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A NOTE ON A CHARACTERIZATION OF THE MULTIVARIATE
NORMAL DISTRIBUTION

By P. R. Fisk

University of Edinburgh

1. Introduction. A well-known characterization of the nonsingular p-variate
normal distribution is that it is the only jointly dependent multivariate distribution
for which the conditional expectation of each variate is a linear function of the
remaining p—1 variates and the corresponding conditional distribution depends
on the remaining p— 1 variates only through the conditional mean. An illustration
of this for the bivariate case is given by Kendall and Stuart, [5] page 352, on the
assumption that all moments exist. Féron and Fourgeaud [3] give a concise proof
of this characterization. The purpose of this note is to demonstrate that this
characterization of the multivariate normal distribution is valid without making
any assumptions on moments of higher order than the first. The method of proof
reveals a little more detail than was the case with that of Féron and Fourgeaud.
This may enable consequences of the main theorem to be more easily determined.

2. The two-vector case. We are interested in two random vectors x, and x, of
n, and n, dimensions respectively, where n, = 1 and n, = 1. We seek to prove the
following theorem.

THEOREM 1. Necessary and sufficient conditions for the joint distribution of
z' = (X,':X,") to be an (n, +n,)—variate normal distribution are

(i) x, and x, are non-degenerate random vectors,

(ii) all the first-order absolute moments of x, and x, exist,

(iii) the conditional distribution of X; given X, (j = 1,2; k = 1, 2 and j # k) depends
on X, only through the conditional mean which is E(X; ] X,) = a;+B;'x, where each
row and column of B; contains at least one non-zero element,

(iv) in(iii)yB, B, # LandB, B, # I wherelis anidentity matrix of appropriate order.

ProOF. We lose nothing in generality if we assume a; =0 and u; =0, j=1, 2,
where u; = E(x,).

The necessity is obvious for the class of distribution that we are considering;
see, for example, Rao, [6] page 441. We need only demonstrate the sufficiency of

the conditions. For this purpose we note that the characteristic function for z may
be written in two equivalent ways corresponding to the equalities

@(ty, ty) = E[exp (it,'x, +it,'x,)]
1) = [, exp(ity'X,) dF(x,) g, exp (it,'x,) dF(x, | X;)
@ = le exp (it,'x,) dF(x,) ij exp (ity'x,) dF(x, l X,).
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The notation used here is standard. The explicit forms of (1) and (2), in the general
class of distributions that are being considered here, are

1) $(ty, t,) = exp [g(t,)+ H(t, + B, t)]
) = exp [h(t;) + G(t, +B,t,)].

The expression givenin (1') is derived from the two expectations Efexp (it;'x,) | X,] =
exp [g(t,)+it,'B,’x,] and E[exp(is'x,)]=exp[H(s)]. Similarly the expression
given in (2') is derived from the two expectations E[exp (it,'x,) ] x,] =exp [A(t,)+
it,’B,'x,] and E[exp (is'x;) ] = exp [G(s) ]. From the derivation of (1') and (2) and
the assumptions of the theorem it can be seen that the functions g(-), 4(-), G(*)
and H(-), together with all first derivatives of these functions, are zero at the
origin. We may also note that the first derivatives of these functions exist every-
where and by definition are continuous everywhere.
Equating terms in (1) and (2') we have

(3) g(ty)+H(t, + B, t,) = h(t,) +G(t, + B, t5).
From (3) we can obtain, by putting t, = 0 and t; = 0 successively,
4) g(t)) = G(t,)—H(B, t;)

h(t,) = H(t,) — G(B, t,)
whence we may write (3) in terms of the functions G(-) and H(-) alone:
3) G(t,))+ H(t,+B, t,)—H(B, t,) = H(t,)+ G(t; + B, t,) — G(B, t,).
Let us first differentiate both sides of (3") with respect to t; to obtain
6] GV(t))+ B, [HV(t,+B, t))— H (B, t,)] = G(t, + B, t).

Here GV(u) is the vector of first order partial differential coefficients defined by
8G(s)/s evaluated at s = u, with a similar definition for H"(u). Putting t; =0 in
(5) we get

(6) BI,H(I)(tZ) = G(l)(Bz tz)a Yt,.

