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UNBIASED COIN TOSSING WITH A BIASED COIN

By WassiLY HOEFFDING! AND GORDON SIMONS?

University of North Carolina at Chapel Hill

0. Summary. Procedures are exhibited and analyzed for converting a sequence of
i.i.d. Bernoulli variables with unknown mean p into a Bernoulli variable with mean
1. The efficiency of several procedures is studied.

1. Introduction. Coins probably have been flipped since the dawn of their inven-
tion for the purpose of making impartial decisions. That such decisions are in fact
partial is widely accepted. We shall envision an idealized coin which produces i.i.d.
Bernoulli variables X, X,, - with unknown parameter p,0<p < 1. (Such
sequences can be closely approximated using radio-active materials.) If p = 4 and
M,,M,, - is any predetermined sequence of zeros and ones, the sequence
E ,FE,, - defined by E, = (M,+ X,) modulo 2 (v = 1) is also a sequence of i.i.d.
Bernoulli variables with mean }. If the M sequence represents a “message” in
binary format, the E sequence represents an ‘““‘unbreakable” encoded message. The
formula M, = (E,+X,) modulo 2 (v=1) can be used for decoding. Repeated
application of any of the procedures to be discussed will produce a Bernoulli
sequence with p = 4 from a Bernoulli sequence with pe (0, 1).

One cannot define a function of the X’s which is a Bernoulli variable Z with
mean % using any (non-randomized) fixed sample size procedure since for any
n 2 1, there are values of p(0 < p < 1) such that P{X;=0,i=1,---,n} > 1. An
elementary sequential procedure is

0;: Sample X, , X, , - - - sequentially in pairs and stop the first
time 2m for which X,,, # Xypm-1 . Set Z = X,,,, .

This procedure is described by von Neumann (1951) and has been rediscovered by
others. The authors are indebted to N. L. Johnson for pointing it out to them,
which led to the present investigation. An extension of this procedure to Markov
chains has recently been considered by P. Samuelson [1].

Denoting the sample size by N, , one finds the expected samplé size to be

EN,=p 'q7}, O<p<l, qg=1-p.

There are better procedures than Q,. We shall say that a procedure Q is better
than procedure Q' if the corresponding sample sizes satisfy NS N' (NS N' =
is permitted) for all sample sequences, with strict inequality for some sequence. In
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342 WASSILY HOEFFDING AND GORDON SIMONS

Section 2, we investigate a class called “‘even procedures”. O, belongs to this class.
The best even procedure Q, will require an expected sample size

1) EN, =2[[% . (1+p*" +4*), O<p<l.

In Section 3, we examine a non-even procedure Q; which is better than Q,.
We conjecture that Q5 is “weakly admissible” in the sense that no better procedure
exists. In Section 4, we discuss admissibility and show that there is no procedure
which is better than (or as good as) all others. In connection with this, we obtain
a lower bound for the expected sample size and introduce a fourth (non-even and
non-symmetric) procedure Q, which has smaller expected sample size than Q; for
small p.

We tabulate the expected sample size for the range of p one is most likely to
encounter, .4 < p < .6:

Procedure \ V4 4 5 .6

[N 4.17 4.00 4.17
0. 3.57 3.40 3.57
Qs 3.28 3.10 3.28
Q4 3.50 3.38 3.55
Lower bound 3.17 3.00 3.17

The margin for improvement in Q5 in terms of the expected sample size is less
than 49 over the entire range of p, 0 <p < 1.

2. Even procedures. Let S,=>7X,,n=1,2,--- and S, =0. As one samples
sequentially from X, X,, --- and plots S, versus n—S,, one generates a “path”
in the Euclidean plane. A stopping set & is a set of points (i, j) with £, j nonnegative
integers, the stopping points. Sampling is stopped as soon as (n—3S,, S,) is in &.
The stopping variable N is defined as the smallest integer » =0 such that
(n—S,, S,) e & if one exists, and N = oo otherwise. Let m(i, j) denote the number
of paths from (0,0) to (i,j) with N = i+j. For mathematical convenience we
include points (i, j) with min (i, j) < 0 and note that m(i, j) = 0 for such points. In
order to make all stopping points reachable, we insist that m(i,j) >0 for all
(i, j)e &. With this restriction on &, we call a point (i, /), not in &, a continuation
point or inaccessible point as m(i,j) >0 or =0, respectively. We denote the
corresponding sets by € and .#. Thus

2 (i,j)es if, and only if, m(i,j) =0.

