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ESTIMATION OF A PROBABILITY DENSITY FUNCTION AND ITS
DERIVATIVES! ‘

By EucenNE F. ScHUSTER?
University of Arizona

1. Introduction and summary. Let X;, X», -+ be independent identically
distributed random variables having a common probability density function f.
After a so-called kernel class of estimates f, of f based on Xy, --- , X, was intro-
duced by Rosenblatt [7], various convergence properties of these estimates have
been studied. The strongest result in this direction was due to Nadaraya [5] who
proved that if f is uniformly continuous then for a large class of kernels the esti-
mates f, converges uniformly on the real line to f with probability one. For a very
general class of kernels, we will show that the above assumptions on f are neces-
sary for this type of convergence. That is, if f, converges uniformly to a function g
with probability one, then ¢ must be uniformly continuous and the distribution #
from which we are sampling must be absolutely continuous with F'(z) = g(z)
everywhere.

When in addition to the conditions mentioned above, it is assumed that f and
its first » + 1 derivatives are bounded, we are able to show how to construct esti-
mates f, such that 3 converges uniformly to f® at a given rate with probability
onefors =0,1, -+ ,r.

2. Uniform convergence of f%’. Let X1, - -+, X, be independent identically,
distributed random variables with a common distribution function F. Let F, be
the empirical distribution function based on X,, ---, X, ; i.e., nF,(z) is the
number of X; with X; < = where1 < 7 £ n.

LemMA 2.1. There exists a universal constant C such that for any n > 0, e, > 0
and distribution function F,

(1) Pp{sup, |Fo(z) — F(z)| > e = C exp (—2ned).

Proor. For the case when F is continuous, see Dvoretzky, Kiefer and Wolfo-
witz [2]. If F is discontinuous at some point then there exists a continuous dis-
tribution function ¥ for which

Ppisup, |Fu(z) — F(z)| > e} = Pr{sup. |Fa(z) — F(x)l > e}

(see [3] and [4]). Thus the lemma is trué for all univariate F.
Let f.(z) be a kernel estimate based on X;, ---, X, from F as given in [7],
that is,

fa(@) = (na,)™ 2t k((z — X:)/an)
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1188 EUGENE F. SCHUSTER

where {a,} is a sequence of positive numbers converging to zero and k is a proba:
bility density function. In this section we will assume that the kernel k is chosen
such that [ |u| k(u)du (whenever the integration extends over (=, ©)no
limits of integration will be given) is finite, and such that & is a continuous
function of bounded variation for s = 0, 1, --- , r. The density function of the
standard normal, for example, satisfies all these conditions. The variation of
k® will be denoted u, . The continuity assumption on & was made solely to
ensure that sup, |f’ () — EfS” ()| is a random variable. With the deletion of
this assumption the following lemma remains true when we replace the proba-
bility Pr by the outer probability Py of Py . Our proof remains valid in this case.

Lemma 2.2. There exists a universal constant C such that for any n > 0, e, > 0,
and distribution function F,

Pyfsup. |2 () — Bf2’ ()] > &} < C exp (—2nenaz™/u?)
where {a,} is a sequence of positive numbers converging to zero and
D) = (nay™) ™ kO (x — Xi)/aw) -

Proor. Since k™ is of bounded variation on (— «, « ) we know (see [6], page
239) that k& is bounded and that lim,,. k() and lim,._. & (z) both exist.
If r = O then k is non-negative and [k(u) du = 1, so that since lim,.., k(z) and
lim,., . k(z) both exist, these limits must be zero. If » = 1 then the function
k™ has a bounded derivative on [—a, a] for any a, and hence (see [6], page 133)
k™ is Lebesgue integrable on [—a, a]. Thus (see [6], page 259)

VI ] = [Z0 |67 (u)] du.
Now
VZa 6] = limasw VZET™] = liMee [0 67 w)| du = [Z4 |67 (u)| du

so that [ |k (u)| du is finite. This fact together with the existence of
limg.,, £ (2) and lim,._,, £ () imply that these limits must be zero.

