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ON THE WEAK CONVERGENCE OF PROBABILITY MEASURES'

By Lucien LECaM

University of California, Berkeley

1. Introduction. Let & be a set carrying a o-field & and a family of probability
measures {Py:0€©}. Let L be the smallest L-space which contains all the
Py, 6e©. This is the smallest linear space which is complete for the usual total
variation norm and contains all the measures smaller than linear combinations of
the Py. It is a Banach space with a dual M which contains, often properly, the
space of equivalence classes of bounded .«7-measurable functions.

Upon replication of the experiment {Z, &, P, ;0 € © } the relevant measures are
the product measures Py ® Py on the product space {Z x &, & x «/}. Several
problems about the existence of ‘“‘consistent tests”, ‘“‘sequential discrimination”
and similar subjects lead to the following question:

If wis a measure in the w(L, M) closure S of the set S = {P, ;0€ @} is the product
measure p ® w in the closure of {Py® Py ;0€©}?

It is an easy consequence of a theorem of Dunford and Pettis (see [1], [2]) that
the answer to this question is ‘“yes” if the set {Py; 0e®} is w(L, M) relatively
compact in L. In particular if there is a sequence {P,,} which converges to u then
P, ® P, converges to u® p.

The answer is also “yes” if & is a countable set. Finally, the answer is “yes” if
the set S = {Py; 0@} is convex, since in this case the strong closure of S coincides
with its w(L, M) closure. The purpose of the present note is to show that there do
exist families {P, ; 0 € @} for which the answer is “‘no”. In fact we shall demonstrate
the existence of a countable collection S = {P,; 0€®} and a measure u such that
uneS but such that 4 ® p is remote from the closure of the convex hull of the set
{Py® Py; 0€0}.

In the usual statistical context one considers not only the products Py ® P, but
also for each integer n the experiment &, consisting of taking » independent
identically distributed observations whose distribution is either p or one of the
P, ; 0e®. The available o-field for &, is the product &" of n copies of /. The
measures are the corresponding products p" or P,". Let then 2 be the set of all
probability measures on {%', &}. For each n one can use &/", or equivalently the
space 77, of equivalence classes of bounded o/"-measurable functions to define a
uniform structure %, on 2. Let also % be the uniform structure defined by U, ¥, .
Let S be the closure of S= {P,;0€®} in 2 for the structure %. Let us say
that there exist uniformly consistent tests of u against S if there exist functions
$,€ ¥, 0= ¢, < 1such that E[p, | u] - 1 while sup, {E[¢, | Ps]; 0@} - 0.
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It is a rather special case of Theorem 1 of [3] that there exist uniformly consistent
tests of u against S if and only if u¢S.

For each integer n one can introduce three “closures” S,, S,, and T, of the set S
in 2 as follows: the closure S, for the structure %, , the closure S, for the weak
topology w(L,, M,) induced by the adjoint of the L-space spanned by {P,"; 0e©®},
and finally the “‘sequential closure” T,, that is the smallest set which contains S
and contains the limits of %, convergent sequences {y, }, u, € T, . It is easily verifiable
that S, = S,, and that the two coincide if, for instance, the elements of S are all
dominated by the same o-finite measure. Also, using either the Dunford-Pettis
criterion, or the Vitali-Hahn-Saks theorem, one verifies easily that T, is indepen-
dent of n so that the following relations always hold:

T1=Tncg=nngncg=nn§n;‘

also S, = S, and §, = §,, for m < n.

The example given below is intended to show that S, may be properly contained
in S, even if S is countable (in which case S, = §,). It is essentially an example
showing that if a directed set {u,} converges for %, towards a countably additive
measure u, the product pu, ® p, may converge for %, towards a functional which is
not countably additive on the o-field /2 or even the field & x &. If u, ® u,
would converge on &/ x o to a g-additive limit, then the convergence would also
take place on the whole o-field .«/? and the same would be true for any directed
set v, ® v, with v, smaller than a fixed multiple of u,.

