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ASYMPTOTIC THEORY OF A CLASS OF TESTS FOR UNIFORMITY
OF A CIRCULAR DISTRIBUTION!

By R. J. BEraN
The Johns Hopkins University

0. Summary. Let (21, 22, - -- , 2.) be independent realizations of a random
variable taking values on a circle C' of unit circumference, and let

To=mn" 312 0f(@+ ;) — nf de,

where f(z) is a probability density on C, f ¢ L»[0, 1], and the addition 2 + z; is
performed modulo 1. T, is used to test whether the observations are uniformly
distributed on C. It includes as special cases several other statistics previously
proposed for this purpose by Ajne, Rayleigh and Watson. The main results of
the paper are the asymptotic distributions of T, under fixed alternatives to uni-
formity and under sequences of local alternatives to uniformity. A characteriza-
tion is found for those alternatives against which 7, , with specified f (), gives a
consistent test. The approximate Bahadur slope of T, is calculated from the
asymptotic null distribution; however, an example indicates that this slope may
not always reflect the power of 7', reliably. A Monte Carlo simulation for a spe-
cial case of T, suggests that a fair approximation to the power of T, may be ob-
tained from its mean and variance under the alternative.

1. Introduction. Suppose (z1, 22, - - -, Z,) are independent realizations of =
random variable which is distributed about a circle C of unit circumference and
has a density on C of the form

(1.1) g|k) =14+ klf@@+a) — 1], ze[0,1], kel0,1].

Here a is an unknown location parameter, f & L,[0, 1] is a density on C, f(z) #£1,
and the argument « + a is to be interpreted modulo 1. Then g(xz|0) = 1 while
g(|1) = f(z + a). An argument similar to that in Beran [3] shows that for
testing Ho:k = 0 (uniformity) versus Hi:k > 0, a locally (small k) most power-
ful invariant (under rotation) test is to reject Ho when

(1.2) To=n"[t[25f@+ 2;) — nl'da

is too large.

This result, which generalizes earlier work by Ajne [1], is the motivation for
the present study of the limiting distributions of 7', under arbitrary fixed alterna-
tives and under sequences of local alternatives to uniformity. It is worth noting
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UNIFORMITY OF CIRCULAR DISTRIBUTION 1197

that T, includes as special cases four statistics which have previously been
proposed as tests for uniformity on the circle. The earliest of these, studied by
Rayleigh [8], is the statistic

(1.3) R = 07 [(X 7 cos 2r;)’ + (D7 sin 2wa;)?).
The second is

an analogue of the Cramér-von Mises statistic introduced by Watson in [10].
F.(x) is the sample distribution function cumulated from an arbitrary origin.
The third statistic,

(1.5) Ap =07 [§IN (@) — n/2] da,

was derived by Ajne [1] as a locally most powerful invariant test against alterna-
tives with density 2p on one semi-circle, 2¢ on the complementary semi-circle,
p 4+ ¢ = 1. N (z) is the number of observations lying in the semi-circle [z, x 4 %).
Also due to Watson [12] is the fourth statistic

15" 82 =07 [§[falx) — 11 da,

where f, (x) is a consistent estimator of the true density generating the observa-
tions. For example,

(1.6) falz) = 1 4 2 D800 30 cos [2am (& — z;)],

where the integer N (n) is o (n).

To show that R, U, and S,  are special cases of T, , as A, clearly is, let
{cm} denote the Fourier coefficients of f(x) relative to the basis {¢""™; m = 0,
+1, &2, - - -}. Then, applying Parseval’s theorem to (1.2) yields

.7) T = 17 Yo [om] | 3o 0s 771
Similar Fourier analyses show that
R = 3 ([ @5 4 [ S 79,
(1.8) Ud =107 Do (20m) ™" Z}'=1 e&m i
5.7 = n7 Sl [T .

Thus, T, and U.l generate equlvalent tests provided that for some a > 0,
{len] = am™;m = 1, :!:2 - -}. The phase of each Fourier component is left
unspeclﬁed In particular U, gives a test for uniformity which is most powerful
invariant against local (small k) alternative densities of the form g(z|k) =
1+ k(@z — 1). R, and 8, may be treated analogously.
Another expression for T, , derivable from (1.7), is

(1.9) T =n"" D0 D @ — ),
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where the function d(z) is defined by
(1.10) d@) = Dmmo lcnl €™ = 2 3 %1 |cw|” cos 2rma.