Upon integrating by parts and remembering that limg.. k" (2)
lim,._, k7 (2) = 0, we find that

sup | fa'(z) — EfY (z)]
= sup, x| k7 (2 — w)/a)dF,(u) — [ k2 ((x — u)/a,) dF (u)|
= "™ sup, |[{Fa(u) — Fu)lk® (2 — w)/a.)

— [{Fu(u) — P(u)} &k ((z — u)/a,)|

@ sup, | [ {Fa(u) — F(u)} &b ((z — u)/a,)]

x> sups [Fu(z) — F(2)lps .

1A



ESTIMATION OF PROBABILITY DENSITY 1189

Therefore by an application of Lemma 2.1 we have
Pr{sup. |f:”(z) — Bf(z)] > e
< Prl{sup. |Fo(z) — F(z)| > e /u} < Cexp (—2nékak/ul)

and the proof is complete.

Lemma 2.3 below is found in [1]; however, we note here that the symmetry
condition imposed on k in [1] is not needed and that in the proof given there the
absolute integrability of the 4, s = 1,2, -- -, 7, has been tacitly assumed. From
the proof of Lemma 2.2, the & tend to zero as 2 — + o« or —« and
J 16 ()| du is finite for s = 0,1, - - - , r, so that the proof of Lemma 2.3 can be
completed exactly as in [1].

Lemma 2.3. Let X be an absolutely continuous random variable with probability
density function f and let a be any posttive real number. If f and its first r + 1 de-
rivatives are bounded then there exists a constant C, not depending on a, such that

sup, |Efla" "k (2 — X)/a)] — fO(z)| £ Ca.

Lemma 2.4. If f and its first r + 1 derivatives are bounded and if {e,} is a se-
quence of posttive numbers such that a, = o(e, ), then there exist positive constants Cy
and C such that

Pyfsup. |2 (z) — f(x)] > e} < Crexp (—Cmelal ™)

for n sufficiently large.
Proor. We have with the aid of Lemma 2.3

sup. |2 (z) = 7 ()| < sup. |12 (2) — B ()]
+sup. |Bf () — /()]
sup. |12 (2) — Bf ()| + Ca, .
Since @, = 0(e,) it follows that for n sufficiently large
P{sup. [f"(2) — /(@) > e} < Plsup, [f(2) — EfO(2)] > /2.

An application of Lemma 2.2 yields the desired result.
The theorem below tells us that for special sequences {a,},

sup: |12 (z) — f7(z)|

converges to zero with probability one. A sequence {b,} with b, going to infinity

is introduced to indicate the rate at which the above convergence takes place.
THEOREM 2.5. If f and its first r 4 1 derivatives are bounded and if the sequences

{@a} and {ba} are such that a.b, = o(1) and D m_y exp (—cna /b2) is finite for

all positive c, then

1A

limy..e SUPs by If;')(x) - f(')($)| =0

with probability one.
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Proor. For any ¢ > 0, we obtain by Lemma 2.4 that

Pa{sup |fs’ (z) — f7(x)] > ¢/bs} < C1exp (—Caéna*/b?)

for n sufficiently large. Since D _n.; exp (—cna® /b2 is finite for all positive c,

it follows that
2 m=1 P{sup, [f7(z) — f7(@)] > ¢/ba}

is finite for all positive e. Consequently, with the aid of the Borel-Cantelli Lemma
we see that lim,,..., sup, b, | (2) — f”(2)| = 0 with probability one.

It can be seen that the assumption that f*™ be bounded could be relaxed
somewhat and the conclusion would still hold. The fact that f*™ is bounded was
used in Lemma 2.3 in [1] to ensure that sup, |[EfS”(z) — f@(x)| = O(a,). To
establish lim,.., sup, |fS” (z) — f@(x)| = 0 with probability one following the
lines of our argument we would only need sup, |EfS" () — f@ ()| = o(1) which
would be true, for instance, if f were uniformly continuous.

A corollary follows which will indicate the rate of convergence for a particular
choice of a,, .

CoRrOLLARY 2.6. If f and its first r + 1 derivatives are bounded, a, = n
and 0 < ¢ < 1/(2r + 4), then

lim, ..., sup, n° |f§:)(x) - f(r)(x)l =0
with probability one.

