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A NOTE ON THRIFTY STRATEGIES AND MARTINGALES IN A FINITELY
ADDITIVE SETTING!

By WiLriam D. SubbpERTH

Morehouse College and the University of Minnesota

1. Introduction. Let F' be a set. Denote by P(F) the set of all finitely additive
probability measures defined on all subsets of F. A strategy ¢ is a sequency
d9,01, + - whereggisin P (F) and, for alln > 0,0, is a map from F x --. x F
(n-factors) to P(F). The strategy ¢ may be viewed as the distribution of a
stochastic process fi, fz, ---. That is, oo is the distribution of f; and
an(f1, -+, fn) is the conditional distribution of f,41 given (fi, - - , f»). A theory
of integration with respect to a strategy ¢ was developed by Dubins and Savage
in [2]. The notation used here is taken mostly from that source.

Let Qo be a constant and, for n > 0, let @, be a real-valued function defined on
F x --- x F (n-factors). Suppose the . are uniformly bounded and, for every
n > 0 and every n~tuple (fi, -+, fa),

1) [ @, oy fu)dowa(f, o faa) (fa) S Qua(fry -+ fum)-

Then the sequence @ = {Q.} is said to be an expectation decreasing semi-
martingale with respect to ¢ ([2], page 29).
Iftisastopruleand 2 = (fi, fo, ---), set

2) Q:(h) = Quwy(fr, -+, fiw)
and
(3) Q(O’, t) = thdO’

(The integral is defined in [2] and in Section 2 below.) If ¢ < ¢, one can show as in
[2], page 43, that Q (o, t) = Q (o, ¢’ ). Define Q,, = lim;.e Q (o, ¢).

In this note necessary and sufficient conditions are given for a semi-martingale
Q to satisfy Q. = Qo . In a countably additive setting a semi-martingale process
@ for which @, = Qo is a martingale in the sense that equality holds in (1) almost
surely. (Example 3.6.2 of [2] shows that this need not be true in our more general
setting.) Conditions corresponding to those of this note are easy to find for
countably additive processes and are given in [1], page 311. Here conditions are
also given for a semi-martingale to be almost a martingale in the sense that
Qo = Qo — e. As an application, a characterization is given of thrifty strategies
for gambling problems, thus solving a problem left open in [2].

2. A slight extension of the Dubins and Savage Integral. Let ¢ be a strategy
and let ¢ be a bounded, real-valued, finitary function defined on

H=F xF x -
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Then the integral of g with respect to ¢ is written either f g do or E (o, g) and is
defined in [2], page 17 by induction on the structure of g. That is, E (s, ¢) = ¢,
for ¢ constant, and

E (o, 9) = [ Elfi], gh) doo ().

The definition still makes sense if we no longer insist that g be bounded, but
only require that E (o[f1], gf1) exist for every fi and be uniformly bounded in f; .
A function g with this property will be called conditionally bounded with respect
to o and I (¢) will denote the class of such functions for a fixed strategy o.

TaEOREM 1. For every strategy o, I (¢) 7s a linear space and E (o, - ) is a positive

linear functional on I (a).
Proor. The proof is straightforward and often uses induction.

3. An identity. Let @ = {Q.} be a sequence where @ is a constant and, for
n > 0, @, is a bounded function from F % --- x F (n-factors) to the reals. For

h = (fi,fa, ), define
o) =« =Q — [ Qu(f) doo(f)

and
4) eh) =elfr, -, fn)
Qulis oy fa) = [ QuaCh, oy fu, ) donlfu, -+, Fa) ().
And, for every stop rule ¢, set
8@ 0,8)(h) = 228 e (h).

The extension of Section 2 enables us to prove the next theorem.
TuroreM 2. If Q. isin I (¢), then S(Q, o, t) 75 tn I (¢) and

Qo,t) = Q — fS(Q, g, t) do.

(Here, Q; and Q (o, t) are defined by equations (2) and (3).
Proor. If g is any function on H and f; ¢ F, then gf; is that function on H de-

ﬁnedbygfl(f2 7f37 ) = g(fl ’f2 7f3’ ) ([2]’ page 14)
Let Qf: denote the sequence {Q1f1, @sfi, - - -}. Then

S@, o, )i = S@f, olfi], dfi]) + e
Arguing by induction on the structure of ., we may assume that for every f
QAGLAL Al = @u(h) — [S@Qf, oA, {A]) dolfil.

Since Q, isin I (¢), Qfi1(e[fi], t[fi]) is uniformly boundedin f;. Likewise, @, is
bounded. Hence, S(Q, o, ) is conditionally bounded with respect to o. More-
over,

QG t) = [{Q:(h) — [ S@f, dlfil, tAil) dolfil} doo(fr)
= [{Qu(fh) + e} doo(fr) — [ [ {S@f, olfi], dfi]) + e} dolfi] doo(f1)
= QO_ fS(Q7U’ t) do. D

A special case of Theorem 2 proved useful in [3], Section 1.
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4. Application to martingales. In this section the sequence @ = {Q,} is as-
sumed to be an expectation decreasing semi-martingale with respect to the
strategy o. That is, the €, of the previous section are assumed to be non-negative
and the @, to be uniformly bounded.

