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ON THE OPTIMUM RATE OF TRANSMITTING INFORMATION!

By J. H. B. KEMPERMAN
University of Rochester

1. Summary. The present paper is partly expository and does not assume any
previous knowledge of information theory or coding theory. It is meant to be the
first in a series of papers on coding theory for noisy channels, this series replacing
the report [12] which was widely circulated. A few of the results were reported in
[11], [27] and [28].

In Sections 2 and 3 we present certain refinements and generalizations of
known methods of Shannon, Fano, Feinstein and Gallager. A discussion of some
other methods may be found in the surveys by Kotz [15] and Wolfowitz [28] such
as those of Khintchine [14], McMillan [18] and Wolfowitz [25], [26].

Section 4 contains a number of applications. Most of this section is devoted to
a certain memoryless channel with additive noise. Some of the proofs have been
collected in Section 5. Finally, Section 6 describes somenew results on therelative
entropy H (u1 | u2), of one measure yu; relative to another measure us , and its rela-
tion with the total variation ||u; — po].

2. Terminology. In the sequel N we will denote a positive integer and e a more
or less fixed constant, 0 < e < 1. All logarithms are to the base e. We further take
0- o = 0. By ¢ wedenote the continuous convex function on [0, 4 « ) defined by
o(z) = zlogz, $(0) = 0. Most measures employed are probability measures.
Further p << » will denote that the measure u is absolutely continuous with re-
spect to the measure ».

2.1. By a channel we mean a non-empty collection of probability measures on
a fixed measurable space Y = (Y, F¢). Thus S = {P,(B);z ¢ X, B € Fy}. The
index set X is called the tnput alphabet of the channel S while Y is called the output
alphabet of S. If X is finite then S is said to be semicontinuous. If both X and Y are
finite sets then S is said to be a discrete channel. We often write P, (B) = P (B | z).
One may interpret S as a noisy channel where the sender transmits some z ¢ X.
In that case the receiver will obtain a random signal n taking values in Y such
that Pr (e B|z) = P(B|x).

2.2. The direct product S™ = 8; x --- x S, of a sequence of channels

(2.1) Sp = {Pn(Blz);zeXn,BC Yy, (m = 1,---, n),
is defined as the channel
8™ = (P (Blu);ueX™, B C Y™,
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where X® = X; x--- x X,, Y” = ¥, x ... x Y,. Further, if
= @, - ,x) € X™ then

P™(|u) = Pi(- @) x --+ % Pu(-|a).

Thus, if a sender transmits the word u = (21, + -+ , ,) over this product channel
8™ the received channel will be a random word 7 = (g1, - - - , 7.) belonging to
Y™ that is, the mth received letter 1., takes values in Y,, . Moreover, the n,, are
independent random variables such that Pr (4, € By | %) = P (Bn | 2x) for each
B, ¢ Fy,, . In particular, the distribution of 7, depends only on the mth letter
& transmitted. This explains why 8™ is also called a memoryless channel.

The memoryless channel §™ is said to be stationary if all the components S,, of
S™ are copies of one and the same channel S. In that case we write S™ = 8.

2.3. From now on S will be a fixed channel ag in 2.1 (possibly itself a
product of other channels). Further, L denotes a subset of the input alphabet X
of S.

2.4. An ecode for S is defined as any sequence { z®, D®);¢ =1, ---, N}
such that z” & X, while the D are disjoint measurable subsets of Y satisfying

(2.2) PD?|2")y=1—¢ foreach ¢=1,---,N.

Instead of an e-code one also speaks of a codels having a maximal error <e, (when
the sender restrict(s himself to the symbols 2, - - - L™, while the receiver con-
cludes from 4 & D “ that the sender transmitted xm).

If (2.2) is replaced by the weaker condition
(2.3) N YL PDP 221 -«
we speak of a code for S having an average error < e.

2.5. Let L C X, 0 < e < 1. Let N (8, €) denote the supremum of the set of
integers N for which there exists an e-code of length N as above for which
zP¢eL, (6 =1,---,N). Similarly N.(S, ¢) for codes with an average error < e.
As is easily seen,

(24) (1 —¢))Ni(S,ce) < N.(S,¢) < N(S,e) foreach 0<c< 1.

When L = X we simply write N (S, ¢) and N (S, ¢), respectively. We shall be
especially interested in the asymptotic behavior of N (S, ¢) when = is large.
However, if N(S,8) = -+ o for one number 0 < § < 1 then one easily sees ([1]
page 16) that, foreach 0 < ¢ < 1, one has N (8", ¢) = + « ag soon asn = n(e).

For this reason we are more interested in channels S such that N (S, ¢) < «
for each 0 < e < 1. For such channels one can always find a probability measure
v on Y such that

(2.5) P,(-) = P(-|z) <v foreach zeX.

A simple proof may be found in 5.1.
, 2.6. Let » be a fixed probability measure on Y satisfying (2.5). Let

(26) () = f@,y) = dP;/dv @eX,yeY),
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denote the corresponding Radon-Nikodym derivatives (densities). Thus,
f=(y) = f(z, y) is non-negative and measurable in y. Moreover,

PD|z) = [of:lyr(dy) = [of (@, y)(dy),

forxz e X, D ¢ 5§y . Note that ffap dv = 1. For each fixed z ¢ X, the function f, is
unique up to a changein aset £ C Y with » (£) = 0.

2.7. A measurable function on a probability space may always be regarded as a
random variable. It will be convenient to regard the measurable function

2.7) J(z|v) = log (dP:/dv) = logf(z, y)

as a random variable, employing (Y, v, P,) as the underlying probability
space. We have J (z|») > — « with probability 1 since the set {y: f,(y) = 0}
has a P,-measure 0. The corresponding distribution function is given by

(28) F@|z,v) =Pr (J(x|») 0) = [1,<00dPs = [1<or f(, y)v (dy).
Its expectation value is given by
2.9) E{J(z|»)} = [logfe(y)P:(dy) = [ ¢(fa(y))v(dy) = H(Ps|»).

Here, H(P,|») = 0 is precisely the entropy of P, relative to ». A more detailed
discussion of such entropies may be found in Section 6.

2.8. In the sequel we want to avoid the explicit assumption (2.5), (though
some results would be trivial without it). Then (2.6) is to be interpreted as the
density of the absolutely continuous component of P, , everything relative to ».
We shall further take f(z, y) and J (z | ) as 4+ « on some set D, with » (D,) = 0
and P,(D.) maximal. Thus J (z|») = 4 « with a positive probability (positive
P,-measure) precisely when P, is not absolutely continuous with respect to ».