Any one of the three sets &, € and .# determines the other two and the stopping
variable N. The condition that N is finite with probability one for pe(0, 1) is
expressed by the identity

Q) Yaperma'p’ =1, 0<p<l.
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If this condition is satisfied, an impartial procedure or, briefly, procedure is
determined by & and a Bernoulli variable Z, defined on the paths from (0, 0) to
the points of stopping (N— Sy, Sy), which has mean 1 for 0 < p < 1. If Z exists
for a given & and, for each (i, j) € &, k(i, j) denotes the number of paths from (0, 0)
to (i, j) on which Z = 1, we have
©) Yapesk(iNg'y’ =1, 0<p<l
Conversely, if (3) is satisfied and there exist integers k(i, ), 0 < k(i,j) < m(i, j),
such that (4) holds, we can define Z by subdividing, for each (i, j)e &, the paths
from (0, 0) to (7, j) into two arbitrary subsets of k(i, j) and m(i, j)—k(i, j) paths and
assigning the value Z = 1(Z = 0) to each path in the first (second) subset (or vice
versa). Two procedures defined on the same stopping set will be considered as
equivalent, and our main concern will be to determine stopping sets for which at
least one impartial procedure exists and EN is small. We introduce this equivalence
as a matter of convenience but do not wish to suggest that the definition of Z is
completely unimportant.

If N < oo with probability one (0 < p < 1) and m(i, j) is even for every (i, j) e &,
we can satisfy (4) by setting

®) k(i,j) = m(i,j)/2 for every (i,j)eZ.

We call such procedures even procedures. Q, is an even procedure with stopping
set &y = {(5,/):4,j=1,3,5,---}.

It may be instructive to note that an even procedure is equivalent to a test of
Neyman structure. Indeed, a procedure of the type studied in this paper may be
viewed as a similar test of size 4 for testing the hypothesis that X;, X,, - is a
Bernoulli sequence with mean p, 0 < p < 1. (Alternatives to the hypothesis are
not considered.) The very essence of the problem requires that the test be non-
randomized, that is, that Z take only the values 0 and 1. For a given stopping rule,
the random variable (N— Sy, Sy) is a sufficient statistic. In accordance with the
usual definition, Z is a non-randomized test of Neyman structure if the conditional
probability of Z =1 given (N— Sy, N) = (i, ) is constant for all (7,j)e <. Such a
test exists (with constant %) if and only if the numbers m(i, j) are even for all
(i,))e &.

We turn our attention now toward characterizing even procedures. We shall say
that the variable N is “of type k” (whether it stops with certainty or not) if k
divides m(i,j) for every (i,j)e #(k=2,3, ). In the sequel, we denote the
binomial coefficient (*17) by c(i, j). (c(i,j) is the number of ways of reaching (i, )
from (0, 0). ¢(i, j) = 0 if min (i, j) < 0.)

THEOREM 1. The following are equivalent.
(a) Nisoftypek.

(b) k divides m(i, j) for every (i, j)e LU S.
(c) k divides c(i, j) for every (i,j)e &.

(d) k divides c(i, j) for every (i,j)e LU S.
(e) k divides c(i, j)—m(i, j) for every (i, j).
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PRrROOF. Observe that for all (i)
(6) C(l’]) = C(l_ 1,])+C(l,_]"‘ l)a and

where I(i,j) =1 or 0 as (i, j) € € or ¥ U J respectively. Assume that at least one of
(a)-(d) hold. We shall prove (e). Certainly (e) holds for (i, j) such that i+; < 0. Let
n = 1 and assume that (e) holds for all (i, j) for which i+j < n. Let i+j = n. By
the induction assumption,

®) k divides c(i—1,j)—m(i—1,})).

Using (8) alone if (i—1, j)e %, (8) and any one of (a)- (d) if(i—1,j)e &, or(8) and
(2)if (i—1,j)e #, we conclude that

) k divides c(i—1,j)—m(i—1,)I(i—1,)).