The series in (1.10) converge absolutely and uniformly, since f & L,[0, 1]. Thus,
d(z) is continuous, periodic with period 1, and symmetric with respect to 0 and
3. Closed expressions for d(z), often available, make (1.9) useful as a compu-
tational formula. The formula (1.9) is also a starting point in relating the present
tests for uniformity to class of two-sample tests on the circle introduced by
Schach [9].

2. Limiting distributions. The first topic of this section is the asymptotic
distribution of T, when the observations (z1, 2», -+ %,) are generated by a
random variable with distribution function G (z), relative to an arbitrary origin
on C. Consider the stochastic process

2.1) E(r) = D f @ + x) — 1,

which is defined for z ¢ [0, 1]. For y, y1, y2 £ [0, 1], let u.(y) and B(y1, y2) de-
note, respectively, the mean and covariance kernel of £,(y). Clearly, u.(y) =
n'b (y), where b(y) = [3[f(y + =) — 1]dG(z), and

By, u) = [ilftn + o) — U@ + 2) — 11dG (=) — by)b@s),

which is symmetric and does not depend upon 7.
The distribution function G (x) has the Fourler transforms

(2.2) d, = f% €™ 4G (x); m =0, %1, +2, --- 3

where |d.| < 1 for all m. Using Fubini’s theorem, the Fourier coefficients of
b(z) are {cadn} if m 5 0 and 0 if m = 0; the {c,} denote here, as in the Intro-
duction, the Fourier coefficients of f(z). It is clear that b (z) € L[0, 1].

Further calculation and use of Fubini’s theorem show that, relative to the
double orthonormal basis {e"* ™2,y | = 0, £1, &2, - - -}, B(y1 , ¥») has the
Fourier coefficients { (dim — didn)éicn}. Consequently,

By, ) € Ls([0, 1) % [0, 1])

and, indeed, has finite trace.
Let M = N2 = -+ = 0 be the eigenvalues (including 0) of B(y:, ¥.) as de-
fined by the integral equation

(2.3) JoB 1, y2)o (@) dyz = o (31).

Let 1 (2), ¢2(x), - - - be a corresponding orthonormal sequence of eigenfunctions.
Since B (y1, y2) is a covariance kernel, the eigenvalues are non-negative. There
are at most a countable number of eigenfunctions corresponding to the eigen-
value zero. Both D+ N’ and Y i\ converge. The eigenfunctions form a com-
plete orthonormal system in L.[0, 1].

TarorEM 1. If, under the distribution function G (x), b (x) £ 0, then the asymp-
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totic distribution of n~ [ w — N fo b () dz] is normal with mean O and variance
4 [3 [5 Bz, y)b(x)b(y) dx dy. Provided the variance does not vanish, the con-
vergence to the asymptotic distribution function as n — <« s uniform on the real
line.

Proor. Since T, = fé £ () de, let
X, =0T, — n [0 (x) da]
(24) . = [i 7% @) + b @)l () — n'b ()] da,
= [12b(@)[ta(z) — n'b ()] da.

From the definition (2.1) of £,(z), Y. can be expressed as a sum of normalized
iid random variables, so that the asymptotic distribution of Y, is normal with
mean 0 and variance 4 fé f o B(z, y)b(2z)b(y). The proof that X, is asymp-
totically normal is completed by showing that as n — «, |X, — Y,| —, 0
Using Fubini’s theorem,

25) E|Xu—Yu S E {0 @) — b)) @) —n'b@))| de
™t [4 B(z, z) da.

Since B(z, y) has finite trace, Markov’s inequality, applied to (2.5), proves that
| X, — Y, —, 0 asn — . The uniformity of the convergence in distribution is
assured by Pélya’s theorem (c.f. Pélya [7]). []

TarorEM 2. If, under the distribution function G (x), b(x) = 0, then the asymp-
totic characteristic function of T, s

T(@t) = [T (1 — 2nat) ™

The corresponding asymptotic distribution function cannot be degenerate. The con-
vergence to the asymplotic distribution function as n — o is uniform on the real
line.