It is often easier to treat this case as follows. Select any o-finite measure N on
Y such that both P, and » are absolutely continuous with respect to \. Put
g(z,y) = dP,/d\, h(y) = dv/d\. Define J (z | ») as the measurable function

(2.10) J(@|v) = loglg(x,y)/h(y)]

on the probability space (Y, Fy, P,). It is independent of the particular choice
of A, (up to a change in a set of P,-measure 0). One has J (z|») = 4 « at each
point y ¢ ¥ where g (z, y) > 0 and A(y) = 0. Further,

(2.11) E{J(@|»)} = [loglg(, y)/hy)IPs(dy) = H(Pa|»).

3. Upper and lower bounds. Let » be a fixed probability measure on Y (not
necessarily satisfying (2.5)). The following result has several interesting conse-
quences. In some sense, it amounts to an exact formula for N (S, ).

LemMA 3.1. Let N be a positive integer. In order that N < N (S, €) it is necessary
and suficient that one can find N elements z'” ¢ L (i = 1, - -+ , N'), not necessarily
distinct, such that

“3.1) [ {maxis,...x f@?, y)}r(dy) = 1 — €)N.
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The latter ©s equivalent to
B2)  [{ZEfE?, y) — maxi,..xf@?, y)r(dy) < €N.

Here v is any probability measure on Y such that the P(- |2®) ¢ =1, --- ,N) are
absolutely continuous relative to v.

Note that the left hand sides of (3.1) and (3.2) do not depend on the precise
choice of the measure ». The proof of Lemma 3.1 is given in 5.2.

LevMma 3.2. Let 0 and p be real constants such that

(3.3) F@|z,v) 2 e+ e’ foreach xzelL.
Then
(34) Ni(S,e) < No(S, ¢) < ™.

3.1. The proof of Lemma 3.2 is given in 5.3. It is essential that » be a proba-
bility measure, that is, »(¥') = 1. In the case that (2.5) fails to hold one must
interpret f and F as in 2.8.

The validity of (3.3) would normally depend on the actual choice of ». In
principle, one would like to choose the probability measure » in such a way that
(3.3) holds with 8 + p as small as possible. A result of the type found in Lemma
3.2 was stated and used for the fisst time by the author (see [12] page 7 and [27]).

3.2. The following result is useful in conjunction with (3.1). For each choice
of the non-negative numbers fi , - - - , f» we have the inequality

(3.5) N 'log N max (fi, - ,fv)
<N Eli\;l o (fi) — ¢(N—1 lev=1fz) + N log 2 lev=1fz

The proof of (3.5) is given in 5.4. ’

Let N < N1 (Se); thus there exist elements P eL (i =1,---,N) satisfying
(3.1). Put f; = f@?, -) and g = N ' D =i, thus, [ gdv = 1. Multiplying
(3.1) by N ' log N and applying (3.5), we have the following inequality of Fano
[4].

(1—e)logN =<log2+ [{N'25e(f:) — ¢(9)lv(dy)

(3.6) = log 2+ 2% N7 [ log (fi/g)P (dy | =)
=log2+ [ H(P,|»")U(dx).
Here, II denotes the probability measure on X of finite support
{1, - ,ay} C L

defined by IT(A) = N ' [no.of j = 1, --- , N with z; ¢ A], (4 running through
the o-field of all subsets of X ). Further, »" denotes the measure on ¥ defined by

(3.7) v'(B) = [ P(B|=)(dx),

where B runs through y . Finally, see (6.2), H(P,|»") is precisely the entropy
¥ of P, relative to »™.
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3.3. Let Q = Q(X) denote the collection of all probability measures on X of
finite support. Similarly @ (L) when L C X. To each II £ @ we associate the prob-
ability measure »" on Y defined by (3.7). Motivated by (3.6), let us further
ntroduce, for each II ¢ @,

(3.8) c() = [ H(P,|v")I(dx)
and
(39) C, = SUPmeQ(L) C(H), (L C X)

When L = X we simply write Cz = C and call C the Shannon capacity of the
channel S. With the above notations, (3.6) may be written as

(3.10) 1 — €)log Ni(S, ¢) < Cr + log 2.

Tt is customary (see [28]) to interpret C (IT) as the expected value of a random
variable J (1) as follows. Given II ¢ @, let »" be defined as in (3.7), thus,
P (- | %) < »" for each z in the support of II. Put f(z, y) = dP (- |z)/dv". By
(3.8),

(3.11) c@) = [ [logf(z, y)P(dy| ) (dx) = E{J (I)}.

Here, J (II) corresponds to the measurable function log f (z, y) on the probability
space (X x Y, Fx x Fr, Q"), where

(3.12) Q" (A x B) = [, P(B|2)(dz), (A eFx,BeFy).

In the present case, we take Fx as the o-field of all subsets of X; however, the
above formulae also make sense in certain other situations where II has an
infinite support. The distribution function of J (II') is given by

(3.13) F@|T) = [;<0 P(dy|2)(dz) = [ F 0]z, v")(dz).

The above formulae are complementary to those in 2.7.

3.4. The following result is essentially from Feinstein [6], [7] page 46; see also
[2] page 1232 and [28] page 91. For the benefit of the reader its proof is repro-
duced in 5.5.

LemMma 3.3. We have for each II £ Q and each real number 9 that

(3.14) N(S,e) = N(S,e) = [e — Pr (J (@) < 0)]¢
and

(3.15) Ni(@S,€) = [[i{e — F 0]z, v")}T(de)]e'.
Consequently,

(3.16) N(8, ¢) = (L)’

as soon as 0 and p are real constants with

(3.17) F@|z,»") <e—e" foreach z¢lL.
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Remark 3.1. Feinstein’s Lemma 3.3 carries over to more general probability
measures II. More precisely, let $x denote a o-field of subsets of X and II a prob-
ability measure on Fx ; here, Fx may vary with II; usually, it is more convenient
to replace $x by its completion relative to II.

