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CONVERGENCE IN DISTRIBUTION
OF STOCHASTIC INTEGRALS'

By MARK BrROwWN

Cornell University

0. Introduction. In this paper, convergence in distribution of sequences of
quadratic mean stochastic integrals is studied by developing and extending an
elegant approach introduced by J. Sethuraman [14]. Sethuraman’s contribution is
essentially contained in Theorem 3.1.

A type of convergence of stochastic processes, linear law convergence is intro-
duced. It entails convergence of finite dimensional distributions and a condition
on the product moment kernels of the processes. This condition has several
equivalent forms and is discussed in Section 3.

Linear law convergence is well suited for deriving convergence in distribution of
sequences of random variables {W,,n = 1,2, -+ -}, where W,e L*{X,(¢), te T}. The
convergence in distribution is derived without a sample path analysis. In fact, the
random variables under consideration may not be pathwise defined. For example
{W,} may be a sequence of quadratic mean stochastic integrals with the pathwise
integrals not existing. On the other hand many important pathwise defined func-
tionals of a process {X{¢}, 1€ T}, are not members of L*{X(¢), te T}, and thus not
suited to linear law analysis.

Section 1 and Section 2 contain preliminary material on reproducing kernel
Hilbert spaces and quadratic mean stochastic integrals. In Section 3, linear law
convergence is introduced, and its basic properties derived. Section 4 contains a
method by which a sequence of finite collections of random variables may be
embedded into a sequence of continuous time processes satisfying the kernel
condition for linear law convergence. In Section 5 linear law convergence is related
to weak convergence over L? and reproducing kernel Hilbert spaces. In Section 6
several applications are derived.

1. Reproducing kernel Hilbert spaces. Let [X(¢) te T] be a complex valued second
order stochastic process with product moment kernel K, so that K(s, t) = E(X(s) X(¢)).
Let L2(X) be the set of all finite linear combinations Y™, a; X(¢,), and let L*(X) be
the closure of L2(X) under quadratic mean distance. L?>(X) is a Hilbert space with
inner product (Z,, Z,) = E(Z,Z,).

For each Ze L*(X), let g, be a function over T defined by g,(t) = E(ZX(?)). It
is easy to show that the operator 4 defined by A(Z) = g, is one to one. It follows
that the set {g,, Ze L*(X)} becomes a Hilbert space under the inner product
9z, 92,) = (Z1, Z3)12(xy- Call this Hilbert space Hy. It follows that L*(X) and Hyg
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are congruent (isometrically isomorphic) and that 4 is one to one, onto, linear and
inner product preserving. We will refer to 4 as the congruence map from L*(X) to
Hg.

Let K(s, -) be the function over T whose value at ¢ is given by K(s, ¢). For each
seT, K(s, t) = (X(5), X(t))r2(x)» SO that K(s, -)e Hg with A(X(s)) = K(s, *). More-
over, for all seT, ge Hg, (92, K(s, * Du, = (Z, X(5))12(x) = gz(s)- Therefore Hy is
a reproducing kernel Hilbert space (r.k.H.s.).

This association between the L? space spanned by the process and the r.k.H.s.
spanned by the kernel of the process was first noted by Lo¢ve. Parzen has employed
this and other congruences to obtain many interesting time series applications,
some of which are found in [10]. A survey of the theory of r.k.H.s.’s may be found
in Aronszahn [1].

Lemmas 1.1, 1.2 and 1.3 are stated without proof. Lemma 1.1 may be found in [1]
page 344, and 1.2 in [1] page 383. The proof of 1.3 is obvious.

LeMMA 1.1, || f,—f|ux = O iff £, converges pointwise to f and | fy| e = | f | aix-
The sequence {f,} converges weakly to f in H_iff f, converges pointwise to f and

sup, || fillax < .

LeMMA 1.2. Let Hy and H; ber X.H.s.’s. Then the following are equivalent
(i) The operator T defined by T(Y 7a;K(t;, ) =Y 7a,L(t;, ) has a unique
extension to a bounded linear operator from Hy to H;.
(ii) Hoc Hy in the set inclusion sense.

(i) 3maY"t;o1a;a;L(t,t) SmY7;-1a;3;K(t;,1)) for all n, t;, ***, t, ai,
-++, a,. We abbreviate this condition by L < mK.

When H; c Hg, the extension of the operator T defined above, will be referred
to as the kernel operator from Hy to H. The operator T* obtained by considering
T as an operator from Hyg to Hy, will be referred to as the starred kernel operator
from Hygto Hj.

COROLLARY 1.1. If {X(t) te T} and {Y(t) te T} are processes with kernels K and
Lrespectively with H, = Hy, then the operator S defined by (3} a; X(1,)) =) 1 a; Y(¢)),
has a unique extension to a bounded linear operator from L*(X) to L*(Y). Moreover
Is| =1].

PROOF. S agrees on a dense set with the bounded linear operator 4y~ 'T Ay,
where Ay is the congruence map from L*(X) to Hg, Ay is the congruence map from
L*(Y)to Hy and Tis the kernel map from Hy to Hy. The result now easily follows.