Proor. The characteristic function is derived by the method used to prove
Theorem 3 in [3]. Since the Fourier coefficients of b () are {¢xdn} if m % 0 and
0 if m = 0, the condition b (z) = 0 implies

(26) 2N=trB@y) = 2n 1 — |dul)eal® = Do lcal” # 0,

so that at least one of the {M\:} is non-zero. Therefore, the asymptotic distribution
function of T, is non-degenerate. By Lémma, 1.1, it is also continuous, so that the
last assertion of the theorem follows from Pélya’s theorem. []

Lemma 1.1. If the {N\} are not all zero, the distribution function H (x) whose
characteristic function s

v(t) = [Tia (1 — 2nat) ™

1s continuous and has on (0, ) a continuous density which does not vanish.
Proor. Assume an infinite number of the {A\:} do not vanish (otherwise the

I
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lemma is obvious) and denote the non-zero Ny by »1 = ve = --- > 0. Let Hy (z)
denote the distribution function corresponding to ¥y (t) = [[iy (1 — 2wat) .
If » > 0 denotes min (v1, »2, v3, 1), 0 < [N ()| < (1 4+ 4°F) " for every N
and 0 < [¥(t)| < (1 + 4°%¢)™". Since ¥(t) and all the {¥y(t)} belong to
Li(—», »), H(z) and all the {Hy(z)} are continuous and have continuous
densities (e¢.f. Gnedenko [4]). Therefore, by Pélya’s theorem, Hy(z) converges to
H (z) uniformly on the real line. Since Hy () is strictly monotone on (0, « ) for
every N, sois H (z). []

Another limiting distribution of interest is that of T, under asequence { G, (x)}
of local alternatives to uniformity defined by

(2.7) G.(z) = (1 — a/nb)z + a/n'G@); «cl0,1], zel0,1]

For y, 1, 42 € [0, 1], let u*(y) and B,*(y1, y2) denote, respectively, the mean
and covariance kernel of £,(y) under G,(y); this time u*(y) is independent of =,
while B,” (41, 9») is not. If the {d,™} are the Fourier transforms of G, (y),

(2.8) d™ =1, du™ = (a/n')dn if m 0.

It follows, as previously, that the Fourier coefficients of u™*(y) are {acndn} if
m % 0 and 0 if m = 0. The double Fourier coefficients of B, (y1, y2) are
(@2 — & a5 )erem}.

TarorEM 3. Under the sequence of alternatives with distribution functions
{G.(x)}, the asymptotic characteristic function of T, s

V) = [1emi 1 — 2 |eaf? 4] exp [20® |ea] |del* it/ 1 — 2 ex]? 42)].

The convergence to the asymptotic distribution function as n — <« s uniform on the
real line.
Proor. Let

28") Zin = [§8a(2)e™™ da.

Under G,(x), EZin = acvdy, E|Zin — EZi|" = (1 — n '’ |di")|csl’, and
EZwn — EZ1n)(Ztn — EZum) = O(n™?) if k 5 1. Let T be the random variable
with characteristic function ¥*(£); T is a convolution of non-central chi-squared
variables. Let Sy be the random variable whose characteristic function W™ (¢)
is the produect of the first N factors in ¥*(¢), and let Suy = D %=1 |Zin|>. By
monotone convergence,

2.9)  E|Tw— Swx| = E 2 feiwi1 | Zal’
= D fhewi [Q — 7' dl)er® + o [erl |dil’].

The sum on the right of (2.9) is bounded for all n > 0 and a &[0, 1] by
2 > Ti=ws1 Jce’, which tends to zero as N — . By Markov’s inequality,
T. — Suy —5 0 uniformly in n as N — . Clearly Sy —, T'as N — .

To complete the proof of the theorem, it is sufficient to show that for any
N > 0, S,x —. Sy as n — . From the definition (2.8") of Z, , S.x can be ex-
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pressed as a sum of squared sine and cosine transforms of £, (z). Each such trans-
form can, in view of (2.1), be expressed as a sum of iid random variables. A
routine characteristc function argument establishes the joint asymptotic
normality and independence of the sine and cosine transforms, and the result
Sux —1 Sy asm — « follows. The uniformity of the convergence in distribution
functions is proved, as for Theorem 2, by using a variant of Lemma 1.1. []

CoroLLARY 3.1. Under the null hypothesis of uniformity, the asymptotic charac-
teristic function of T, s

V@) = [Teaa 1 — 2 el at]

The convergence to the asymptotic distribution function as n — o« s uniform on the
real line.

