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BAYES AND FIDUCIAL EQUIVARIANT ESTIMATORS OF
THE COMMON MEAN OF TWO NORMAL DISTRIBUTIONS!

By S. Zacks

University of New Mexico

1. Introduction. The problem of pooling observations which are distributed
according to different distribution laws, for the purpose of estimating a common
parameter has been studied in many papers. The more specific problem of estimating
the common mean of two normal distributions, with an emphasis on small sample
estimators, was previously studied by the author [9], and more recently by Gurland
and Mehta [4]. The reader can find in these articles relevant reference lists. Both
Zacks, and Gurland and Mehta, studied procedures’ of combining the sample
mean, by some weighted average estimators of the form:

(1D H=X¢(S2/S)+Y(1—¢(52/S)),

where X and Y are the sample means; S, and S, are the sample sum of squares of
deviations, respectively. These authors confined their attention to the cases of equal
sample sizes. We notice that for all choices of weighing functions ¢(S,/S;) the
above estimators are unbiased and invariant with respect to translation and change
of scale. Gurland and Mehta showed in [4] that if it is known which one of the two
distributions has the smaller variance, although the actual variance ratio is un-
known, certain of the estimators suggested by Zacks in [9] can be improved upon
uniformly. In the present study we investigate the whole problem more systemati-
cally in a decision theoretic framework. We start by characterizing the class of all
estimators of the common mean, u, which are translation invariant and scale pre-
serving. Following Wijsmann [8] and Berk [1], we call these estimators equivariant
estimators. The sample variance ratio S,/S, is not the maximal invariant statistic
for the group of translations and change of scale. Thus, the class of all estimators
of the form (1.1) is only a subclass of the class of all equivariant estimators, and
many of the estimators of the form (1.1) discussed in the previous studies are
inadmissible even among the equivariant estimators. The general form of all
equivariant estimators is:

(1.2) A=X+(Y-X(S1(X-Y)"25,(Y-X)?).

The problem of choosing an equivariant estimator is equivalent to the problem of
choosing a (properly measurable) function Y(-,-) of the maximal invariant
(81(Y—X)"2,5,( Y- X)~?). Adopting a quadratic loss function, which yields a risk
function proportional to the mean-square-error risk function, in Section 3 we
determine the class of all Bayes equivariant estimators. These are the equivariant
estimators of the form (1.2), which minimize the prior risk functions corresponding
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60 S. ZACKS

to proper prior distributions of the parameters of the model. We shall also verify
that all the locally minimum variance unbiased estimators are particular Bayes
equivariant estimators; namely:

(1.3) f(po) = po(1+po) ' X +(1+py)" 'Y,

where 0 < p, < oo is a chosen constant. We have [i(p,) as a trivial Bayes equivariant
estimator for which the prior distribution of the variance ratio p = ¢,2/d,? is con-
centrated on the single point, p,. Available examples of non-trivial Bayes equi-
variant estimators yield quite complicated weighing functions: Y(V,,V,); V; =
S(X— Y)~%;i=1,2. Itis therefore doubtful whether estimators of the form (1.1)
are among the Bayes equivariant estimators.

In Section 4 we consider the class of quasi-Bayes estimators of the common
mean yu, for which the variance ratio p is assigned a priqr distribution H(p), inde-
pendent of u and ¢?; while u and ¢? are assigned the Jeffrey’s improper prior
K(du,do?*) = du- do®. These estimators of u are called fiducial estimators. 1t is
shown that all such fiducial estimators are equivariant. The unique (up to an addi-
tive constant) invariant Haar measure for the group of transformations we consider
is K*(du,do?) = du - do?/o® (see Buehler and Hora [5] and Stein [7]). However, we
also obtain equivariant fiducial estimators with the Jeffrey’s improper prior
K(du,ds?). This is due to the special structure of the estimator. As shown in
Section 4, the fiducial estimators are generally different from the Bayes equivariant
estimators, although there is an interesting relationship between the two estimators.
In Section 5 we apply a criterion given by Karlin in [6] to show that the Bayes
equivariant and the fiducial estimators are weakly admissible when the prior dis-
tribution H(p) is absolutely continuous and has a positive density. It is conjectured
that this result can be improved, and all Bayes equivariant and all fiducial estimators
can be shown to be admissible (possibly by using the criterion given by Stein in [7]).