We may note that if (4) is differentiated with respect to t;, and if the resultant
vector of differential coefficients is evaluated at t, = B, t, , we will have g'"(B, t,) =
GV(B,t,)—B,’HV(B, B, t,). If B, B, = I then (6) would indicate that gV(B, t,) =
0, Vt, . If we suppose that n, = n, then this implies that g(t,) = constant, Vt, and
uniform continuity gives the result g(t,) = 0, Wt, . If this is true we would have
from (4) that G(t,) = H(B, t,) whence A(t,) = H(t,)— H(B, B, t,) = 0. We see that
if B, B, = I then the conditional distribution of x, given x, is degenerate at B,'x,
which means that x, is an exact linear function of x,. In these circumstances
nothing can be deduced on the distribution of z from the assumptions of the
theorem. It is for this reason that condition (iv) was included in the theorem.
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Operating in a similar manner with t, we can obtain from (3’)
(5)  HY(t)+B,[GV(t, +B,t,)—GV(B, t,)]= H(t, +B, t,) and
(6" B, G(t,) = HV (B, ty), vt,

which are comparable with (5) and (6). From (5), (5), (6) and (6") we can obtain the
equalities

(7 B/[H"(t,+B,t)—H"YB,t,)] = GPB,t,+B,B,; t,)—G(B,B, t,)
= G(t, +B, t,)— G(ty)
and
(7) By[GU(t; +B,t,)—GV(B, t,)] = HV(B, t; + B, B, t,)— H")(B, B, t,)
= H"(t,+ B, t,) —H(t,).
It follows from (6), (6"), (7) and (7’) that
B, [H"(B,t,+B, B,t,)—H"(B,B,t,)— H(B, t,)]
= B,'B,'[G(t, +B, t;)— GV(B, t,) - GV(t)]
= GY(t, +B, t,) — GV(B, t,)— G(t,)
whence
(8) (I—-B,B))[GY(t, +B,t,)—G (B, t,)—G(t,)] =0, Vvt, and t,.

Suppose first that I—B, B, is nonsingular, then it is plain from (8) that for all
t, and t, we must have

) Gt +B,t;)— GV(B, t,) - G(t,) = 0.
Let n, = n, and put B, t, = s, then this last equality is equivalent to G"(t, +s) =

G™M(s)+GM(t,) where s can take all positions in n,-dimensional space. We note
that G)(+) is continuous everywhere so the general solution of this last equation is

(10) Gty = Ct,
(see Aczél [1] page 348) whence from (6) or (6') we deduce that H*)(t,) has the form
(11) H")(t,) = Dt,.

Consider now the case when I—B, B, is singular. Let a« # 0 be a latent vector of
I-B, B, corresponding to a zero latent root and let .S be a point set in (n, +n,)-
dimensional space R,, ,,, for which

(12) GVt +B,t,) -GV (B, t,)— Gt = a.
For the sake of simplicity we suppose that there is only one such «. Then for all

points in R, ,,—S equation (8) implies that (9) must be true. But G)(+) is
continuous everywhere so either S = R, ,,, or S'is empty. In the former case (12)
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is true for all t; and t,. Define f(y) = G)(y)—a then (12) is equivalent to
f(t, +s) = f(t,)+f(s) where s is defined above. We deduce from the same argument
that led to (10) that G*)(y) has the form G*)(y) = a+ Cy. But this conflicts with
the property of G1)(y) that it is null at the origin. We conclude that S is empty
and that (10) and (11) are the solutions of (8) for both singular and nonsingular
I-B,B,.

We see from the results given by (10) and (11) that the functions G(t,) and H(t,)
must have the form G(t,) =t,'Z,, t,; H(t,) =t,’E,,t, where £;, and X,, are
defined as symmetric matrices. The multivariate normality of z follows immediately
from (4) and (1’). Note that it is not assumed that X,; or X,, is nonsingular.

The functions g(t,) and A(t,) have the form

(13) g(t) =t/ (T, —B,"X,, By,
h(ty) = t;' (X2, — B, X By)t,,

and equality (3) is equivalent to

(t,:t) [211 EBI,EZZ:I [tljl =(t,/:t)) [211 (X Bz] l:tl] )
Z22 Bl 3222 t2 BZIZII 5222 t2
From this last equality we find that B,'X,, = X, B, and so the conditional variance
matrices are from (13) £,,(I-B,B,) and X,,(I—B;B,). We may note that if
I-B, B, is singular then so also must I—B; B, be singular. Thus, if « satisfies
(I-B,B)x = 0 then B,(I-B,B,)a = (I—B, B,)B, = 0. We see that the theorem
is true when x; or x, are separately singularly distributed and also when a linear
function of x, is exactly equal to a linear function of x, with the sole exception of

the extreme case excluded by assumption (iv) of the theorem.
Various corollaries of Theorem 1 are possible. Two are given here.

COROLLARY 1. If u;, u,, * **, u,, are independent random vectors, if Vi, V5, ", V,
are independent random vectors and if x =Y 7—  a;u; and y = Z?=1 bjv; satisfy the
conditions of Theorem 1, with all a; and b; non-zero, then 7' = (u,":uy": -+ 1w,
v, 1 000y, is multivariate normal.

ProoF. Theorem 1 shows that (x’:y’) is multivariate normal and Cramér’s
Theorem 19a ([2] page 113) proves the corollary. A similar proof applies to the
next corollary.