—1/(2r+4)

3. A necessary and sufficient condition for the uniform convergence of f..
Let f.(x) be a kernel estimate based on a random sample X, , X,, --- , X, from
F as given in Section 2. *

We shall assume that the sequence a,, is such that _»_; exp ( —cna?) is finite
for all positive ¢ and that & is a probability density function satisfying the fol-
lowing conditions:

(i) k is continuous and of bounded variation on (— «, ).
(ii) wk(u) >0asu — + » or — .
(iii) There exists a & in (0, 1) such that

w(VIE (k) + Vs (k) —>0 cas u— o,

(iv) [ |u| dk(w), the integral of |u| with respect to the signed measure de-

termined by k, is finite.

For example, the density function of any normal or Cauchy distribution satis-
fies these conditions. Lemmas 3.1 through 3.10 below hold for any distribution
function F.

LemMma 3.1. For any distribution function F,

limy, .o sUP, |fo (%) — Efa(z)| = 0

with probability one.
Proor. We note that for r = 1 the proof of Lemma 2.2 is valid under the
above assumption (i) on k so that by Lemma 2.2 we have

Pe{sup, |fu(z) — Efa(z)| > ¢ < C exp (—omal)
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where a = 2&/u* and p = V2, (k). Since D m—y exp (—amdl) is finite, it fol-
lows that D _n—y Pp{sup. [fa(z) — Efu(x)| > ¢ is finite, and the proof is complete
in view of the Borel-Cantelli Lemma.

We note here that this lemma was proved in [5] for continuous distribution
functions 7. We have extended this lemma to arbitrary F by using Lemma, 2.1 to
establish inequality 5 on page 187 of [5].

Lemma 3.2. In order for lim,.. sup: |f.(z) — g(z)| = O with probability one
Jor some function g, it is necessary and sufficient that

lim, .o sup. |Ef.(z) — g(z)| = O.

Proor. This result follows directly from Lemma 3.1 in conjunction with the
following inequalities:

sup: [fu(z) — g(x)| = sup: |fu(z) — Efu(z)| + sup: |Efa(z) — g(z)]
and
sups |Efa(z) — g(2)| = sup; |[fu(z) — Efu(z)| + sups |fu(z) — g(z)|.

Lemuma 33. If limy,.q sup; |fa(z) — g(z)| = O with probability one for some
Sfunction g, then g is uniformly continuous.

Proor. For any ¢ > 0 there exists by Lemma 3.2 an M = M(¢) such that
sups |Ef,(2) — g(x)| < e/4forn = M. Conditions (i) and (ii) on k imply that &
is uniformly continuous, so that given ¢ > 0 there exists a 6 such that
[k(z) — k(y)| < € whenever |z — y| < §". With ¢ = ea, we defines to be da, so
that whenever [ — y| < 8, we shall have
lg(x) — g(v)I = lg(x) — Efu(z)| + |Efu(z) — Efu(y)| + |Efu(y) — g(y)|

= |Efu(z) — Efu(y)| + 2 sup |Efu(z) — g(z)|

S |Bfu(z) — Efu(y)| + %e

= |J aal{b((z — w)/aw) — k((y — w)/aw)} dF(u)| + }e
<letie=e

LemMma 3.4. If lim,... sup, If,,(:Q — g(z)| = 0 with probability one for some
function g, then Mze(— o, )| F (z) # g(z)} = 0 (X represents the Lebesgue
measure on the real line). : ‘

Proor. Suppose z is a point where F'(x) exists. Using integration by parts we
see that ' ‘

Efu(z) = [ana'k((z — u)/a,) dF(u)

— [ a2 F(u) dk((x — u)/ay)

[ @' F(z — au) dk(w)

= [ (F(z — amu) — F(z))a." dk(u), since [ dk(u) = 0.
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Let & be such that condition (iii) on k holds. Then we may write
Efa(x) = [TAisa, (F(z — ayu) — F())an" dle(u)