We shall assume (a) that P(B]|z) is an S‘x-measurable function of z for each
fixed B ¢ §y. Then (3.7) defines a measure »" on Fy. We shall further assume
(b) that the Radon-Nikodym derlvatlve f(x, y) of (the absolutely continuous
component of ) P (- | z) relative to »" can be chosen as a jointly measurable func-
tion on X x Y, when supplied with the o-field $x x Fy. Then Q" and J (II)
can be defined in a way completely analogous to the special case in 3.3. However,
comparing 2.8, one must allow the poss1b1hty that J (IT) = + « with a positive
probability, precisely when P (- | #) < »" does not hold for almost all [II] elements
reX. .

Let Q* denote the collection of all such measures IT, more precisely, the col-
lection of all pairs (Fx, II) having the above properties. As follows from the
proof in 6.5, Lemma 3.3 remains valid when @ is replaced by Q*.

There is one minor difficulty, namely, the set L € X may not be measurable
relative to §x . This can be taken care of by replacing in (3.16) the quantity
I (L) by the corresponding outer measure. Similarly for the integral in (3.15).

3.5. A different lower bound on N1 (S, ¢), especially useful when e is small, can
be obtained from Lemma 3.1 by a form of the method of random codes due to
Shannon [21], compare 3.9.

3.6. Definitions. Consider a pair (Fx, II) of the following type. First, Fx is a
o-field of subsets of X while II is a probability measure on Fx . A greater degree
of generality may be achieved in the sequel by assuming that Fx is complete
relative to II.

Next, we assume that a probability measure » on ¥ = (¥, Fy) can be found
such that P, < » holds for almost [II] all ¢ X and such that f(z, y) = dP,/dv
can be chosen as a joint.ly measurable function of z and y relative to Fx x Fy .
The precise choice of 4 is unimportant. The collection of all such pairs (Fx, IT)
will be denoted as Q**. One has Q C Q** C Q* provided ¥, is always assumed
to be complete.

Given such a pair and an associated measurable density f(z, y) = dP (- | z)/dv,
define

(3.18) 9:() = [f f(=, )L (da)]"",

(3.19) Gy = G() = [ g.(y)v(dy),

and

(3.20) Ci=C(I) = —t(1 — t)"" log G,(II).

Here, 0 < ¢t < 1. It is easily seen that G and C; do not depend on the particular
choice of ». Further, ¢,(y) < f f(, y)I(dz) while [ f(z, y)»(dy) = 1, hence,
.‘;Gt_s_ la.nngé().
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The following lemma is a straightforward generalization of a result of Gallager
[9] which in turn is related to results of Shannon [21] and Fano [5], Chapter 9.

LemmA 3.4. Let T = (Fx, II) be a fized pair in Q** and let C, = C,(I1) be
defined as above. Then we have for each number 3 < t < 1 that

(3.21) N (S, €) = [exp {C. — t(1 — ¢t) " log e '}],

where [2] denotes the integer part of z.

3.7. By (2.4) withc = %, onehas N (S, ¢) = 1N (S, Z¢) thus (3.21) also yields
lower bounds for N (S, €). Another way of formulating (3.21) would be to fix
% = t < 1 and the positive integer N < exp {C:}. The assertion then is that there
exists a code of length N for S having an average error < ¢, where ¢ is defined by

(3.22) logN +t(1 —t) " loge’ = C.(II).

Clearly, one would like to choose II such that C, (II) is as large as possible.

3.8. A proof of the following lemma may be found in 5.6. This lemma is given
in a form more general than needed (in the proof of Lemma 3.4), since it seems
to be of independent interest.

Lemma 3.5. Let £ < t < 1 be a fized number and let Zy, - - -, Zy denote non—
negative random variables satisfying

(3.23) E{Z,'Z} < E{Z,\E{Z;} whenever ¢ 5 j.
Then

(3.24) W =2 142Z;— maxiq,...x Z;
satisfies

(3.25) E(w} = QL Bz

3.9. Proof of Lemma 3.4. The following proof is closely related to Gallager’s
[9] proof. Let N be a fixed positive integer not exceeding the right hand side of
(3.21). By (3.20), this is equivalent to N "G, < eN.

We must prove that N (S, ¢) = N. By Lemma 3.1, it suffices to prove the exist-
ence of N elements 2” ¢ X (@ = 1, ---, N), not necessarily distinct, and satis-
fying (3.2). Sufficient for the latter is that

(326) [ (X1 fE?, y) — maxia.n F@P, Y)}r(dy) S NG

It suffices to show that (3.26) holds on the average. We shall average the left
hand side of (3.26), (regarded as a function of w = (&, ---, 2™) £ X"), with
respect to the product measure II x --- x II = II¥ on XV = (X, Fx)". By
Fubini, the two integrals can be interchanged, hence, it suffices to show that
[ a(y)v(dy) <= NG, where
al) = [ - [{ZL G, y) — maxi f@©, )T E?) - M(Ede™).

For each fixed y, we may interpret the measurable function f («'?, y) on theproba-
bility space (X, Fx, II)" as a random variable Z;(y). Doing so, a(y) may be
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rewritten as
a(y) = B{22% Zi(y) — max: Z:(y))}.
Since the Z;(y) are obviously independent, it follows from Lemma 3.5 that
a@) £ WE(Z:@) )W) = NV [ f(@, )T ([de))""

Using (3.18), (3.19) this implies [ «(y)v(dy) < N' 'G,. This completes the
proof of Lemma, 3.4.

4. Memoryless channels. In the present paper we shall restrict ourselves to a
few special applications of the auxiliary results presented in Section 3.

4.1. Let S™ be a memoryless channel as in 2.2. Let Q™ = Q(X™) denote
the collection of all measures of finite support on X™ = X; x --- x X,. Just
as in 3.3, there corresponds to each II™” ¢ Q™ a random variable J (II™) having
its mean equal to ¢ (IT™).

Now consider the special case of a product measure I = II; x --- x II,,
where IL,, € Qn = Q (X). It is easily seen that then s a product measure on
Y™ just as P (- | u). It follows, see (3.13), that J (II™) is a sum of n independent
random variables, the mth random variable being distributed as the random
variable J (I, ) relative to S, . In particular, taking expectations, we conclude
that C(Il; x +-- x II,) = C(Iy) + --- + C(I1,). Without further assumptions
not much can be said about the precise distribution of J (II™), as would be
needed in applying (3.14).

4.2. For the sake of completeness, let us first present a known application, see
[2] page 1233. Suppose that the above memoryless channel is stationary, S™ = S”,
and take all the components II,, equal to the same IT ¢ Q. Then we obtain a ran-
dom variable J(II") which is the sum of n independently and identically distrib-
uted random variables each having a mean C (II). It follows from the law of large
numbers that

lim,., Pr (J (") < n8) = 0 when 6 < C(II).