2. The statistical model and the equivariant estimators. Let X, -, X,; Y, -, Y,
be independent random variables. Assume that X; ~ N(u,0?) (i=1,:--,n), and
Y, ~ N(u,pc?) (i = 1, -+, n). The common mean u is unknown, — o0 < u < co0. The
variance ratio p is also unknown. We assume that 0 < 62 < ;0 < p < 0. The
parameter space © is the set of all 6 = (u, 62, p). It is well known that a minimal
sufficient statistic for the present model is (X, Y, S;,S,), where X =)7_; X,/n,
Y=Y/ ,Y/n, S;=)',(X;—X)* and S, =) 7, (Y,—Y)? This minimal suffi-
cient statistic is, however, incomplete. We further assume that each sample is of
size n = 2, since if n = 1 then the minimal sufficient statistic reduces to (X, Y), and
the problem of estimating u becomes relatively simple. We study in the present
paper estimators of the common mean; u, which are translation invariant and scale
preserving. The loss function adopted is a quadratic loss function. We therefore
consider only estimators which are functions fi(X, Y,S,,S,) of the minimal
sufficient statistic.

_ Consider the group of transformations

.1 G ={gpX)=a+pX, —co<a<o, f#O0}.
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An estimator A(X, Y, S;, S,) is called equivariant with respect to ¢ if, and only if,
for every g,5€ 9

(2'2) ﬁ(gaﬂ Xa gaﬂ Y’gaﬁ Slsgaﬁ SZ) = oc+ﬂﬁ()7, Y, Sl: SZ),

where g, is the transformation of (X, ¥, Sy, S,) corresponding to g,,4. It is immediate
then to verify that every equivariant estimator of u, based on the minimal sufficient
statistic, is of the general form:

(2.3 AX,Y,81,5:) = X+(Y-X)(S(Y-X) 72, S(Y-X)7?),

where (S;(Y—X) 2, S,( Y—X)~?) is the maximal invariant function of the sufficient
statistic.

THEOREM 2.1. Every sufficient-equivariant estimator of the form (2.3) is an un-
biased estimator of u. .

Proor.
Since Ep{X} = pfor all §, we have to show that
2.4) E{(T—XW(S(Y—X)"2,8,(T-X)"%)} =0, forall o.

But (2.4) follows immediately from the independence of X, Y, S}, S,. Indeed,
2.5) Eo{(Y_X)w(Sl(Y_)—(1_2,_52(Y_X_)-_2)_} ~ o
=E, (Y(S,(T- %)%, (V- X)")E{ V- X | |7-X|} }
Due to the symmetry of the distribution of X— ¥, E,{ Y—X ’ |Y-X|}=0as,
for all 0. Substituting this in the R.H.S. of (2.5) we obtain (2.4).
THEOREM 2.2. The variance of an equivariant estimator of the form (2.3) is:
D*(y;0% p) = n'o?+26*(1—(2n) ™) E,{(V*(V1, V2)
=21+ p) YV, VYL + o)L +07 A+ p)Vi+p~ 0~ (1 +p) V)™M
where V; = S;/(Y-X)?,i=1,2.

2.6)

Proor. The variance of an equivariant estimator is:
oy VT T T2} = 707 2y { (X =T TNV, V)
' + Ean{(Y= X)WV, V2)}-

To develop this variance formula we notice that, since

X—u _ 1 -1
— —|~N{(0,n"1¢?
R (L W)
the conditional distribution of X — u, given X— Y, is the normal distribution
N(—=(1+ p) Y (Y-X),n"16? p(1+ p)~ ). Hence,
(28) E(a’,p){(X_ﬂ)(Y— X)lp(Vls VZ) | Y- X’ Sls SZ}

= —(+p) 'T-D(V. Vs as.
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Routine manipulations yield that the conditional distribution of W = (Y—X)2,
given (V,, V,), is like that of a gamma random variable GRo ™ 2(n(1+p) '+ V, +
p~1V,, n—1); where G(4, p) has the density function

g(x| 4, p) = (T(p))~1A2xP~ "™, 0= x< o0,
and 0 < 4 < 0,0 < p < . Thus, we deduce that
(2.9)  E2,){W|Vy, Vo) =2n—De*(n(1+p) '+ Vi+p " 'V)™!,  as.
Substituting (2.8) and (2.9) in (2.7) we obtain (2.6).
3. Bayes equivariant estimators. We shall derive in the present section the Bayes
equivariant estimators for the quadratic loss function:
@G.1) L(p, w) = (A~ p)?|a.