Similarly,

(10) k divides ¢(i,j—1)—m(i,j—DIG,j—1).

Finally we complete the induction step by concluding k divides c(i, j) —m(i, j) from
(6), (7), (9) and (10).

Conversely we shall derive (a) from (e). With this, it easily follows that (e)
implies (a)—~(d). Suppose (¢) holds but (a) does not. Then there exists an n and some
(i, j) with
(11) i+j=n, (i,))e& and wm(i,j) not divisible by k.
Let us assume we have chosen the point (i, j) satisfying (11) with the smallest value
of j. We work with the three points (i,), (i+1,j—1) and (i+1, ). With (6), (7)
and (11) we conclude
(12) C(l,_]) = C(l+l,])—C(l+1,j—1) and
(13) m@+1,j) =m@+1,j—-DI{E+1,j—-1).

From (e), (11) and (12), it follows that k does not divide c(i+1,j)—c(i+1,j—1).
In turn, (e) implies

(14) k does not divide m(i+1,j)—m(i+1,j—1).
(2), (13) and (14) are compatible only if 7(i+1, j—1) = 0,
15) (i+D+@(-1D=n, (i+1,j—1)e ¥,

and m(i+1,j—1) is not divisible by k.

But (15) contradicts the assumption that j is the smallest value satisfying (11).
Letting k = 2, it is clear that an even procedure exists if and only if N < oo with

probability one (0 < p < 1) and ¢(i, j) is even for every (i, j) € & U £. In particular,

there exists an even procedure Q, with &, £, = {(i,): c(i, j) is even}. Of course,
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no better even procedure exists. We note, in passing, that Theorem 1 directs us to
a class of procedures for defining a random variable Z* which takes k distinct
values with the same probability 1/k.

For the remainder of this section we shall study procedure Q, . It is helpful to
observe Figure 1. The points indicated by the first two symbols correspond to the
noncontinuation points &,u.#, of @,. Several easily proven facts become
apparent.

(i) N, is even.
(i) m(i,j)=0,1,or2 as (i,j)e F,, €, , or &, respectively.
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(iii) For each v = 0, the only continuation points (i, j) on the line i+j = 2" are
the two points (2%, 0) and (0, 2°).

(iv) For each v = 1, if one shifts the origin from (0, 0) to (2%, 0) or (0, 2”), the
stopping variable which results does not differ from N, unless 2" or more obser-
vations are made on X.

(v) A recursive definition for N, may be roughly stated as ““Stop the first time
one reaches a point with an even number (two) of not previously stopped paths
toit.”

From (ii), it follows that a legitimate definition for Z is given by

(16) Z = Sy,-ymodulo 2.

Now let

17 a,=P{N, > n}, ) n=0,1,2,"+;
(18) A=Y 2sa,t; A4,H=>r0a,t, n=0,1,2,--.

We have from (iii),
(19) ap=1; a,=p"+q", m=2°212%"..;
and from (iv), |
(20) Amin = A Gy, n=0,1,--,m—1; m=212%---,
Hence for m = 2°, 2%, -+,
1) Ag1() = Ay (D + Y020 @, """ = A, ()1 +a,, t™)

= =]]=20021,... m(L+a,1).

Letting m — oo,

(22 A = [T2o {1 +@* +(a0)™'}.
Setting ¢ = 1, we have (in agreement with (1))
(23) EN, =[] {1+p*" +4*"}.
Higher moments of N, can be obtained from
24) EN,(N,—1)---(Ny—k+1) = kA*~D(1).

3. A better procedure than Q,. Under procedure Q, there are points (i, )€ %,
for which, with certainty, N = i+j-+1. With Z defined by (16), there is no need to
take the Nth observation. (Neither N nor Z depend on it.) This suggests procedure

Q5 given by:
SL30 Iy ={(i,j):c(i,j) isevenor both c(i,j+1) and c(i+1,j) are even},

and Z = Sy,_, modulo 2, @ = 0 or 1 as ¢(N; — Sy, , Sy,) is odd or even (or [because
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N, is even] equivalently as N5 is odd or even). &5 U £, is denoted in Figure 1 by
all three symbols. Let

(25) bnEP{N3>n}a n=0,1,2,"+;
(26) B()=Y2obt"s  B(t)=) b1, n=0,1,2,".