When the non-vanishing {|c.|*; m > 0} are all distinct, this last characteristic
function may be inverted readily and it shows that, under uniformity,

(2.10) liMpaw P(Tn > ) = D mes Om €xXp [—2/2|cm|’],

where am = [Jiwm [I — |c*lew| I The coefficients {a.} can be evaluated as a
finite product of gamma functions (c.f. Whittaker and Watson [13], p. 238).

3. Consistency. The theorems of Section 2 enable us to determine the alterna-
tives G(x) on [0, 1] against which T, , with given f(x), yields a consistent test
for uniformity. Let z, be the exact a-level critical value for the test and let z be
the a-level critical value relative to the asymptotic null distribution function
F(z) determined in Corollary 3.1. Using the continuity and monotonicity of,
F (z), it is easily shown that z, — 2 > 0 asn — .

TueorEM 4. T, gives a consistent test for uniformity against an alternative with
distribution function G (z) of and only if b(z) £ 0.

Proor. Using (1.9), the continuity of d(z), and the Helly-Bray theorem,

(B.1) Tu/n =[5 [5d(x —y)dF.(z) dFu(y) = wsfs [ d(@ — y) dG (@) dG ().
Moreover,
3.2) [i[id@ — y) dG@) dGY) = Zmwlenlldn* = [30° () da.

Therefore, if b(z) 5% 0, the test generated by T, is consistent.

Conversely, if b (z) = 0, T, has, by Theorem 2 and Lemma 1.1, an asymptotic
non-null distribution function H(z) which is continuous, strictly monotone on
(0, » ), and to which the exact non-null distribution function H™ (z) converges
uniformly. Since z, — 2z > 0 asn — o, H™ (2,) — H (z) > 0, and the test is not
consistent. []

CoroLLARY 4.1. T, gives a consistent test for uniformity against an alternative
with distribution function G (z) if and only if there exists at least one m = 0 such
that both c., and d,, do not vanish.

As examples, consider the statistics U,? and A, discussed in Section 1. For
U,’, ¢ never vanishes, so that U, gives a consistent test for uniformity against
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all alternatives. On the other hand, for 4., , ¢, is non-zero if and only if m is odd
or zero. It is easily shown that if G (z) possesses the symmetry G(x + 3) =
G (z) + %, where the addition z + % is performed modulo 1, d,, vanishes when-
ever m is odd. Hence, 4, is not consistent against such alternatives.

4. Approximation of eigenfunctions and eigenvalues. Under many alterna-
tives, the eigenfunctions and eigenvalues of B(y1, %) cannot be found analyt-
ically. This section describes a method for approximating them to any degree of
accuracy. While the basic idea is by no means novel, it has seen little applica-
tion in statistics outside the area of spectral analysis.

Let ¢ () & L:[0, 1] be an eigenfunction of B(y1, %) and let the {a.} be its
Fourier coefficients relative to the orthonormal basis {¢™*;m = 0, =1, %2, - - -}.
Substituting the Fourier coefficients of B (y1 , y2) computed in Section 2 into the
integral equation (2.3) and using the completeness of the orthonormal basis, we
find

TurorEM 5. A function ¢ (x) with Fourier coefficients {a} is an eigenfunction
of B(y1, 12) and \ s the corresponding eigenvalue if and only if

Elal[dl—m - dzd—m]cm(; =Nm; m=0,=%1,£2 ---

This reformulation of the problem suggests the following approximation tech-
nique. Consider the truncated kernel

4.1)  By(yi, %2) = 2inzy 2imizy [dim — di dplemcie™ ™

Finding the eigenvalues and eigenfunctions of By (y1, 42) is equivalent, in view
of Theorem 5, to diagonalizing a finite-dimensional hermitian matri%
Hy = {hmi;|m|, || = 1,2, -+ N}, where hni = {dim — didm}cme;. Indeed, the
use of real Fourier series reduces this problem to that of diagonalizing a real
symmetric matrix. Let \iv = Moy = -+ = Maw,v be the ordered eigenvalues of
By (y1, y2) and let g1y (), gan (&), - - -, @2 v (@) be the corresponding eigenfunc-
tions. The following theorem justifies the use of Moy and ¢ry () as approximations
to M\ and ¢ (x) respectively.