We say o totally e-conserves Q along h = (f1, fa, - -+ ) up to timen iff S(Q, o, n) (h)
=< e (cf. [2], page 48).

According to Theorem 2, f S(Q, o, t) do is the expected loss or decrease in Q up
to time £. The next two theorems give additional information about the connec-
tion between S (Q, ¢, ) and a decrease in .

TarEorEM 3. If ¢ > 0 and Q(o, t) = Qo — €, then o totally e-conserves Q up to
time t (h) with o—probability at least 1 — e.

Proor. Suppose the conclusion is false. Then o[S(Q, o, {) > €] > ¢, whence
f S(Q, o, t) do > €. So, by the previous theorem,

Q(‘T: t) < QO - 52- D

I = min {Qo,in-an(fl’ T ;fn)}
S = max {Qo, sup Qu(f1, -+, fa)},

where the supremum and infimum are taken over all n and all n-tuples (fi, - - -,
fa) of elements of F.

TueorEM 4. Let e > 0and 1 = € = 0. If o totally e—conserves Q up to time ¢ (h)
with o—probability at least 1 — €, then

Qo,t) =2 Qo —e— €(S —I).
Proor. By Theorem 2, it is enough to show
() 8@ o, t)de S e+ €(S—1)

whenever o[S(Q, 0, ¢) < ¢ = 1 — €.

The proof is by induction on the structure of S(Q, s, ¢). It is easy to check (5)
if S(Q, o, t) has structure 0. It remains to prove the inductive step.

Notice that we may assume without loss of generality that ¢, = ¢, where ¢ is
defined by (4).

Let A = [S(Q, 0,t) > €. Theno(4) = [ o[fi] (A1) doo(f1), where

Af = [S@Q, 0, 0)f1 > €|
= [S(@fr, olfil, tAA]) > € — «l
By the inductive assumption,

[ 8@f, olfil, 4Al) dolfi] £ (e — &) + o[l (AS1) (S — I).

Now let

Hence,
[8Q,0,t)do = [ [ 8,0, t)f dolfi] doo(f1)
[ {(e — &) + olfil (A1) (S — I) + e} doo(fr)
e+a(A4)S —1)
e+ =1). []
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Since Qw = lim;.« Q (v, t), it is possible to use the preceding two theorems to get
various conditions that Q. = @, — e. In particular, the following characterization
of semi-martingales @ for which @, = @, is immediate.

THEOREM 5. Qo = Q. iff, for every ¢ > 0 and every stop rule t, o totally e-conserves
Q up to time ¢ (h) with o—probability 1.

6. Interpretation for thrifty strategies. Let T' be a gambling house defined on
F and let V be the optimal return funection as defined in [2], page 41. If fisin F
and ¢ is a strategy available at fin T, then the sequence {V (f), V (1), V (z), - - -}
is an expectation decreasing semi-martingale with respect to 0. And V., = V (s)
is defined to be lim;_,., f V (f.) do. Theorem 5 can be specialized to give

TrEOREM 5. V(5) = V (f) iff, for every ¢ > 0 and every stop rule t, o totally
e—conserves V up to time t (h) with o—probability 1.

A strategy o for which V (¢) = V (f) is called thrifty in [2]. The following three
finitary sets have been studied in connection with thrifty strategies:

A; = {hie,(h) =0 for n=0,---,t(h) — 1}
Bie= {h:2 25 en(h) < €
Cie = {hien(h) <€ forall n=0,---,t(h) — 1}.

Here ¢ is a stop rule, € > 0, and the e, are as in Section 3. Clearly, 4, < B, C C,,c .
It is shown in [2] that if ¢ (A,) = 1 for all ¢, then o is thrifty. It is also shown there
that if ¢ is thrifty, then ¢(C;.) = 1 for every ¢ and every ¢ > 0. Both of these
results follow from Theorem 5 which states that o is thrifty iff o (B,.) = 1 for
every t and every e > 0.

Theorems 3 and 4 could also be used to give conditions for ‘“‘e—thriftiness.”

Acknowledgments. I am grateful to Lester Dubins for reading an early version
of this note and making several valuable comments, and I want to thank the
referee for his helpful suggestions.

REFERENCES

[1] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

[2] Dusins, L. E., and Savagg, L. J., (1965). How to Gamble If You Must. McGraw-Hill,
New York.

[3] SupperTH, W. D. (1969). On the existence of good stationary strategies. Trans. Amer.
Math. Soc. 135 399-414.