We can now conclude from (3.14) that

(4.1) lim inf 7" log N (8", ¢) = C(II),
foreach Il ¢ Q = Q(X), (as n tends to infinity ). Hence,
4.2) lim inf n™" log N (S*, ¢) = C,

where C denotes the Shannon capacity of S defined by (3.9).
It is not hard to show, see [28] page 102, that the Shannon capacity of S” is
equal to nC. Hence, by (3.10),

(4.3) limsupn"log N(S", ¢) = limsupn " log N(S", ¢) < C/(1 — ¢);

(here, the equality sign follows easily from (2.4), at least for all but denumerably
*many values ¢). Comparing (4.2) and (4.3), we see that N (S”, ¢) = ¢"°, at least
for e small but fixed. A result of this type was brilliantly conjectured by Shannon
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[20] in 1948. Many rigorous proofs and extensions have since been given by Shan-
non, Fano, Feinstein, McMillan, Khintchine, Wolfowitz and many others, see
[15] and [28].

4.3. In view of Remark 3.1 we have that (4.1) is true not only when II ¢ Q
but also when IT = (Fx, ) ¢ Q*. Therefore, (4.2) even holds with C replaced by
C* = sup {C(II): I £ Q*}. Clearly, C* = C. On the other hand, using (4.3) we
have C* < C/(1 — ¢) for each e > 0, consequently, C* = C.

In particular, if C < o« then we have for each IT £ Q* that C(II) < o imply-
ing that Pr (J/(IT) = + « ) = 0, and hence that

P(- |z) <" foralmost [O] all zeX.

It should be possible to prove this in a more elementary fashion. Note that the
channel S itself is completely arbitrary.

4.4, Additive noise. Let G denote a fixed compact group, not necessarily com-
mutative. The group operation in G will be taken as addition. Let u denote the
Haar measure on (, normalized such that u (@) = 1. Integrals with respect to u
are often written as [ A (2)u(dz) = [ h(2) de. Further & will denote the o-field of
Borel subsets of G.

We shall be interested in the special channel

(4.4) S ={P,(B) =9(—z+ B);z¢G, Be@®}.

More precisely, we take both X and Y equal to G, §y as &, and P (B | z) as
n(—z + B), where n denotes a fixed regular probability measure on G. For this
channel S, if the sender transmits the symbol z £ G then the receiver receives the
signal  + W, where W is a random variable with distribution Pr (W ¢ B) = 5 (B).
Since this distribution does not depend on z one may speak of additive noise.

As pointed out in 2.5, we are mainly interested in cases where one can find a
probability measure » such that P(- | ) << » for all . In the present case this
implies that n << g (for a proof, see 5.7). Put f = dn/du, thus

2(B) = [5f@)u(de) = [5f()de forall Be@.

Clearly, any non-negative measurable function f, with f fdz = 1, can arise in
this manner. It is precisely the probability density function (relative to u) of the
above random variable W. Moreover,

4.5) f@y) =dP(- |z)/du = f(—z + y).

4.5. Let us now apply some of the resultsin Section 3, taking every time IT and
v as the Haar measure u on G; by (3.17), we have also »" = u. It follows from
(2.18), (3.13) and (4.5) that the distribution function F (8 | z, ») of J (z | »),
the distribution function F (8 | , »™) of J (z | »") and the distribution function
F (0| II) of J (II) are all equal to one and the same function F (§) (independent of
z). Namely,

4.6) FO) = [rowrar=o f) dy.
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The corresponding expectation value

@.7) c) = [ {logf W)}/ @) dy = [2 6 dF ()
might be equal to + . One always has

(4.8) [ree®dF ) < 1,

since

[edF () = [ PF@y) dy = [smr>0dy = 1.

A proof of the following result may be found in 5.8.

Lemma 4.1. Every distribution function F(0) on (—, + ) and satisfying
(4.8) can arise in this manner.

More precisely, given such a distribution function F and letting

4.9) g@) = [ dF (log w),
and
(4.10) f(s) = inf {v > 0: g(v) = s}, 0<s<1l),

we have the relaiion (4.6) relative to the group G = [0, 1) of the reals modulo 1.
Applying Lemma 3.2 and Lemma 3.3, one obtains:
Levma 4.2. Let 61 < 6, be real numbers such that

(4.11) F(6) < e < F(6).

Then

@12) (e —F6)) S NS, ¢) S N(S,¢) < ¢/ (F(8) — e).
Further, using (3.18)-(3.20) and (4.5), we see that

“13) C.=—Q1—t)"log [f(y)' dy = —7 ‘log [ & dF (6),

where r = 1 — t. Hence, Lemma 3.4 yields the following.
Lemma 4.3. We have for each number 0 < 7 < 3 that

(4.14) N(S,¢) = [exp —7 " {log [ €™ dF (6) + (1 — 7) log € '}].

Here, [2] denotes the integral part of z.
4.6. Let us say that the channel S described in 4.4 is of normal type (C, o) if
the associated function F is of the form

4.15) F(O) =3@ (0 — C)),
with ® as the standardized normal distribution function
B@) = @) [L e ds.

Here, ¢ > 0 and C = 0. If F is concentrated at a single point C' then S will be
said to be of normal type (C, 0). This happens precisely when f takes on only
the two values 0 and €. In other words, when there is a set E ¢ ® with u(E) =
¢ ¢ such that P,(B) = e¢°u((—z + B)n E) holdsforallz ¢ G, B ¢ ®.
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If S is of normal type (C, o) then

(4.16) [ e dF©) = exp (—Cr + L°7%).
Hence, (4.8) would be equivalent to
(4.17) s = (20)

In fact, by Lemma 4.1 the normal type (C, o) s possible if and only if C = 0,
o = 01in such a way that (4.17) holds.

4.7. For many (but not all) channels S it happens that the corresponding sta-
tionary memoryless channel S* with 7 large behaves “nearly” as a channel of
normal type (C, o) with C of magnitude n and ¢ of magnitude 7.