THEOREM 6. Asn — o, Moy — M and ||oey — @] — 0.

Proor. B(yi, y2) defines a linear operator B mapping L»[0, 1] into L.[0, 1]
through the relation

“.2) (Bh) (1) = [4B 1, y2)h(y:) dys; h e Ls[0, 1].

B is self-adjoint, positive semi-definite and completely continuous with finite
trace. Similarly, By (y1, ¥2) defines a linear operator By mapping L,[0, 1] into
a finite-dimensional subspace of L,[0, 1]. By is self-adjoint, completely continuous
with finite trace, and has a finite number of non-zero eigenvalues. A simple com-
putation on the Fourier coefficients of B(y1, y2) and By (y1, y2) shows that
|B — By| >0asN — .

The eigenvalues of B have a variational characterization (c.f. Gould [5]):
The rth eigenvalue of B is the minimum value which can be given by the adjunc-
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tion of » — 1 linear constraints to the maximum of (Bh, k)/(h, h). A parallel
result holds for By . Suppose & € L0, 1] is constrained to be orthogonal to the
first k¥ — 1 eigenfunctions of B, i.e., there are k¥ — 1 linear constraints on A.
Then, taking ||&| = 1 without loss of generality,

(4.3) My = maxy 1Byh, h) < max, (Bh, h) + max, ((By — B)h, h)
<%+ By — B,

Reversing the roles of B and By, M and Ny in the argument shows that
M = Mew + ||[B — Buyl|; therefore ey — M as N — oo

Let {gmy} denote the Fourier coefficients of the normalized eigenfunction
orx () relative to the basis {on (€)}; Domei oy = 1. Since

(44) |Borw — Meornl| = ||B — Byl + [Ny — Mo,

which tends to zero as N — oo,

(4.5) 0 = Lty [| Zom Mniwom — N 2o Gmvom|
= liMyao X e (A — )’ -

Suppose the eigenvalue N has multiplicity one and let ¢ = minga O\ — M) > 0.
From (4.5),

(4.6) Zm;ék gﬁ.N =c* Em;ék M — M)zgf,.zv —0

as N — o, so that limy.. giy = 1. Without loss of generality, we may assume
the sign of ¢ (x) is such that limy.. gxw = 1, whereupon |oxw — x| — 0 as
N — . If the multiplicity of \; is greater than one, only a minor change in the
argument is required. []

5. Moments and approximate power. This section examines two simple ap-
proximations to the power of Ty ; both depend only on the mean M, and vari-
ance V, of T, . The first, motivated by Theorem 1, is a normal approximation.
The other, suggested by Theorem 3, is a chi-square approximationcompounded
with the Wilson-Hilferty approximation to the chi-square (as in Grad and Solo-
mon [6]):

(5.1) P(T. > z) = 1 — 3[(@/M.)" — (1 — 3V.M.7")) GV.M )75

& (- ) is the N (0, 1) distribution function.,

The moments of T, required for these power approximations can be found
exactly from its representation (1.7) as a quadratic form. Because of absolute
convergence, term by term multiplication of the series with itself yields legiti-
mate series representations of the powers of T, . By calculating the expectation
of the appropriate series (term by term in view of monotone convergence), any
moment of T, about the origin can be found. Hence

TuroreMm 7. If the observations are tndependent realizations of a random vari-
able whose distribution function G(x) has the Fourier transforms {d.}, the first
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two moments of T'» are
ET, = 2 moleal L + (0 — 1)|duf’],
ET.? = 07 2 mpo Doswolenl i’ In” + 0 (n — 1) ({dul” + |dif*)
+nm—1)n = 2)0 — 3)|dal|df* + 2n(n — 1)(n — 2)
Reldmi1 dm d_t} + Refdnidondi}) + 0 — 1) (|dnyi* + |dndl)].

The_ two approximations to the power of T'.were checked for a special case,
Ajne’s statistic A, (1.5), by comparison with Monte Carlo simulations of A,
under several alternatives with densities belonging to the parametric family

_ J2p ifzxelo %), _
(6.2) g(xlp)_{zq freld 1) pel0,1,p +¢=1.
The Fourier coefficients {dn} of g(z | p) are {2(¢ — p) (wim)™} if m is odd and
zero otherwise. The Fourier coefficients {c,} of N (x) — 4n are { (xim™)} if m is
odd and zero otherwise (c.f. Watson [11]). By Theorem 7, therefore, the mean
and variance of A, under g(z | p) are, respectively,

(63) Mu=3%+ (n—1)(p — ¢)*/12
Vo= ((n— 10 s + g — 2)(0 — ¢)* — A @n — 3) (0 — ¢)"].