COROLLARY 2. If u,,u,, **,u, are independent random vectors and if X =
Z;L ja;u;andy =y"_ b ;0; satisfy the conditions of Theorem 1, with all a; and b;
non-zero, thenz’' = (u,’:u,’:- - :w,,’) is multivariate normal.

It is interesting to compare this second corollary with a theorem of V. P.
Skitovich [7] which states that if y and x described in Corollary 2 are independent
then each u, has a multivariate normal distribution. The comparison is more than
a curiosity because, as we will now show, a restrictive form of the generalization of
Skitovich’s theorem given by Ghurye and Olkin [4] may be used to prove, and may
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be proved by, a restrictive version of Theorem 1. This reciprocal property was first
brought to my notice by some comments of David MCLaren at one of the
Edinburgh statistical seminars.

The restrictive form of Ghurye and Olkin’s theorem that will be used here is as
follows.

RESTRICTED G-O THEOREM (a). Let u; and u, be independent non-degenerate
p-dimensional random vectors whose first order moments all exist, and let A, A,,
C, and C, be nonsingular square matrices of order p. If y=A,u,+A,u, and
z = C,u, +C,u, are independent random vectors then u, and u, are each p-variate
normal random vectors.

The condition on first order moments is unnecessary in the direct proof of this
theorem as shown by Ghurye and Olkin. The restrictions that we add to Theorem 1
are that n, = n, = p and B, B, and I—B, B, are nonsingular. We will now show
that this restricted version of Theorem 1 may be proved using the Ghurye-Olkin
theorem. If the conditions of Theorem 1 (restricted) are satisfied then w; =
x;—a;—B;'x;_; and x;_; are independently distributed for j = 1 and 2 separately.

J
It follows, in particular, that

(14) (I-B,B,)x;—B,'w,=w;+a;+B;'a, and B,’x;+w, =x,—2,

are independently distributed. The nonsingularity of the coefficient matrices for
the independent x; and w, is sufficient, from the Ghurye-Olkin theorem, to
demonstrate that x, and w, are each p-variate normal. Since w, is an affine trans-
form of x, and x, it follows that the latter vectors are jointly distributed in multi-
variate normal form. Condition (ii) of Theorem 1 is not necessary for this special

case.
Conversely, let us suppose that the conditions of the restricted Ghurye-Olkin
theorem are satisfied. It follows that the matrix

A A,
[Cl : Cz:l
is of full-rank and, in particular, P = C,—C; A, ~'A, is nonsingular. Since y and
z are assumed independent then
N=A"y=u,+A,7'A,u, and
E=P 'z=P 'Ciu,+P'C,u,
are also independent. Write I'; = A, “'A,, T, = P7'C; and I'; = P7'C, then

r3 - rz rl = I.
We deduce from this that

u, =n—I,u, isindependent of wu, and that
E=Tu +Iu,
=TI,n+u, isindependent of n.
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This satisfies condition (iii) of Theorem 1. We see that 'y , I’ and I+I', T'; =T'5
are nonsingular thus satisfying assumption (iv) of Theorem 1. This demonstrates
that (n':u,’) is jointly distributed in 2p-variate normal form. Since u, is a linear
transform of i and u, it must be distributed in p-variate normal form.

The necessity of the condition on first-order moments for this reciprocal relation
to hold may seem to add nothing to the original theorem of Ghurye and Olkin.
The arguments given above do show, however, that the Ghurye-Olkin theorem can
be extended.

Extension (a) We may remove the restriction that u; and u, be of the same
dimension provided we place suitable restrictions on the matrices A;, A,, C, and
C,. Suppose that u; and u, are of dimensions p and ¢ respectively and that A, and
C, are square nonsingular matrices of order p and g respectively. Then the inde-
pendence of y and z defined above is sufficient for the-multivariate normality of
u, and u, separately provided none of the rows of I'; and I, defined above are null
vectors. The nonsingularity of A; and P ensure that each column of I'; and I',
contains at least one non-zero element.

Extension (b) We may further remove the restriction that A; and C, be square
matrices. Suppose that the orders of A, A,, C, and C, are (r x p), (r X q),
(s x p) and (s x q) respectively with p+g = r = p and p+q = s = g. The indepen-
dence of y and z is sufficient for the multivariate normality of u; and u, separately
if the following conditions on A, A,, C; and C, are satisfied.

(i) the matrices A,’A,, C,’C, and P = C,'C,—C,'C,(A,’A)"'A,’A, are each
nonsingular,

(i) Iy = (A;’A;)"!'A,’A, and T, = P7'C,'C, each have at least one non-zero
element in each row.

This second extension can be made equivalent to the first extension by pre-
multiplying the equations in y and z by A,’ and C,’ respectively whence the
conditions required on the matrices become obvious.