Thus, let us study N (S, €) for a channel of normal type (C, ¢) with ¢ (and
hence C) rather large. Let us first discuss the case that € is very small, thus, the
quantity v defined by

2

(4.18) e=e' (v > 0),
is very large. Analogous and much more detailed results were established by

Shannon, Gallager and Berlekamp [22] for the case of a discrete stationary mem-

oryless channel.
Levua 4.4. Let S be of normal type (C, ). Then

(4.19) NS, e) = [exp{C — 1v(20 — v)}] when ~ = 1o,
2 [exp (C — 3" — $'}] forany v > 0.
4.8. Proor. We have from (4.14), (4.16), (4.18) that
N (8, ) = [exp {C — 3o'r — 3(= — 1)7}],
for each choice of 0 < 7 < %. If v < 1o one can choose 7 = v/o, yielding the first
part of (4.19). Choosing + = %, one obtains the second part.
LemMa 4.5. Let b and d be positive constants satisfying d < b — 1. Then there
exists a positive constant v, , depending only on d and b, such that
(4.20) N(S,e) < exp {C — 3720 — v) + (v 'bo — d) log v}

holds for each v = v, and each channel S of normal type (C, o).

REMARK 4.1. Observe that v s — d < 0 assoon asy > b d ‘e where b d ' can
be arbitrarily close to 1. It follows that the first inequality (4.19) would be false
fory = (1 + 8)o and v = v0(8), no matter how small § > 0.

4.9. Proor oF LEmmA 4.5. Let us apply (4.12) with 6, = C — oz, where
#z = v — v 'blog v. Then one obtains

NS, ¢) e [®(k) —e " = [®() — ¢ " exp {C — oy + v 'bo log v}.

This yields (4.20) provided ® (2) — € = exp (—3y* + dlogv) = ey”. Indeed, we
have for all sufficiently large values v that

®(—z) > Ko 'e™ = Ky exp {—3 + blog v + o(1)}
= Key " 2 (1 + %),
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as soon as v is sufficiently large, (since d < b — 1). Here, K denotes any positive
constant with K < (2r)7%.

4.10. The following result is concerned with the case that eis fixed (say e =.01)
while ¢ and hence C are large. Further, z = ¢ (¢) is defined by ®(2) = e. Thus
¥ (e) is positive or negative according to whether ¢ > % or ¢ < %, whiley (3) = 0
Analogous results were obtained by Strassen [23] and Kemperman [11] for the
case of a general discrete or semi—continuous stationary memoryless channel.

LemMa 4.6. Let k > 2 be a given constant. Then there exist positive constants A
and B such that

(4.21) [log N'(S, ) — C — ¥(e)o] = log (4 + Bo),

foreach k' < e<1—k"'and each channel S of normal type C, d), (Cando
arbitrary ). Analogous results hold for N (S, €). .
4.11. Proof. If ¢ = 0 then F is concentrated at C and (4.12) implies that

k' < e S N(S,e) S N(S,e) = (1 — )¢’ = ke’

Thus assume s > 0. Let I = {z: (k)" < ®() <1 — (2k) "} andleta > Obea
lower bound on &' (2) when z ¢ I. Let further ¢ (¢) = % thus ® (&) = e

Now apply (4.12) with @; = C 4 (0 = 1 = C + &0 (¢ = 1,2), wheret;, =
to — o and & = & + o . One finds that

qi/e < N(S,¢) exp (—C — ¢(e)a) < N(S,¢) exp (—C — ¢ (e)o) = e/gs,

where g1 = ¢ — ®(&1) = ® (%) — (&) and gz = P (&) — e

It suffices to show that ¢; = (4 4 Bo)™' for A and B as suitable constants,
under the sole assumption that ¥ < ¢ < 1 — &k '. As to ¢1, we are ready if
®(&) < (2k)™" (in which case ¢« > (2k)7’, thus, one may assume that & e I.
But then we have from the mean value theorem that ¢ = a(§% — &) = a/o.
Similarly, ¢ > (2k)™ when & (&) = 1 — (2k)™", while otherwise ¢ = a/o.

4.12. Channels without memory and with additive noise. Let again S denote a
fixed channel with additive noise as described in 4.4, and let us study the cor-
responding stationary memoryless channel S” defined in 2.2. Clearly, S itself
is also a channel with additive noise, namely, relative to the n-fold direct product
X™ =@ % --- x G of the compact group G = X corresponding to S. As is easily
seen, the distribution function F™ (8) corresponding to S” is precisely the n-fold
convolution Fx --- «F of the distribution function F (8) corresponding to S.
Recall that F can be any distribution function satisfying (4.8).

4.13. In the following Lemma ®, denotes a distribution function such that F
belongs to the domain of partial attraction of ®, . This means that one can find
an increasing sequence {n;} of positive integers, an increasing sequence {ay} of
positive constants with a; — o, and a sequence {8:} of real constants, such that

(4.22) limgae F™ (i + Br) = ®x(£),

for every continuity point £ of the function ®, .
Let e be given, 0 < e < 1. The e-quantile ¥x (¢) of P4 is defined as any number £
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with ®4 (¢ — 0) < ¢ < ®4( + 0). The set of such values £ is an interval [£, £,
where £ = sup {6: 4 (0) < € and £" = inf {0: B4 (0) > ¢}. Consequently, the
e-quantile £ = ¥ (¢) is unique if and only if

(4.23) Du(61) < € < Py(&2) whenever & < & < &.
LemmA 4.7. With the above notations, we have
(4.24) log N(S8™, ¢) = Br + asps(e) + 0(ax) as k— o,

provided € is such that the e-quantile Y« (e) 7s unique. A similar result holds for
N (8™, ¢).

4.14. Proor. Apply Lemma 4.2 with S replaced by S and F replaced by
F™_ Choose further 6; = axt: + B (¢ = 1, 2) with & < & < & as continuity
points of &, arbitrarily close to & = ®«(e). Using (4.22), one immediately ob-
tains (4.24).

4.15. Observe that one can always attain (4.22) with ®, concentrated at a
single point, namely, by choosing the «; sufficiently large; thus this so-called
trivial domain of partial attraction contains all distribution functions F'.

On the other hand, it is quite possible that a particular distribution function
belongs to no non-trivial domain of partial attraction. For example, from a re-
sult in Feller [8] page 556, this happens when L(#) = 1 — F (8) is slowly varying
asf— +o,suchas F(6) = 1 — a (log 6)” for 0 large, (p > 0). Note that one
can still attain (4.8).

A function L (8) is said to be slowly varying as § — o« when L () £ 0 for all
large 0 and L(k6)/L(#) — 1 as 8 — «, for each choice of the constant & > 0.