A, was calculated from each simulated sample by means of the computational
formula

(54) An=in — 22‘@2 diin_17

where d;; is the shortest distance on the unit circle between observations z; and
z; . Table 1, which reports the results, suggests that for alternatives which are
not too distant, power approximation (5.1) is better than the simple normal ap-
proximation.

Il

TABLE 1
Simulated Moments and Power of A, versus Theoretical Moments and Fitted Approximate
Power of A,
P 5 .6 i .8 .9 1.0
Mean Simulated .241 .319 .502 .832 1.252 1.843
Theoretical .250 .313 .503 .820 1.263 1.833
Variance Simulated L0371 .0625 .117 .185 .216 .125
Theoretical .0396  .0616 .118 .182 .204 121
Power Simulated .042 .098 .279 .608 .904 1.000
Approx. (5.1) .046 .093 .263 .594 .936 1.000
Normal Approx. .021 .080 .327 .649 .910 .999

Simulation Parameters: 2500 samples, sample size n = 20, asymptotic test size & = .05.
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6. Approximate Bahadur efficiency. In this section, the approximate Bahadur
efficiency of T, (c.f. Bahadur [2] for a definition) under an arbitrary alternative
with distribution function G (z) is found from the asymptotic null distribution
of T, . An example shows, however, that here, as in other instances noted in the
literature, the approximate efficiency can be deceptive as a criterion of power.

TureoreM 8. The approximate slope of T, under an alternative with distribution
Sunction G (x) 1s

s* @) = Zm;éO Icmlzldml2/maxm Icm|2~
Proor. From (3.1) and (3.2), asn — o,
(61) Tnn_l —g.s. Zm;éo Icm|2|dml2-

To complete the proof, it is sufficient to show that, if ' (z) is the asymptotic null
distribution function

6.2) n " log [I — F (nt)] — —1/(2 maxu|cal®)

asn — . Suppose that 1 of the {|c.|’, m > 0} equal », , 7, of them equal v, , and
so forth, with »y > », > .-+ = 0. By Corollary (3.1), the asymptotic charac-
teristic function of 7', under the null hypothesis is

(6.3) () = [T (1 — 2ua ™

Therefore, (c.f. Zolotarev [14]),

(64) limgew 1 — F(@))/PR’@Cr) > a/m] = [[iell — w/m] ™
By a well-known identity,

(6.5) PRC@n) > a/ml = Xike (2/2n)/j! exp [—a/20].

For z sufficiently large, the exponential dominates in (6.5) and (6.2) follows. []

We give an example where s* (@) is not a reliable measure of power. Let K, be
the special case of T, obtained when the Fourier coefficients {c.} of f(z) are
1if |m| = 1,2, --- 10 and 0 if |m| > 10. The asymptotic null distribution of K,
is chi-square with 20 degrees of freedom, by Corollary 3.1. We compare K, with
Ajne’s statistic 4, against the family of alternatives defined in (5.2). The ap-
proximate slope of 4, is 2 » — q) = .82 p — q)z, while the approximate
slope of K, is 2 ZLI 4(p — <1)271-_2 2k — 1) = .96 p — q)z. Therefore, K,

TABLE 2
Stmulated Power of K, versus Simulated Power of A,
P .5 .6 7 .8 .9 1.0
Power of K, .050 .066 .134 .262 .468 .802

Power of 4, .042 .098 .279 .608 .904 1.000
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ought to be more efficient than A4, for every p > %, including p near 4; but 4,
is Imp invariant.

From 500 simulated samples of size 20, the power of K, against alternatives
of the form (5.2) was estimated; the asymptotic size of the test was set at .05.
Table 2 compares the results with the power of 4, , found by simulation in Sec-
tion 5. The power of K, is notably less than that of 4, through the whole range
of p.

7. Acknowledgment. Professor G. S. Watson suggested several of the topics
discussed in this paper; for this and for his guidance in the research, I am grateful.
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