+ [ L(u)(F(z — ayu) — F(2))(—au)™(—u) d(u)
where I, is the indicator function of [—a,’, a,’]. We observe by (iii) that
] [ 121500 (F(z — ayu) — F(x))an" die(u)|

< limyw 2/05°(V = (k) + Vazs(k)) = 0.
Also, given ¢ > 0 there exists an N = N (e, z) such that forn > N
L, (u)(F(z — asu) — F(z))(—au)"| £ F'(z) + e

By condition (iv) on k we have that [[F'(z) + €] [u| dk(w) is finite. Thus Le-
besgue’s dominated convergence theorem for signed measures applies and hence

limy e, [ Tn(u)(F(z — ayu) — F(x))(—au)™(—w) dh(w)
= [limp.e L(u)(F(z — au) — F(z))(—a.u)"(—u)dk(u)
= [ F'(x)(—u) dh(u)
= F'(z)

since [ (—u) dk(u) = 1. Therefore lim,.., Ef,(xz) = F'(x) whenever F'(z)
exists. By Lemma 3.2, lim,.,., Ef.(z) = g(z) everywhere and hence F'(z) = g(z)
whenever F'(z) exists. Since it is well known that the derivative of a monotong
function exists almost everywhere, this completes the proof.

LemMA 3.5. If lim,.e sups |fu(z) — g(x)| = 0 with probability one for some
function g, then fg(u) du = 1.

Proor. Let F(x) = Fac(x) + Fs(z) + Fp(x) where Fuc, Fs and Fp denote
the absolutely continuous, the singular, and the discrete part of F respectively.
Now F'(z) = F 4¢(2) almost everywhere, and F'(z) = g(z) almost everywhere
by Lemma 3.4, so that F'4c(z) = g(z) almost everywhere. Thus

Fao(w) = [ZwFac(u) du = [Z. g(u) du

which implies [ g(u) du < 1 since lim,.., F4c(x) exists and is less than or equal
to one.

Lemma 3.6. If llmn_.w sup; |f(xz) — g(xz)| = O with probability one for some
function g, then Fac(z) = g(z) everywhere.

Proor. In the proof of Lemma 3.5 we have shown that Fic(z) = g(z) almost
everywhere. Consequently

Fac(z) — Fao(a) = (Lebesgue) [% Flc(u) du
= (Lebesgue) ffi g(u) du
= (Riemann) fﬁ g(u) du

since ¢ is uniformly continuous on [a, ] by Lemma 3.3. So F;c(:c) = g(x) by
the fundamental theorem of caleulus for Riemann integrals.
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Lemma 3.7, If lim,,. sup. [fa(z) — g(z)| = O with probability one for some
function g, then
lim,., sup, [a," k((z — u)/a,) d[Fs(u) + Fp(u)] = 0.
Proor. From Ef,(z) = [a,* k((x — u)/a,) dF(u) we obtain
Efu(z) — [0, k((x — w)/a) dFsc(u) = [a;' k((x — u)/a,) d[Fs(u) + Fo(w)].
So for 6 > 0 we have with the aid of Lemma 3.6
0= [a k(e — u)/a,) diFs(u) + Fo(u)]
< [Bfa(z) — g(@)| + lg(2) = Ja," k((z — u)/an) dF ac(w)|
= |Bfa(z) — (&) + lg(2) — Ja." b((z — u)/an)g(w) dul
= |Bfa(z) — g(2)| + [ {9(z) — g9(z — w)}a," k(u/a,) du|
= |Bfu(z) — g(@)| + [l l9(z) — g(z — w) |a," k(w/an) du
+ [z lg(2) — gz — w)la, k(w/a,) du
= |Efu(z) — 9(2)| + supui<s l9(z) — g(z — u)]
+ 2 sup. 9(%) [ ju>ota, k(u) du.
It follows that
(1) sup; [a," k((z — u)/as) d[Fs(u) 4+ Fo(u)] < sup, |Efu(z) — g(z)|
+ sup, supjui<s [9(x) — g(z — w)| + 2 sups 9(2) [jussra, k(u) du.”

In view of Lemmas 3.3, 3.5 and 3.6, ¢ is uniformly continuous and non-nega-
tive and f g(u) du is finite, whence ¢ is bounded.