It further follows from a construction in [8] page 557 that there exist functions
F which satisfy (4.8) and simultaneously belong to the domain of partial attrac-
tion of every infinitely divisible distribution supported by [0, 4 « ); (recall that
&, in (4.22) is necessarily infinitely divisible).

The above remarks amount to the conclusion that ‘“things can be rather wild,”
due to the behavior of F (#) for large 8. Observe that F (6) is necessarily exponen-
tially small as 6 — — «, since (4.8) implies that

(4.25) F(—2) e [Zoe’dF(9) < ¢,

4.16. Let us finally consider the more well-behaved channels S, such that the
corresponding distribution function F satisfies

(4.26) liMnsw F™ (@nE + ba) = u(f),

for all numbers ¢. Here, ®, is assumed to be a distribution function not concen-
trated at a single point. Further, a, > 0 and b, are suitable constants with
an — + . It is known [8] that ® is necessarily continuous, in fact, 4 is a so-
called stable distribution.

4.17. Two distribution functions G and H are said to be of the same type if one
can find constants ¢ > 0 and b such that G (af 4+ b) = H(9) for all 6. In (4.26)
the type of & is uniquely determined by F. All the possible types of ®4 can be
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described by a l-parameter family of distribution functions {®,; 0 < a = 2}
to be described below. It contains the standardized normal distribution function
® as the special member &, = P.

Without loss of generality, one may assume that in (4.26) the constants a,
and b, have been chosen in such a manner that (4.26) holds with ®, = ®,, for a
unique 0 < @ = 2. Thus, we are interested in channels S such that, for a fixed
value « and all &,

(4.27) limnse F™ (ank + ba) = @ (£).

If so we shall say that the channel S is of type ®,. Observe that, for ¢ > 0, the
channels of normal type (C, o) deseribed in (4.22) are very special channels of
type ®, . A channel may not be of any of the types ®, as follows from the remarks
in 4.15. .

Consider a channel of type ®, ; thus, (4.27) holds for a suitable choice of the
an and b, , (@, — -+ ). It follows from Lemma 4.7 that

(4.28) log N(8", ¢) = by + awa(e) + 0(an), asn — oo,
holds for each fixed 0 < ¢ < 1. Here, £ = ¥, (¢) is defined as the unique number £
with &, (¢) = e.

Let
(4.29) C=J[X20dF@®) = [ {log fy)}f @) dy.

Then C = 0is finite when 1 < a £ 2, infinite when 0 < a < 1. It turns out that in
(4.28) one can take b, = nC when 1 < a £ 2,b, = 0 when 0 < a < 1, (the
choice being more complicated when « = 1). Finally, it is known that in (4.28)
the sequence {a,} must “behave about” as {n* '}. Comparing (4.28) with 4.2, it
is clear that C is precisely the Shannon capacity of S; however, there exist much
easier proofs of this fact.

4.18. Most of the unproved assertions in the previous section will be rather ob-
vious to a reader familiar with the material in [8], especially Chapters 9 and 17.
For completeness, let us now summarize some of the known results concerning
(4.26) and (4.27). It will follow from this discussion that each of the following
formulae can be realized by choosing the additive noise in an appropriate manner.

(4.30) log N (8", €) — nC ~ el (e);

(4.31) log N (8", ¢) — nC ~ n!(log n)s(e);
(4.32) log N (8", ¢) — nC ~ n!(log log n) ™Y, (¢);
(4.33) log N (8", €) ~ n'ys (e).

Here, the type (4.30) is most common in applications. It holds if and only if ¥
has a finite second moment, hence, certainly when f is bounded, hence, when the
group G is finite, hence, when S” is a so-called binary symmetric channel; namely,

" take G as a group with two elements. For the latter channel, a result of the type
(4.30) was already given by Weiss [24].
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The type (4.31) holds, for instance, when F’ (6) = k8 (log 6)° for 6 large, with
k as a suitable positive constant. Similarly, (4.32) holds when F'(8) =
k6% (log log )™ for 0 large, and (4.33) when F’ (6) = k6 for 6 large.

4.19. Because of the restriction (4.25) on F not every stable type can arise in
(4.26) but only the following 1-parameter family (up to a scale transformation).
If 0 < @ = 2 and @ # 1, we define &, by its Fourier transform

(4:34) J2 e d2a(6) = exp {—Ka |s|" 6™},
Further,
(4.35) J72 6" d®,(6) = exp (—Ku|s| (1 = i log [s]}.

Here, s is real while (in = and + ) we take the upper sign when s > 0, the lower
sign when s < 0. Further, K, denotes a fixed constant, chosen once and for all
according to convention; some authors take K, = 1. If we want & = & then
necessarily K, = %.

If 0 < a < 2 then limg, 1 0°[1 — ®,(0)] = c., With ¢, as a known positive
constant. If 0 < « < 1 then the support of ®, is the half line (0, + ). If
1 £ a £ 2 then the support of &, is the full line (— o, + ) but such that

0°®, (0) — 0 as § — — oo. It follows that
Vale) ~lea/ (1 — ] as €11,

0<a<?2)Ase | Owehaveya(e) | Owhen0 < a < 1.Forl £ a < 2 we
have ¥a (e) — —  in such a way that Ya(e) = o(e ).

It is known that (4.27) can oceur with @ = 2 if and only if the function
Ly(9) = f;,‘ s* dF (s) is slowly varying as § — + . Further, given 0 < a < 2, the
relation (4.27) is possible if and only if L, (#) = 6°(1 — F(8)) is slowly varying
as § — + «; (recall that we always insist on condition (4.8)).

In both cases, (4.27) can be achieved by means of a sequence {a.} satisfying
@n ~ k[nLa(a)]" ", where k denotes a positive constant depending on F. The b,
may be chosen in the way indicated in the paragraph following (4.29).

The above information gives us a reasonably good grasp of N (S, ¢) for a large
class of channels with additive noise. It would not be difficult to obtain results of
the type (4.19) or (4.20). The main advantage of such results would be that they
can serve as a source of hints, examples and counterexamples in our explorations
of the general continuous channel.

5. Proofs and remarks.
5.1. In proving assertion (2.5), let {e} be a fixed sequence of positive con-

stants such that ¢, T 1. Let
{(xk(i), Dk(i)); 1= 1) ) N(S) ek) < 00}

be an e-code for S of maxrimal (but finite) length; £ = 1, 2, --- . Next, let
exi > 0, D.i ek = 1, and consider the probability measure
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v(B) = Zloco=1 Y&e® P (B | xk(i)), (BeSy).