Procedure Q5 has similar counterparts to properties (iii) and (iv) of procedure Q,
and one finds for m = 21, 22, - - - that

27N bo=1; by =p" " '+q"" "  b,=p"+q";

(28) bpsn = b by n=0,1,---,m-2.

By direct computation, one can show

(29) bpon=b b—(pg"" ', n=m—1m=2"22-.

Corresponding to (21) one can obtain for m = 21,22, -+ -,
Boym—1(1) = Bp_ (D1 + b, ™) — (pg)™ " 12"~

Using the extremes of (21) and the fact that b,, = a,,, we find

[A2m- 101" Bam—1(t) = [Ap—1() 17 By s () = [Apm—1 () " (pg)™~ 112"

Upon summing over m and using the fact that 4,(¢) = B,(t), we conclude

[Azm- 1()] ' By 1(t) = 1=D, (1), m=2122% ..,

where :
D)= Y,=21, o m[ A2 1 (D] (pg) 12

Letting m — o0, '

30) B(t) = A(t)(1—D(t)) where

D(t)= Yz, {(pa)> 1 T B0 (L (0™ + (a0}
In particular, since B(1) = EN; and A(1) = EN,,
€2y ENy={1-32, {(p0)*” [0 (1 +p*"+4*")}}EN,.

4. Problems of existence and admissibility. Let N be the first » = 2 for which
min(n—S,, S,) = 1. There is no procedure that stops sooner than N for the same
reason (given in Section 1) that there is no fixed sample size procedure. Hence, for
an arbitrary procedure with stopping variable N there is a general lower bound

(32) ENZENs=p g '—1, O<p<l.

We raise the question whether there is a procedure with stopping variable N, or,
equivalently, whether the inequality in (32) is ever equality. The answer is no as the
following theorem shows.

THEOREM 2. There is no procedure with stopping set
Fs={Gj):i=1jz1 or j=1ix1}
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ProoF. By equation (4), we must show that there do not exist numbers a =0, 1,
or2,

(33) m,=0 or 1, n,=0 or 1, k=1,2,---
such that
(34 apq+pq Y=, (mp*+nq") =4, 0O<p<i.

Clearly we cannot have m, = n, =0 for all k nor m, = n, =1 for all k. Hence if
a = 2, then (34) implies 4 > 2pq, which is not true for p = 4. The assumption a = 0
leads to a similar contradiction. Thus we must have a = 1. Since

2pq+pq iz (P +4) =1,
equation (34) with a = 1 is equivalent to .
(35) 2i=1 {@m—1)p*+2n,—1)q*} = 0, O0<p<l

Let f(p) denote the left-hand side of (35). With k(k—1) - - (k—r+1) denoted by
k® (k' =1 o0r0as k > or = 0), the rth derivative of f(p) is

FO(p) = Y, k{@2my— 1D)p* "+ (= 1’2, — 1)g* "}
and :
FOG) = Y, kD274 {2my— 1) + (= 1) 2n,— 1)}

Hence, forr=0,1,2, -,

(36) f(2r)(]2_) = Z;t; . k(2 —kt2rt lck ,

(37) f(2r+ 1)(_;_) — ZkZZr+1 k(2r+1)2—k+2r+2 dk,

where (f©(3) = /(3) and)

(38) ckEmk"I'nk—l, dkEmk_nk, k=1,2,"‘.

Since f(p) is identically zero, it follows that all its derivatives are identically zero
and, in particular, that the expressions in (36) and (37) are zero. We first show
that ¢, =0 for k =1, 2, - --. The numbers ¢, are restricted to the values —1, 0, 1.
Since f®(4) =0 for r =0, 1, ---, it follows that we cannot have ¢, = 1 for all
sufficiently large k, nor ¢, = —1 for all sufficiently large k. The equation f©(}) = 0
is equivalent to Y 72, 27¥¢, = 0. If not all ¢, =0, and m denotes the first integer
such that c,, # 0, then we must have the strict inequality

27 =[S 27 < Dfes 275 = 27",

a contradiction. With all ¢, = 0, it follows that the sequence {d, } is restricted to the
values

(39) dy=—-1 or 1, k=12,
Furthermore, the conditions f®"* (1) = 0 imply that

(40) d, changes sign infinitely often.
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Now consider the equation f)(4) = 0, which is equivalent to
(41) Y2 2 %d, = 0. Let
42) Dy=33-127"d,

We now show that equation (41), subject to conditions (39) and (40), is satisfied
(if and) only if the d, are recursively defined as follows. The value d; = + 1 is
arbitrary, and for k = 2

dk = 1 lf Dk— 1 < 0
43) = 1 or -1 if Dy_1=0
= - 1 if Dk- 1 > 0.