The example suggests the possibility that S may be properly contained in each
S, and that T, may be a proper subset of S. Further study of these questions may
be of interest since S or S are rather difficult to identify, but T, and S, appear
relatively accessible. However, the passage from two to three dimensions appears
to involve problems of a different character than the passage from one dimension
to two.

2. Some lemmas concerning Lebesgue measure. Let yu be the Lebesgue measure
on the Borel subsets of the interval 4 = [0, 1]. Consider finite partitions © =
{B;;j=1,2,--, n} by elements B; of the Borel field «/. For each such partition
n let p, be a probability measure of the form u, =) ; u(B;)v; where v; is a prob-
ability measure carried by the set B;. The finite partitions n form a directed set if
ordered by refinement. The following easy remark will be used repeatedly below.

LeMMA 1. Direct the finite partitions of & by refinement. For each finite partition
n let u, be a measure constructed as explained above. Then lim, [fdu, = [fdu for
every bounded measurable function f.

Notk. It is not claimed that u is the w(L, M) limit of the filter x,. This may not
be true. In fact, if u, = ) ; u(B;) o ;> where &, is the mass unity carried by a point
x;€ B; then Lemma 1 holds, but there is a ue M such that {u, > = ¢ for every
positive measure ¢ dominated by u but {u, 9> =0 for ¢ disjoint from p. In
particular, <u, > = 0if p, = Y'o; 0, .
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PROOF. Let A be an arbitrary Borel set. There is some finite partition 7, = {B,, ;}
such that 4 is one of the By, ;. If n = {B;} refines m, then A is a finite sum 4 = |J B,
of those B; = A. This gives

ol A) =3 u(B)Vi[B;n Al =3 {i(B)); B; = A} = p(A).
It follows that if f is a simple function on &, that is a function of the type f =
2 i=1¢;14,, then [fdu, = [fdu from some n on. Since for every bounded measurable

function g and every ¢ > O there is a simple function f'such that sup, |g(x) —f(x)| < e,
the result follows.

LEMMA 2. Let {B;;j=0,1,2,-++,m} be m+1 Borel subsets of % such that
u(B;) > 0 for each j. Then there exist points x;€B;,j=0,1,2, -, msuch that

(1) all differences x;— x; are rational
(2) each x; is a point of density unity of its set B;.

PROOF. Let f; be the indicator of the set of points x € B; at which B, has density
unity. Let

h(xl’ Xa, "0, xm) J‘ [H;n= lfj(xj+t)]f0(t)tu(dt)

this is a nonnegative function of the vector variable z= {x, -, x,,} whose
Lebesgue integral on R™ is not zero. Thus 4 does not vanish identically. We claim
that £ is a continuous function of z. To prove this select an ¢ > 0 and continuous
functions with compact support, say ;, such that m{|f;(u)— ;)| A(du) < ¢ for
the Lebesgue measure A on the whole line. Since 0 < J; =1 one can also assume
0= ¢; = 1. Write

[5-ifi=11=10; = Zaalfi—oid
with g, = ([Tj<x /) I;>« ®,)- This gives 0 < g, < 1, and therefore
IETLA5Ge+ 0] = [TT @ 0x; + 0T} fo(Ou(d)
=Yila ifk(xk +8) = (X, + l)lfo(t)li(dt)
< DS+ D= o+ 0] Ad) < e

The function [[]; ¢ j(xj+t)o()u(dt) is obviously a continuous function of
{x1, *** x,,}. Therefore the same is true of the limit 4.

Since /4 is not identically zero and since it is continuous there is a point {P1s"" Vm}
with rational coordinates such that 4[y,, ---y,] > 0. For this point the integral
which produces 4 must be non-zero somewhere. Thus there is some ¢ such that
HT7= 1 fi(p;+ 1) 1fo(t) > 0. Write x, for this 7 and write x ;= y;+t. The differences
X;—x; = y;—,; are rational for all pairs (i, ). Also each x; is such that f;(x;) > 0;
hence f;(x;) = 1. This completes the proof of the lemma.

