice),

o(n + m)", by choosing e small; thus completing the proof.
TrEOREM 3.4. If {X,} obey the central limit theorem and
Un(c) = inf {n:n = m, S, > can’},

then Buy"® (c) < o for all positivec < o, allm = 1 and all k = 1 when a, — 0,
while Buy,"(c) = o for m sufficiently large forall c > 0 and all k = 1 when
Ay — 0.,

Proor. If a, — 0, ca, < ¢ for any positive finite ¢ if n is large enough, so
Un(C) = tn (c), hence Eu,’(c) < o (by Theorem 3.3) for m sufficiently large.
Therefore Eu,’ (¢c) < « for all m. Slmllarly, when a, — «, ca, > ¢ if ¢ > 0 and
n is large enough, so Bu,' (c) = « if m is sufficiently large, whether u,(c) is a
bona-fide stopping rule or not.

3.4. Remarks. Theorem 3.4 is strikingly similar to the result of Shepp, [8],
that, if {W (¢),0 < ¢ < «} is a Wiener process and

Tae = inf {:[W ()] > ¢t + a), a > 0,¢ > 0},
then ET:, < oo if and only if ¢ < ¢ . The rationale for the similarity is that,



1248 BRUCE M. BROWN

under the hypothesis of Theorem 3.4 of the central limit theorem, S,/n! behaves
like a Wiener process as n — «. Thus, on first sight there is a flaw in our result
for the case ¢ = ¢, when we only have m* = o (Bt (c:)) as m — «, compared
to ETZ,O,, = o for the Wiener process. However the two results are essentially
the same by the same rationale as above, if we bear in mind that W (z¢)/2* is still
a Wiener process, and apply similar scale transformations to S,/n}, and thence to
tn(c). In the case that {X,} 7= are iid (EX, = 0, EX,” = 1) with B |X1|* < o,
itisknown (Breiman, [2]) that Et," () = o for sufficiently large m; the methods
used are different to ours.

Acknowledgment. The present work is based upon the author’s Ph.D. thesis
at Purdue University, prepared under the supervision of Professors Y. S. Chow
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APPENDIX
Properties of Hermite polynomials. Define Hermite Polynomials H; () of order
J by
(A1) Hi(@)e™" = (d/de)’e™", 7=0,1,2---.
This definition differs by a scale factor from that of Szego, [9], but is more con-

venient in the present context. Thus Ho(z) = 1, Hy(z) = —z, Hy(z) = 2 — 1,
and in general

(A2) Hu(z) = D=0 (—1)7(2k)! ((2k — 27)151 @)™, k=0,1,2,--- s

and

(A3) Hup(x) = 2 5= (—1)™ @2k + 1)1((2k + 1 — 2j)15! (21)7) 2™,
k=0,1,2 ---.

The odd order polynomials Ha1 are odd functions, while those of even order
are even functions; with Hy.,1(0) = 0, and

(=1 Hy (0) = — (2k)! (k! 21)") ™ < 0, k=0,1,---.

Thus, if ¢ is the smallest positive zero of Hy (), then (—1)*"Hy, (2) is nega-
tive in 0 = = < ¢ by continuity. We define ¢ = + .

PropostrioN. (—1)*"Hy, s increasing, and has a single simple zero, in
0 < 2 < cp—1 . Consequently, this zero iscy and ¢, | ask — .

The elementary properties of Hermite polynomials can be used either to give
a direct proof, or to show that {H,.(z),r = 0, 1, --- , k} is a Sturm system of
polynomials in 0 = ¢ = ¢ ([7], p. 7), whence the proposition follows from
Sturm’s theorem on zeroes of a polynomial ([7], p. 9).

The corollary

(A4) (=1)*Hya(x) >0 for 0< 2z =< ¢y follows,
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because of
(A5) Hi (z) = —jH;a(x), J=12--.
Weknoweo = 4,6 = 1,2 = (3 — 6')}, and in general
A6) 7Bk +2)F == {5/@k+ 1)}, k=12 --- (Szego, [9]).
Finally, ;
A7) Sunza Hu@)e ™ dy@r)™ = — (/) Hu1(c)e ", by using (Al).
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