According to Theorems 2.1 and 2.2 the risk function associated with an equivariant
estimator of the form (2.3) is:

RW;p) =n"1+2(1—-2n) " HE{[V2(V1, V) —2(1+p) " 'Y(Vy, V,)]
TA+p) 40"V +(mp) V]

We notice that the expectation on the R.H.S. of (3.2) is a function of p only, since
the joint distribution of (¥, V,) depends only on the variance-ratio p. Hence, the
prior risk associated with any equivariant estimator depends only on the assumed
prior distribution of the nuisance parameter p. This result fits well into the well-
known fact that, when the nuisance parameter p is known, there exists an essentially
unique uniformly best equivariant estimator for which Y(V,,V,) = (1+p)~?! as.
This estimator is also the essentially unique uniformly best unbiased estimator.
When p is unknown there exists no uniformly best equivariant estimator, but the
Bayes equivariant estimator depends only on the assumed prior distribution of p.
To be more specific, given any prior distribution of p, H(p) say, the prior risk
associated with an equivariant estimator is defined as:

(33 RW;H) = [ R(W;p)H(dp).

An equivariant estimator uy is called Bayes against H(p) if it minimizes the prior
risk function R(y; H). To obtain this Bayes equivariant estimator one has to mini-
mize the function

(B34 QW,H) = [§ H(dp)E,{[¥*(V1,V2)=2(1+p)~ ' ¥(V1,V2)]
TA+p)" +n~ 'V, +(np)~ V,] 71}

Let H(p |V, V3) designate the posterior distribution of p, given (V, V5), and let
p(V, V, | H) designate the mixture of the densities of (¥, V,) given p, with respect
to H(p). We further notice that for each (V, V,),

(3 5) Sa(Vi, Vas¥) = [§ [W2(V1, V) —2(1+p) Y(V1, V)|
[ +p) 1 +n~ W, +(np) V,] *H(dp| V1, V) <0 as.

3.2
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and is a measurable function of (¥, V). Thus, if the function Y(V,, V) is such
that Sy(Vy, V,; ¥) is integrable with respect to the mixed distribution of (V;,V5),
ie.,if
(3.6) I8 18 Sa(Vi, Vasv)p(Vy, Vo | H)dVy dV, < 0
then, by the Fubini theorem, we can write:
QW, H) = [ [ p(V1, Vo | H)dV,dV, [§ H(dp |V, VI[Y*(V1, V2)
=2(1+p) WV, V)1 [(L+p) " 07V +(np) " V]~

The function which minimizes (3.5) is
Ya(Vi, V) = E, v, v,{[1+(1+p)n~ Vi +p (1 +p) - n~ V] 71}

+E iy {0 +p)[1+1+p)n™ Vi +p7 (1 +p) 07 VL] as,

where E, |y, v,{ - } designates the posterior expectation of the term in brackets, given
(Vh Vz)-

We verify now that the conditions of the Fubini theorem are satisfied by
V¥u(Vy, V). Substituting (3.8) in (3.5) we obtain, since 0 < yz(Vy, V,) £ 1 as.,

I?)o IdVl av,p(Vy, Vys H) - Sg(Vy, Va5 ¥m)
(B9  =[3 favidv,p(Vy, Vs H)[§ H(dp| Vi, Va) [Wa(Ve, Va)(1+p)—2|
‘(L+A+pn™ Vi+p~ (1+p)n™ V)71

It is a straightforward matter to prove that the R.H.S. of (3.9) is bounded by 2.
Hence, the Fubini theorem is satisfied, and we obtain:

3.7

3.9

THEOREM. 3.1. If H(p) is any prior distribution function of p, the Bayes equivariant
estimator against H(p) is given by

br=X+[Y=X)E, |y v,{0+A+p)n" Vi +p (1 +p)-n~'V,) "1}
+E, 1y v {(+p)A+1+p)n” Vi +p7 (1+p) n™ V)" }].

We can further develop the Bayes invariant coefficient y5z(V, V) in the follow-
ing manner. Let Z; =n"'/V, (i = 1,2). Then, it is easy to verify that the joint
density function of (Z,, Z,) given p is:

GAD p(Z1,Z2]p) = Tn= PO (n=D)n~4p* (1 4y~
(2 ZP T+ +p)Zy+p7 (L 40)Z) 7Y,

0=2,,Z, £ «. Finally, using Bayes formula for the posterior distribution of p
given (Z,, Z,), we obtain

u(Z1,22) = E, | 2, 2,{(1+(L+p)Z, +p~ (1 +p)Z,)" '}
(3.12) + Epy 2,2, {(L+p)L+(L+p)Z; +p7 (14 )Z2) "}
=[5 7D+ py [+ (1+p)Zy +p~ (1 4p)Z,] "+ PH(dp)
+ [© p7H (U4 py[1+(L+0)Zy +p~ (1 +p)Z,]~ "+ PH(dp).