First note, by (41) and (42), that .

IDk| = Yk 1270, < Yoty 27 =27k +2),
with the strict inequality. It is seen by (42) that 2*D, is an integer. Hence
(44) 2Dy| £ k+1.

Clearly d, is arbitrary. If d;, - - -, d;,_; (k = 2) are given, then
|Doy +27%dy| = |Dy| < 27Xk +1).
Equivalently,
—(+dykj2—4 < 2°7'Dy_; S (1-dpk/2+3
or, since 271D, _, and (1 +d,)/2 are integers,
—(1+dok/2 < 2°7'D, -y < (1—-dy)k/2.

This immediately implies that dj, must satisfy (43). (It is easy to see that any sequence
{d.} defined by (43) satisfies (40) and (41).)

We complete the proof by showing that (43) is incompatible with f(%) = 0.
By (37),

(45) 96" 33) = A4,,+4,,=0, where
(46) Ap=Y0s3@27%, Ap=32,27%d,  n=4,5--.
Now

47 |42 £ TEa($27F =27 G+ D+ (D + 13,

and, in particular, |4, 4| < 65/128. By direct computation from (43) and (46),
|44,6| = 79/128. This contradicts (45) and proves the theorem.

It is an interesting fact that while no procedure exists for N there is a procedure
0, for a slight modification, namely

N,=N, if (NS_SN5’SN5)=(132),

= N otherwise.
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Proof that Q, exists. Let
F*={w:o=(G1) or (1,j);i=2,4,6,;j=4,6,8,-},
F**={w:o=(>1) or (1,j);ij=4,8,12,--},
and set
(48) gwy=1 for weF**
=0 for wed*—F**
Consider the condition
(49) Z = g(w) for every path which continues through o, weSL*

If we can find a (even) procedure Q,* for the stopping'set &, which satisfies the
restrictions imposed by (5) with & = &, (48) and (49), then we can define Q, by
assigning Z according to Q,* for paths stopping in &, and Z = g(w) for paths
stopping in & *.

It is sufficient to show that Z can be defined in accordance with (5), (48) and
(49) on the paths to points (i, j)e &, with i, j = 3. Let (i, j) be any of these points.
Then m(i, j) = m; +m, +m; where m,, m, and m; denote the numbers of paths
to (i, j) that pass through the point (1, 2) and through points in #** and ¥* — F**,
respectively. Considering the paths to (i, j) on which Z = 1, we must have

k(i,j) = 3m(i,)j) = k, +m,

where k, is the number of these paths which pass through (1, 2). Thus we must
show that the integer k, defined by

2k1 +2m2 = ml +m2 +m3
satisfies the inequalities 0 < k£, < m, or, equivalently, that
(50) |m,—ms| < m,.

Let m(i,j;i') and m'(i,j;j’) denote the number of paths to (i,j) which
pass through (i’,1) and (1,j'), respectively. Then m'(i, j;j') = m(j, i;j') and
my =m'(i, j;2),my =1, +1,, my = I;+1,, where

Ii=Yanegnm(ij; i)=Y, -as,...m(,j;V)

=Ygy eonm' (bJ30) =Y y=as,...m(j,i;V)

I3 =Y yegemgnm(ij; i) =Y =26,...m(i,j;V)

1a=Y 1 5)egr-gnm(4,§5J) =Y 26.10,...m(, 3 V).
An elementary combinatorial argument shows that

m(i,j;v) = 2((i—v=1)[2, (j=3)2) for (i,)eFy, V=24,
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It follows that
(5D m(i,j;2) = m(j,i;2), and
(52) m(i,j;v) and m(j,i;v) are non-increasing in v.