We claim that P, < v for each z £ X.

On the contrary, let B e Fy and z ¢ X be fixed and such that »(B) = 0 and
P(B|z) > 0. Choose k so large that P(B|z) 2 1 — & .

Since »(B) = 0 and ¢ > 0, we have P (B| ') = 0 for all 7. Deleting B from
each set D;'”, one may as well assume that the above ¢-code is such that B is
disjoint from the D,”. But then this code could be enlarged by adding the pair
(z, B) and this contradicts the maximality of N (S, e).

5.2. Proof of Lemma 3.1. If N < N.(S, ¢) then there exists a code of length N
as in (2.3) and with z'” ¢ L. Let » be such that P,; < » for all 7, and put
fi = dP,,/dv, f«x = max;fi. The D; being disjoint, we have

[fedv = Xifoo fadv 2 2 [ow fidv = 2:P(DP|2®) 2 N1 — ),

Conversely, let z” ¢ L (¢ = 1, --+, N) be such that (3.1) holds, and let f; and
f« be as above. Then one can attain (2.3) by a suitable choice of the disjoint
measurable sets D®. For instance, one could take D as the set of all y ¢ ¥ such
that f* = f,‘ > maX;<i fj .

5.3. Proof of Lemma 3.2. Consider a code of length N as in (2.3) having an
average error = e. Let

E; = {y:dP(- |a®)/dv < "}, Fi=D"nE;.
Here, the F; are disjoint, thus,
¢z Y 2 iPF:|2?) = PO |2?) + PE:|2") — 1
>N(1—¢ +N@E+e”") —N=Ne"

v

Consequently, N < "*.

5.4. Proof of the inequality (3.5). By homogeneity, we may assume that
> f: = 1. Suppose max (fi, -+ ,fv) = fiand put @ = N, a; = 1 otherwise.
Then, from the concavity of log z,

filog N — S0 6(f) = 2N filog (ai/f:) < log 22w fi(ai/fs)
<log >V ya; < log2N = —N¢(N ') + log2.

Dividing by N, one obtains (3.5).
5.5. Proof of Lemma 3.3. It suffices to prove (3.15). We are only interested in
points z belonging to the support of II, (for which P, < y1). Put

f@,y) = dP(- |z)/d",

Let N denote the largest integer for which there exists an e-code as in (2.2) and
such that 2 ¢ L and D < E(), G = 1,---, N). Here,

E) = {y:f@y) >}
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We may assume N < o« (otherwise we are ready). Clearly, y(D?) < ¢ thus
v(D) < Neé ) where D stands for the union of the sets D

By the max1mahty of N, we have for each = ¢ Lthat P (E @)nD|z) <1—e
But P(E(z)|z) = 1 — F(Glx, 1), thus,

P(D|z) >e¢— F(@|xz,»") foreach ze¢lL.

Integrating over L with respect to II, and using (3.7) and Ne * > »(D), one ob-
tains (3.15).

5.6. Proof of Lemma 3.5. Put a = D _i— E{Z.'}. One may assume that a < o
(otherwise (3.25) would be obvious). Introduce further p = (1 — ¢)/, thus,
t'=1+pand0<p = 1.

The funetion 2°(z = 0) is concave, hence,

< a’+ pa¥ e —a) = re + s, (z = 0),

Yand s = (1 — p)a® denote non-negative constants with

where r = pa”
ra + s = a”.
Further introduce U; = max {Z; :j 5 4} and V; = Dz Z;'. Then

W = Zt=l z,sv. ZN—l Z; Uil_ ZI‘V=1 Z'tV'p 21—1 Z‘t (TVi + 3)-
Here, we used that V., = max;=; Z;7 = U;/"*. Moreover, by (3.23),
= 2 5w B tZ < E{Z} 2 4 E{Z}'} £ E{Z{}a.
We conclude that
< SLEZYra+s) =alra+s) =a™ =a",

proving (3. 25)

Observe that condition (3.23) cannot be omitted entirely. For 1nstance if
N = 2and Z; = Z» = Z then (3.25) would say that E{Z} < [2B{Z'}]" " for
1 <t < 1. Clearly, the latter is false in general.

It is essentig} that 1 < ¢ < 1. For, taking Z; = 1 (all z), (3.25) would say that
N — 1 £ N' " which is false for ¢ > 2. Taking the Z; independent,

PI’(Z,'=1)=5, Pr(Zi=O)=1—6,
(3.25) would imply
No)' ™z B{W} = ()1 — 8)"7,

which is false when ¢ < § and ¢ is sufficiently small.

5.7. Proof of an assertion in 4.4. Let g and » be two regular probability measures
on the compact group G such that P,(B) = n(—z + B) is absolutely continuous
with respect to », for each x ¢ X. We must prove that 5 is absolutely continuous
with respect to the Haar measure u on G.

Let D ¢ ® satisfy n(D) > 0; we must prove that u(D) > 0. Observing that
P.(x + D) = (D) > 0it follows from P, K » that v(x + D) > O for all z ¢ G.
This in turn implies that u(D) = [»(z + D) dz > 0; (observe that A(B) =
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[ v(x + B) dx is a left invariant measure with A(G) = 1, thus, N\ must coincide
with u).

5.8. Proof of Lemma 4.1. For v > 0, let 4,(8) = 0 or ¢’ according to whether
6 < log v or 8 > log v, respectively. It suffices to prove that for each such function

h, we have
S5 ho(log £(5))f (s) ds = [% 1y (8) dF (0).
By (4.9), this is equivalent to
Joswseds = g@).

From their definitions, the funection ¢ is continuous to the right, both f and ¢ are
non-increasing, while for each 0 < s < 1 we have f(s) > vif and only if s < g (v).
Consequently, the latter integral is equal to min (1, g(v)), thus, we need that
g (v) = 1 for all ». But this is indeed true by (4.8).

6. Entropy. The present section is a slight digression and concerns itself with
the precise relations between entropy and total variation.

6.1. Let Y = (Y, §y) be a fixed measurable space and let u;, us be two prob-
ability measures on Y. The entropy H (u1 | uz) of u relative to u, is defined as

(6.1) H (1| pa) = sup 20: w1 (Bs) log pr(Bi)/wa (By).

Here, the supremum is taken over all partitions of Y into finitely many measur-
able sets B; ; only the terms with wu; (B;) > 0 can make any contribution to the
sum, possibly + « (namely, when u,(B;) = 0).