(3.10)
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We notice that Yy(V,, V,) = ¢u(Z,, Z,) forall (Z,,Z,) = (n~*V;,n~1V)).

In the special case, where the prior distribution H(p) is concentrated on a single
point p,, the Bayes equivariant estimator is

(3.13) flpo) = X +(Y=X)(1+po) ™",

which is the locally best unbiased estimator of u, at p = p,(u and o are arbitrary).
From (3.13) we can draw immediately the following:

COROLLARY 3.1. The sample mean X is a minimax estimator of .

ProoF. First, obviously the risk function of X is n~ ! for all p. Fix p = p, and
o =0, Then the Bayes estimator against a prior normal N(uo,t?) for u is
(Xn/ao?+ Yn/pooo? + po/t®)/(n)oy? +n/pay? +1~2). This Bayes esimator has a prior
risk of n71po(1+ po)/(1+po+ pooo?/nt?)?. Letting 12 — oo and p, — oo the above
sequence of Bayes estimator approach X, and the associated sequence of prior risks
approaches n~ 1. Hence, applying a result of Blyth [2], X is a minimax estimator,
for the loss function (3.1), in the class of all estimators.

It is interesting to notice that due to the loss function (3.1), which gives an un-
symmetric role to X and Y, Yis nof a minimax estimator of u. In certain cases this
non-symmetric structure is unwarranted, since one may find himself in a situation
in which he has no preference for the X observations over the Y observations, and
one would like to consider only equivariant estimators which are symmetric
functions of the sufficient statistics. That is, to satisfy the condition (a.s.)

(3.14) X+(Y=X)¢u(Z1,2,) = Y+ (X = Y)puo(Z,,Z)

where, if H is a given prior distribution of p then H* is the induced prior distribution
of p~ 1. Equivalently, the symmetric weighing function should satisfy

(3.15) Ou(Z,,Z)+dul(Z,,Z) =1 a.s.

One way to attain (3.15) is to restrict attention to prior distributions of p, which are
“symmetric” in the sense that

(3.16) b _oH(dp) = [3~1_oH(dp), forall 0<a<bsl.

This is, however, quite a severe restriction on the class of prior distributions.
Property (3.15) can be attained, however, without the restriction (3.16) by con-
sidering Bayes equivariant estimators for the quadratic loss function

(3.17) L*(f, p) = (2—p)*/[o* max (1, p)].

This loss function makes the roles of X, S, and of Y, S, symmetric in the above
sense. Using the above derivation of the Bayes equivariant estimators where, for a
given prior distribution H(p) we substitute the defective’> prior distribution
H*(p) = [§ H(dt)/max (1,t). We then obtain: -

2 Following Feller [3], page 112, a distribution function F(x) is called defective if F(+00) < 1.
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THEOREM 3.2. For any given prior distribution H(p), the Bayes equivariant
estimator for the quadratic loss function (3.17) is py =X +(Y—X)pu*(Z,,Z,),
where:

Gu*(Z1,Z2) = (Jo p7* V[P pTROT Y1 +p) !
(3.18) [+ +p)Zy+p~ A+p)Z;]" " P H(dp)

+(fg p7HTD 4 pTHT DY 4 )
[1+(1+p)Zy+p (14 )Z,] " P H(dp).
Furthermori, a minimax estimator for the quadratic loss function (3.17) is
A=3X+TY).

One can easily check that ¢5*(Z,, Z,) given by (3.18)satisfies the symmetry con-
dition (3.15). The minimaxity of i = (X + Y) under (3.17) can be verified on the
basis of Corollary 3.1 and the symmetry structure of the decision problem. Another
way to verify it is to notice that the risk of i under (3.17) is
(3.19) R(@, p) = (4n)~'(1+p), 0<p=1;

=@n) " '(1+p™Y), 1=p=co.
Hence, Supo<,<o. R(Ep) = R(f,1) = (2n)~'. This, is, however, the limit when
72 — oo of the prior risk of the Bayes estimators, with p, =1, fi= (X,/o02+
Y, /0% 4 p/t3)/(2n/0y* +1/7%). Hence ji is minimax.