Let € > 0 be given. Since ¢ is uniformly continuous we can choose 6 so small
that the second term on the right side of (1) is less than ¢/3. Having so chosen
8 we can now choose N so large that if » = N, then the remaining terms on the
right side of (1) will each be less than ¢/3, since the first term tends to 0 by
Lemma 3.2 and the last term goes to zero for any fixed 8§ > 0. The desired con-
clusion now follows.

Lemma 3.8. If limuse sup: [fu(z) — g(z)| = O with probability one for some
function g, then Fp(z) = 0 for all x.

Proor. Suppose there exists an , such that Fp(2y) — Fo(ze — 0) > 0.
Then

[ @ k(2 — w)/a,) dFp(u) = & k((x — 20)/a) {Fp() — Fn(zo — 0)}.
If ¢ is such that k(c) > 0 and z, = ca, + o then
sup, [ @,  k((z — u)/a,) dFp(u) = [Z0an’ k((2n — u)/an) dFp(u)
= k(c)dn' {Fo(2e) — Fp(ze — 0)}
which contradicts Lemma 3.7. (Recall that a, — 0%.)
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Lemma 3.9. If im, .. sup. |f2(x) — g(z)| = 0 with probability one for someg,
then 0 is a derived number of Fgs at xo (as defined on page 207 of [6]) for any xo
in (—w, ®).

Proor. Let a be such that k(a) > 0. Since k is continuous there exists a
number b > a such that info<.<3 k(z) = % k(a). Now
J @ k(= — w)/a,) dFs(u) 2 [i=en an’ k((x — u)/a,) dFs(u)
infx—ba,,gugz—aa,, k((x - u)/a'n)(FS(x - aan) - Fs(x - ba’n))a;l
=1(b—a)k(a) (Fs(x — aa,) — Fs(z — ba,))((b — a)a,)™ = 0.

Let x, be an arbitrary but fixed real number and z, = 2y + aa, . It then follows
that

sup, [ @2 k((z — u)/a,) dFs(u)
= 4(b — a)k(a)- (Fs(za — aan) — Fs(xn — bas))((b — a)a,)™
= 3(b — a)k(a)- (Fs(x) — Fs(z0 — (b — @)a,))((b — a)a,)™.
From Lemma 3.7 we can easily deduce that
lisse (Fis(%0) — Fs(2o — (b — a)an))((b — a)a,)™ = 0.

Since z, was arbitrary the proof is complete.

LemmA 3.10. If lim,.. sup: |[f2(2) — g(z)| = 0 with probability one for some
function g, then Fg(x) = 0 for all .

Proor. Let a and b be real numbers with ¢ < b, and put A(z) = Fs(z) + .
Then 4 is strictly increasing on [a, b] and by Lemma 3.9 it has a derived number
equal to one at every point. Thus if we take £ = [a, b] in Lemma 2 on page 208
of [6] then we have

(2) 0 = \*(hla, b]) < 1-\*([a, B])

where N*(E) denotes the Lebesgue outer measure of E and #%[a, b] is the image of
[a, b] under h. Since hla, b] = [@ + Fs(a), b + Fs(b)] we can rewrite (2) as

0<b+Fs(b)—a—Fs(a)<b—a

which means Fg(b) = Fs(a). Since a and b were arbitrary, Fs must be constant
and hence Fs must be identically zero since lim,,  Fg(z) = 0.

We are now ready to obtain the main theorem of this section.

TueoREM 3.11. A necessary and sufficient condition for

v

limyse sUps [fa(z) — g(z)] = 0

with probability one for a function g is that g be the uniformly continuous derivative
of F.

Proor. The sufficiency of this condition has been established by Nadaraya
[5] for a larger class of kernels than that considered here.

Conversely, Lemmas 3.8 and 3.10 show that F = F ,¢. Lemma 3.6 states that
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F;c( z) = g(z) everywhere and hence F'(z) = g(z) everywhere. Finally Lemma,
3.3 yields the uniform continuity of g and the necessity of the condition is es-
tablished.
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