Equivalently, (see [19] pages 20 and 24) one has H (u | p2) = + « when g is
not absolutely continuous with respect to us , while otherwise

(6.2) H(u| ) = [ {log du/dus} du = [ ¢ (dps/dpz) dps .

It follows from the strict convexity of ¢ that we always have H (u1 | u2) = 0 in
such a way that

6.3) H(u|ue) > 0 if and only if w1 5 ue .

It is convenient to employ a probability measure A on Y such that both u << N
and p < \, (such as A = 3 (m + u2)). Put f; = du,/d\. Then

6.4) Hy = H(u|w) = [ {log fi/folfr dN,
while
6.5) Hy = H(w|m) = —f {log fi/fa}fo dX.

These representations are always valid. If u; << ps fails to hold then both sides of
(6.4) are equal to 4 . Similarly for (6.5).

As is well known (compare (6.3)), both Hi, and Hy may be used as a measure
of the distance between u; and . . This is also true for the symmetric distance

(6.6) Jio = Hi + Ha = [ {logfi/fs} (hh — f2) d,
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which was already employed by Jeffreys [10] (see [16]). We shall be interested in
comparing these distances with the total variation

(6.7) I — mll = [1fiy) — f(y)| Ndy)

of the signed measure u1 — pz . Obviously, 0 < |u1 — psf| = 2. Here, the first
equality sign holds if and only if u; = p2, the second equality sign if and only if
pr L e

6.2. It is easily seen that there does not exist any relation between the two
numbers Hi, and Hj in the sense that the possible pairs (Hi , Hz) fill the entire
open positive quadrant (to which the origin must be added to account for the case
w = pz). Moreover, given the numbers Hi, , Ha the total variation [um — wel|
can be arbitrarily small.

Thus the only remaining problem is to establish upperbounds on [ju1 — wf in
terms of Hys and Hy; . In this direction, Pinsker ([19] pages 15 and 20) has proved
already that there exists an absolute constant ¥ > 0 such that

(6.8) [ — wal] < (vHp)!

holds for every pair of probability measures w1 , u2 ; (naturally, such anassertion

is only of interest when H, is small). Csiszar ([3] page 187) has shown that

v = 16 will do while McKean ([17] page 358) has proved (6.8) with v = 4e.
TuEOREM 6.1. We have

(6.9) I — | < (2Hw)!
whatever the probability measures ui , uz . Moreover, the constant v = 2 s the best
posstble.

6.3. Proof. To prove the last assertion, let (¥, §y, \) be any probability
space such that \ is not concentrated at one point. Then there exists a bounded
measurable function % on this space with [ & d\ = 0, [ || d\  0; one can even
attain that A(y) = *£1.

Choose p1 = \, thus, fi = 1 and let u» be such that fo = 1 — 8k, where § & 0

is small. In this case
Hu = [log (1 — k)™ d\ = 3 [ (h)*d\ + O ().
Moreover,
lin — pall = [ 16k dx < (f (h)’ dN)! ~ (2H).!

Here, the inequality sign reduces to an equality when A (y) = =1 everywhere.
In proving (6.9), one may assume that u < uz, (for, otherwise, Hiy = + ).
Thus we can take A = up so that fo = 1. Observe that f = fi = dui/d\ satisfies
[fax = 1.
Introducing the non-negative (convex) function ¥ (z2) = zlogz — z + lon
[0, » ), we see that (6.9) is equivalent to

If— 1 d\' <2 [ flogfdx = [ (¢ + ) dNIJ ¥ () dNl.
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This in turn would follow from Schwarz’s inequality, provided one can show that

(6.10) F—17"= G+ ¥

holds for all numbers f = 0. In fact, let a(f) denote the difference between the
right and left hand sides of (6.10). Then a(1) = 0, a'(1) = 0, a" (f) =
#({)/f = 0, (a prime denoting differentiation). This proves (6.10) and hence
(6.9). The proof also shows that the equality sign in (6.9) cannot hold unless

B = po.
TaeOREM 6.2. Let J > 0 be a given number and let p = p(J) denote the unique
number with 0 < p < 1 and

(6.11) J=2log (14+p)1—p)" =427540"/2n—1).
Then for any pair of probability measures uy , us with J12» = J we have
(6.12) lw — mef = 2p.

M oreover, for each fixed J, the upperbound (6.12) s the best possible.
REMARK 6.1. We have J > 4p” thus p < 3J ¥ thus

||ﬂ1 - ﬂz” = Jiz = (le + H21)%.
Actually, by (6.9), we even have that
I — well < min (2Hw), @Hn)) < (Hp + Ha).

6.4. Proof of Theorem 6.2. Let u1, we be such that Ji» = J < . Taking
= upin (6.6), we have

(6.13) J = 1Dlogfdn = J,

where f = d;l.l/ duz .
Suppose that ¢ and 7 > 0 are constants such that

(6.14) rlif =1 = F—1Dlogf+o(f+ 1)
holds for all numbers f = 0. Then (6.13) would imply that
e — wll = [If = 1]d\ = (J + 20)/r.

Therefore, in proving (6.12), it suffices to establish (6.14) for the special con-

stants
o=2"1—p)" 1= +20)/(2).

Here, 0 < p < 1 will be chosen as in (6.11); thus,
r=1log{(1+p)A—=p)""} + o

Since (6.14) has an obvious symmetry (on replacing f by 1/f), we need to
prove only that the quantity a(f) = (f — 1) logf + (¢ — 7)f + ¢ + 7 is non—
,negative for all f = 1. In fact, as "(f) =+ 7> 0forall f > 0, it suffices
to show that there exists a (necessarily unique) number ¢ > 0 with a(c) =
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o' (¢) = 0. It is easily verified that ¢ = (1 4+ p) (1 — p)™" will do.This completes
the proof of (6.12).

The proof also shows that the equality sign in (6.12) holds if and only if f takes
only the values ¢ and ¢ . This proves the last assertion. More precisely, to attain
the upperbound in (6.12) we can choose p1, w2 with the same 2-point support
(a, b) and such that w(a) = w®) = A + p); thus, mu(d) = w(a) =
3(1 — p). Then Jis = 2plog (1 + p) (1 — p)™, while ||u1 — w|| = 2p, showing
that (6.12) cannot be improved.

Acknowledgment. My sincere thanks to Professor Jack Wolfowitz for intro-
ducing me to this area.
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