(50) quickly follows from (51) and (52). This completes the proof.

We shall not derive the formula for EN, here, but it is not difficult and one finds
that EN, < EN, for small values of p > 0. This means that Q5 is not uniformly
optimal (i.e., does not minimize EN for 0 < p < 1) among all procedures.

Our last theorem concerns the subject of weak admissibility. Recall that a
procedure Q is weakly admissible if there is no better procedure (i.e., no procedure
which stops as soon as and sometimes sooner than Q.)

THEOREM 3. For every procedure Q there is a weakly admissible procedure Q*
which is better than or equivalent to Q.
We shall need the following lemma.

LEMMA. Let R, R,, -+ be a sequence of procedures with stopping variables
M, M,, -, respectively. If M, > M, in law for all pe(0, 1) as v » oo where M,
is a stopping variable which is finite with probability one for all pe(0, 1), then there
exists a procedure R, with stopping variable M, .

Proor oF THEOREM 3. Rather than giving a constructive proof, we shall use
Zorn’s lemma and some of the terminology commonly used with it. (See, for
instance, [2, page 40].) Let P be the class composed of complements of continuation
sets ¥’ = € such that there exists a procedure Q' with continuation set €’. (¥
denotes the continuation set of Q.) P is partially ordered by set inclusion. Our lemma
verifies that every completely ordered subclass has an upper bound since the
number of elements in the subclass is necessarily countable. Zorn’s lemma implies
that there exists a maximal set in P whose complement we denote by ¥*. Conse-
quently, there exists a weakly admissible procedure Q* which (has continuation
set ¥* and) is better than or equivalent to Q.

ProOOF OF LEMMA. Let w,, w,, - be an ordering of all points (i, j). By taking a
subsequence of {R,} if necessary, we can assume without loss of generality that the
classification of the point w, as a continuation, stopping or inaccessible point
remains the same and m(w,) is constant for procedures R,, R,.;, """, for every a.
This is because P{M, = n}, when expressed as a linear combination of the linearly
independent functions gp"~ ', -+, ¢" 'p, has coefficients which must be integer
valued. Starting with w,, if w, is a stopping point for R,, R,, -+, we let
R, Ry;, - be a subsequence for which the number of paths stopping at w,,
and on which Z = 1, is a constant, say k*(w,). If w, is not a stopping point then
let Ry, R,,, -+ be the original sequence. Proceeding recursively, we let
Ry, Ry, - equal R,_; ;,R,_,,, " if w, is not a stopping point and let it be
some subsequence of R,_; ;, R,_; , on which the number of paths stopping at
®,, and on which Z =1 is a constant, say k*(w,), if @, is a stopping point, a« > 1.
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We shall direct our attention to the diagonal sequence R,,, R,,, . Working
with M, we assign Z = 1 to k*(w,) of the paths to w, and Z = 0 to the remaining
m(w,)— k*(w,) paths to w, for each stopping point w,. We claim that this defines a
procedure R, with stopping variable M . This is because for fixed p,0 <p < 1,
and fixed ¢ > O there is an «, such that for « = «,, the probabilities that Z = 1
under R, and R,, differ by less than e.

REMARKS

(1) Because of Theorem 2, the point (1,2) cannot be added to the non-
continuation set of Q. Since the point (1, 2) is a stopping point of Q5 , Theorem 3
guarantees us that at least two non-equivalent weakly admissible procedures exist.

(2) The lemma (used to prove Theorem 3) and Theorem 2 can be used to show
that inequality (32) is not “tight” in the sense that p~'¢~!—1 is not the greatest
lower bound for EN.

(3) We conjecture that there is no uniformly optimal procedure, that is, a pro-
cedure which minimizes EN for all pe(0, 1).

(4) Let € and €' = ¥ be two continuation sets. Suppose that the stopping variable
N’ associated with %’ is finite with probability one (0 < p < 1) and there exists a
procedure Q with continuation set €. Then (it is easily shown) there exists a pro-
cedure Q' with continuation set %”. ‘

(5) Either Q, is weakly admissible or (because of the way procedure Q’, referred
to in Remark (4), is constructed) there exists a procedure which is equivalent to Q,
but violates (5). Showing that a procedure is weakly admissible seems to be a
difficult task.
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