3. The multi-vector case. The extension of Theorem 1 to k random vectors
X,,X,, ", X, of dimensions ny, n,, -+, n, respectively, is not simple in the full
generality of that theorem. The extension is relatively easy if we confine our attention
to a restricted class of singular and nonsingular distributions in n(= Z’}=lnj)-
dimensional space. For simplicity we will discuss the special case k = 3 only. We
prove the following special theorem.

THEOREM 2. Necessary and sufficient conditions for the joint distribution o
. J
7' = (x,: X, :X;’) to be an n-variate normal distribution are

(i) X, , X, , X3 are non-degenerate random vectors,
(ii) all the first order absolute moments of X, , X, and X5 exist,
(iii) for each j(j = 1, 2, 3) the conditional distribution of X; given X, X,(j # k # )}
depends on the latter two vectors only through the conditional mean which is
E(x;|x¢, x) = a;+B;; X +Bj;x;,
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(iv) the vectors can be ordered in such a manner that
(a) each row and column of By, , B,, and (B}; :B}3) contains at least one
non-zero element,
(b) I—B,,B,, and I—B,, B,, are each nonsingular,
(¢) each row and column of

. U -1 ’
[ I .- le} { 31}
. ’
-Bi,: 1 32
contains at least one non-zero element.

ProOOE. We require the proof of sufficiency only as the necessary conditions are
obvious. Consider the joint conditional distribution of x; and x, given x; . Within
this conditional distribution x,; and x, satisfy the conditions of Theorem 1 hence
(x,":X,’) is conditionally distributed (holding x; constant) as an (n;+n,)-
dimensional normal vector with conditional mean vector

X, I :—B | '[B5
(15) E X | = %

' . '
X, =B, 1 B3,

and conditional variance matrix

(x1> MR NP}

Var X3 | = .

X2 Lyt Ep

Here we have assumed without loss of generality that a; =0, j = 1, 2, 3, and that
the marginal mean vectors are all null. We have also written X,, =B E;, =
X,,B,,. The matrices £,, and X,, are the variance matrices in the marginal
distributions of x, and x,. If these matrices are nonsingular then (x;":x,’) is a
nonsingular normal random vector from assumption (ivb) of Theorem 2. This

latter assumption is necessary for the inverse matrix on the right-hand side of (15)
to be invertible. We may note that (15) can be written as

X, (I-Bj, B},) (B3, + B3, By,)x;
E X3

(I-Bi,B;;) ™ '(Bs, +Bi; B3,)x;

It is obvious that either B,, or B;, (but not both) could be null provided condition
(ivc) is satisfied.

The vectors (x,’ :X,’) and x; clearly satisfy the conditions of Theorem 1 hence
z = (X, :X,':X5) is multivariate normally distributed. This distribution could be
singular but this singularity cannot arise from the singularity of I-B;, B, or
I-B,, B,,. To this extent the class of distributions to which Theorem 2 applies
is more restrictive than the class of distributions to which Theorem 1 applies.

We can see from the above arguments that the appropriate generalization to
Theorem 1 is

X3
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THEOREM 3. Necessary and sufficient conditions for the joint distribution of
' = (X,":X," 1"+ :1x,') to be an n-variate normal distribution are

(i)x;(j=1, -, k) are non-degenerate random vectors,
(ii) all the first order absolute moments of X(j =1, - -, k) exist,
(iii) for each j(j =1, -, k) the conditional distribution of X; given the remaining
(k—1) vectors depends on the conditioning vectors only through the conditional mean
which is

k
E(lexl’”" Xjots Xje1s' s X)) = A5+ ) 012 B X,

(iv) the vectors can be ordered in such a manner that

(a) each row and column of By,, B,y and B; = (B};:B3;: - :B(;_1);)
(i=1,2,---, k) contains at least one non-zero element,
(b) the matrices
I B : =B
M, = —‘1‘3'12: ‘I :"‘2—"B‘j2 (=2, k=1)
-Bj;: =By 1

are nonsingular,
(c) each row and column of (B;; :B;, :+++ :B;;_1,)M; ™! contains at least one

non-zero element.
We may remark here that the minimal block structure of the conditional

expectation is

E(x,)—B) x, =a,
—-Bi,x; +E(x2)— B3, X3 =4,
—Bi3x; =B X, +E(X3)—Bisx, =a,
=Blx; =By X, =By X3 — By x,— - _Bfk—l)kxk—l‘f'Ec(xk) = .

Here E,.(-) is the expectation operator with respect to the appropriate conditional
probability.

Acknowledgment. I am indebted to Professor 1. Olkin for introducing me to
Aczél’s book and for making me dissatisfied with the less general theorem of Féron
and Fourgeaud.
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