3. Construction of the example. Consider in the Euclidean plane the set of
straight lines on which differences of coordinates are rational. More specifically,
order the rationals in a sequence {ry, r,, """, r,, -**}. Let D, be the line defined by
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D,={(x, y); y—x=r,}. For a prescribed ae(0, 1) let U, be the set of points
(x, y) such that [(y—x)—r,| <a2”"*3. Let G* =, U, and let G be the inter-
section G = G*NC of G* with the square C = [0, 1] x [0, 1]. For the Lebesgue
measure 4 ®u on C the measure of G satisfies the inequality [pu® ul(G) =
Yk ® ullU,NCl £ Y, 024270+ < ¢/4. Furthermore G is an open dense sub-
set of C.

Letn={B;;j=0,1,---,m,m+1, - n,} be a Borel partition of [0, 1] such that
w(B;)>0forj=0,1,2+--,mand u(B;) =0 for j=m+1, -, n,. Assign to each
B;, j=0,1,2---,m a point of density x;eB; according to Lemma 2 so that
X;—Xx; is rational.

Once the points x; have been selected one can find some ¢, > 0 such that 2", < 1,
and such that if |x—x;| <2e, and |y—x;| <2¢, for some pair (x;,x;), then
(x, y)€G and in particular xe [0, 1].

Finally, since each x; is a point of density of its B; there is an ¢ such that

I’L{B_]m [xi_h) x1+h]} g (l_an) l’t[ix_h) xi+h]

for all £e(0, ) and for «, smaller than say [n,2"]”!. One can assume that ¢, has
been taken smaller than this e.

Construct measures m, as follows. Let g; be the indicator of the set
B,n[x;—¢,, x;+¢,]. Let g; = gi[jgidp]“. Let m, be the measure whose density
with respect to the Lebesgue measure is dm,/du = Y yu(B;)g;.

LEMMA 3. Let the measures m,, be constructed as just explained. Then

M) [m, @ m,]G = 1.

(2) As the partitions T are refined the measures m, converge to the Lebesgue
measure p for the topology w(L, M) induced by the dual M of the space of all finite
signed measures on [0, 1].

Proor. The first statement follows from the construction. For the second
statement note that by Lemma 1 the measures m, converge to p in the sense that
[ dmn—>}'f du for all bounded Borel functions f. However, since all the m, are
absolutely continuous with respect to u this is equivalent to w(L, M) convergence.

As a final modification let us reconsider the functions g; described above. This
g; is a probability density with respect to u on a set B;n[x;—e¢,, x;+¢,]. Let
hi(x) = (2¢,) ! for xe[x;—¢,, x;+¢,] and let 4,(x) = 0 otherwise. By construction

Firix) = gi0)| m(dx) = 2 [ |hi(x) = g(0)| " u(dx)
é (2811)_ llu{[xi - 87!:7 xi + Bn] n Bjc}
§ (28,[)_105,, ﬂ[xi_ —&ns xi+81r] é U

Let 4, be the measure whose density with respect to u is Y ; u(B;)h;(x). By con-
struction ||m,—A,|| < n,a, < 27" Now for each i one can find some interval

[o;, B;] = [x;—¢,, x;+¢,] having rational end points and such that if f; is the
uniform probability density on [«;, ;] then f|f;—h;|du < (n,2")™ . Select rational
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numbers y; = 0 such that Y |u;—u(B))| <&, and Y u; = 1. Let v, be the measure
whose density with respect to pis Y ; p;f; .
The properties of the measures v, are summarized in the following statement.

THEOREM 1. Givenany o > 0 one can find an open set G of the square [0, 1] x [0, 1]
and a countable set S of probability measures v on [0,1] with the following
properties.

M) [t®plG) <o

@) [v® vI(G) =1 for all ve S.

(3) All the measures v are absolutely continuous with respect to the Lebesgue
measure u on [0, 1].

(4) The measure ve S can be indexed by a directed set {n} in such a way that

lim, [ fdu, = [fdp

for every bounded measurable function f defined on [0, 1]. Equivalently yu belongs to
the w(L, M) closure S of S.

To prove this, note that lim,||[v,—A,| =0 and lim,||m,— ]| =0 by con-
struction. Thus the result follows from Lemma 3.
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