4. Fiducial equivariant estimators. Let ¢(u) designate the standard normal
density, and let g(x) designate the density function of x*[n—1], i.e., a chi-square
with (n—1) degrees of freedom. Then, the joint density function of the sufficient

statistic (X, Y, S,,5,), given 0 = (u, 02, p)is:
f(Xs )_/’ Sl’ SZ)
o p~ie~Cp(nta ™ (X — w)e(nta p H (Y- p))g(c > S)a(p™ "o %S,).

If H(p|u,0?) designates the conditional prior distribution of p given (u, 0%), and
K(u, 0%) designates the joint prior distribution of (i, o?) then the general formula of
the Bayes estimator of the common mean y, for the quadratic loss functon

L(fi, p) = (A—p)?*[o?, is:
A(X,Y,S,,S2)
42) = [, [ K(du,do?)uo~ bp(n*o™ (X — p))a(o ™25 ) fu(n*o ™ (Y~ p),072S,)
+ [ =, [& K(du,do®)a Bp(n*e ™ (X — p))q(c S )fu(n*e™ ' (Y—p), a7 %S)),

4.1)

where
fu(n*e™'(Y—p),072S,)

4.3 _
@9 = [ H(dp |, 0D)p~Yp(nte™ ' p H(Y—p))a(p™ 0725,
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It we substitute for p any prior distribution H(p), independently of u and 62 and the
Jeffrey’s prior K(du, do*) = du da?, we obtain the formal Bayes estimator :

iu(X,Y,5,,S,) = [ H(dp)p™* [§° do*- 6~ Bq(c 725, )q(p™ "6 2S,)
(4.4) JZe dp- pp(nte™ (X — w)p(nte ™ p H(Y—p))
+ ¢ H(dp)p™%[5* do? - 67 8q(c728,)q(p™ ' 67 2S,)
JEedp- p(nte™ (X —p))o(nte ™ p~H (¥~ p)).

This estimator will be called a fiducial estimator of p. It is an equivariant estimator
of u, with respect to . We develop now the form of the fiducial estimators. It is
easily verified that:

%0 @(n*e ™ (X —pw)o(ntc ™ p~H(Y—p) du

.

4.5) - <
=[no™2 p~'(1+p)Fp(na~'(14+p) X - T)),
and
@5 2o bp(nte ™ (X —)e (nfe ™ p~H(Y—p)) dp
=(1+p) 7 (pX +Y)[n(1+p)a~2p™ ' Trp(nte~'(1+p) HX -Y)).
Furthermore,

fo"do?-a7%q(672S )q(p™ 67 2S,)exp {—4na~2(1+p) (X - YV)?}
“4.7) oc p~ IS, S, [ dgt. g0 (6723
exp{—4ne~(1+p) (X =V’ [L+(1+p)Z, +p (1 +p)Z,]}
o (X_ 7)—(n+-})(sl SZ)%(n—3) .p-%(n—l!)(l +p)"+*
[+A+p)Zi+p7 (1 +p)Z, ] Y.
Substituting (4.5)-(4.7) in (4.4) we obtain that the general form of a fiducial
estimator, with a prior distribution H(p) is
(4.8) (X, Y, 81,8,) = X+(Y-X)$u(Z,,2,),
where the invariant coefficient is
(49) ¢u(Z1,Z5) = [ Hdp)p™* " D1+ p)' [ L +(L+p)Z; +(1+p)p™ ' Z,]~ "+
+ (5 H@p)p™ 3 (1) [14(149)Z, +(L+p)p™12,] .

We notice from (4.9) that H(p) for the fiducial estimators does not have to be neces-
sarily a prior distribution. It could be a defective distribution or a g-finite measure
for which the denominator of (4.9) is finite. The comparison of (3.12) and (4.9)
shows that if one chooses a prior distribution H(p) for the Bayes equivariant
estimator, and a defective prior distribution H(p) for the fiducial estimator, such
that A(dp) = (1+p)~ 'pH(dp) then ¢5(Z,, Z,) = ¢pu(Z,, Z,)a.s. Thatis, in that case
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the Bayes equivariant and the fiducial estimators coincide. If we use H(p) = H(p)
then the corresponding Bayes equivariant and the fiducial estimators are different.

5. Weak admissibility. An estimator of a function g(f) of the parameter
0 = (u, 0%, p), §(T) say, where T is the minimal sufficient statistic T = (X, Y, S;, S,),
is called weakly admissible, with respect to the risk function R(4, 0) if, for any other
estimator §(7) such that

(5.1) R(4,0) < R(g,0) forall 6,

the set of parameter points over which strict inequality holds is a subset of a set
having a Lebesgue measure zero. Karlin gave in [6] a simple criterion to check weak
admissibility in the case of a quadratic loss function. As in the previous section, let
Jfo(T) denote the density function of 7. We have in the case of (5.1)

(5.2 J@(T)—9(0)fo(T)dT < [(G(T)-9(6))’fo(T)dT, all 6.
This is equivalent to the inequality:
(5.3)  J@(M)—4(D))Yf(T)dT = 2 [(§(T)—G(T) )d(T)—9(0))fo(T)dT,

for all 9.

Let &(df) = h(0) dO, with h(0) > O for all 8 = (u, 62, p) be a sigma-finite positive
measure on the sigma-field generated by 6. £(d0) is equivalent to the Lebesgue
measure, i.e. (df) < df and df < &(df). Furthermore, assume that £(d0) satisfies:

(54 JAT) = Jof(T)E(dO) < 0,  as.,
and
(5.5) IOR(é,O)é(dB) < 0.

Then, integrating both sides of (5.3) with respect to £(d0), we obtain
(5.6) [&(dO) [(G(T)—4(T))*fT)dT

< 2[&(d0) [ (9(T) = F(T)XI(T)~g(0))fo(T) dt.
On the set of T points, A, for which f(T) > 0, define

6.7 EdO| T) =f(T)E@O)[fAT)  as.

We have P,(A) = 1. We impose also the condition:

(5.8) S(T; &) = [o|d(T)—g(0)|£dO| T) < 0 aus.
Then, (5.1), (5.5), (5.8) and the Schwartz inequality imply that
(5.9) 19T~ 4(D)| S(T, Of T dT < 0.

Thus, the Fubini theorem holds, and (5.6) can be written as

(5.10) §4(a0) f(9(T)~§(T)Yf(T)dt < 2[(4(T)~G(T))G(T; {)f(T) dT,



68 S. ZACKS

where

(5.11) G(T;0) = [(9(T) - g(0)&(d0| T)  ass.
Finally, if

(5.12) IDFAT) = [gOf(DEdO)  ass.

then G(T, &) = 0 a.s. Since the L.H.S. of (5.10) is a.s. non-negative, G(7, &) = 0 a.s.
implies that [(9(T)—g(T))*f(T)dT =0 on every set of 6 values of a positive
Lebesgue measure. Hence, G(T, £) = 0 a.s. implies that R(g,0) = R(g, 6) on every
set of @ values having a positive Lebesgue measure. Thus, under the above con-
ditions, G(T, £) = 0 a.s. is a sufficient condition for the weak-admissibility of §(7").
Consider the fiducial estimators of Section 4. There we used the sigma-finite
measures &(d0) = H(dp)dude? and g(0) = u. Assume that H(dp) = h(p)dp, with
h(p) > 0 for all 0 < p < co. T is the minimal sufficient statistic (X, Y, S;, S,). f(T)
is given by the denominator of (4.4), and H(dp) is such that f,(T') is finite a.s. Hence
(5.4) is satisfied. Furthermore, if H(p) is a prior distribution and from the results of
Section 3, if §(T) is either the fiducial estimator fi4(X, Y,S;,S,) or the Bayes
equivariant estimator fiy(X, Y, S;, S,) both conditions (5.5) and (5.8) are satisfied.
Moreover, the definition of the fiducial estimator (4.4) implies that (5.12) is satisfied
a.s. Hence, the sufficient condition for the weak-admissibility of a fiducial estimator
of u, for any prior distribution H(p) satisfying the above conditions, has
been established. Furthermore, considering &d0) = H(dp): p(1+p)~" - du- do*
where H(p) is a prior distribution satisfying the above conditions, we imply
that the fiducial estimator ji3(X, Y, S,,S,) is weakly-admissible, where H(p) =
p(1+p)~'H(p). But, since jiz(X, Y, S;, S,) = (X, Y, S}, S,) we obtain:

THEOREM 5.1. All Bayes equivariant and fiducial estimators, with respect to abso-
lutely continuous prior distributions H(p), with positive densities for all 0 < p < o0,
are weakly-admissible.
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