Define H, < Hg to mean that H; « Hg and for f, ge Hy, (f, 9)u, = (s Dy

Lemma 1.3. H, < Hgiff:
(i) L(s,-)eHx VW seT
(ll) (L(S, .)’ (L(ta '))Hx = L(S, t)'
Note that if H; < Hg then the kernel operator from Hy to Hy is the projection
operator from Hg to H;.
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Let T* be the starred kernel operator from Hg to H; (T, considered as an operator
from Hy to Hy).

LemMA 1.4. If H, = Hg then T* is a bounded self adjoint linear operatcr and
|7 = 17]

Proor. It follows from [1] page 383, that the inclusion map from H; to Hy is a
bounded linear operator and is adjoint to 7. Thus if f, —» fin Hg then Tf, —» Tf in
H; (Lemma 1.2)and T*f, > T*fin Hg. Thus T* is bounded. Now (T* ] a; K(t;, *),
YTb;K(sj )Nue = Q1 a; K1, *), T*Y 7 b;K(s;, *))u, for all choices of nm a’s,
b’s, etc. It follows by continuity of 7% and continuity of the inner product that T*
is self adjoint. By [16] page 335, | T*| =supy;s .-, (Tf; Ny Since T is adjoint
'|clo tlﬁe 1n"clu"s;0n map, | T|? =sup - (T Ty, —'sup“,”HK_1 (Tf, f)a, Thus

T*| = (T

LeMMA 1.5. A process X with kernel K, has a version with paths in the r.k.H.s. Hy
and with E ||X | IIZ,K < o0, iff U* the starred kernel operator from Hy to Hy, is nuclear
(compact with finite trace).

Proor. Sufficiency follows from [10] page 487 and necessity from [15] page 67.

2. Stochastic integrals. In this paper integrals of the form:
(i) Jrg(t)dx(r)
(i) f; X(1)dg(t)

(iii) frg(r) X(t) du(t)
will be considered. In the above, I is an interval, possibly infinite, X is a random
function, and g a non-random function. The notation J(X, g, I) will be generic for
integrals of the above form.

The integrals are of Riemann-Stieltjes (R.S.) quadratic mean (q.m.) type (see
Logve [9] page 472) and extension by continuity of such integrals. That is, the set
G of functions for which the R.S.q.m. integral exists is linear. The integral J(X, -, I)
thus can be considered as a linear operator from G to L*(X). If G is embedded in a
Banach space f and J(X, -, I) is a bounded operator relative to f8, it then is uniquely
extendable to a bounded linear operator from G (closure of G in ) to L*(X). Two
examples of such extensions are:

(i) If {X(?), tel} is an orthogonal increment process then ([4] page 99) there
exists a monotone non-decreasing function F, unique up to an additive constant
satisfying, E|X(f)—X(s)|> = F(t)— F(s). The R.S.q.m. integral {;g(r)dX(¢), has a
unique extension to L%(1, F) ([4] page 426).

(i) If f;; K3(s, £) du(s) du(r) < oo then the R.S.q.m. integral {; g(r) X(r) du(t), has
a unique extension to the closure of G in L2(I, y). This follows by combining [16]
page 169, Lemma 1.1 and Lemma 2.1 below.

Define [;g(r)dK(?), [ K(t)dg(t), etc., as R.S. integrals and extensions by con-
tinuity, where now the limit of approximating sums is taken in the norm topology of
Hy. By Lemma 1.1 such integrals are pointwise, so for example, [{; K(t) dg(1)](s) =

[1K(t, 5)dg(2).
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Moreover since R.S. approximating sums to integrals involving X are mapped
by 4 into corresponding sums involving K, it follows that A(J(X, g, I)) = J(K, g, I).
If the extensions of the R.S. integrals are with respect to the same norm on G (this
will always be assumed), then A(J(X, g, I)) = J(K, g, )forallge G. Thus:

LEMMA 2.1. If {X(¢),tel} is a process with kernel K, then J(X, g,I) exists
iff J(K, g, I) exists and AJ(X, g, I)) = J(K, g, I).

Now consider processes {X(¢), eI} and {¥(¢), tel}, with kernels K and L
respectively with H, < Hg. By Corollary 1.1, S is bounded a linear operator.
Therefore Gy = Gy, where Gy is the class for which the R.S.q.m. integral J(X, g, I)
exists. If J(X, -, I) is extendable to Gy with respect to a given norm on Gy, then by
continuity of S, J(Y, -, I) is also extendable to Gy with respect to this same norm,
and SU(X, g, I)) = J(Y, g, I)for all g € Gx. Thus:

LEMMA 2.2. If X and Y are processes with kernels K and L respectively, with
H,c Hy, thenforall ge Gy, J(Y, g, I) existsand J(Y, g, I) = S(J(X, g, I)).

Note that Lemma 2.1 and Lemma 2.2 follow from [8] page 63.

Lemma 2.3 below is found in [9] page 472, and [8] page 63. It holds for R.S.q.m.
integrals but not necessarily for extensions of R.S.q.m. integrals.

Lemma 2.3. [2 X(r)dg(t) exists as an R.S.q.m. integral <> [7g(t)dX(t) exists
as an R.S.q.m. integral, <> (4 b1 1, 5 9(5)9() d12(K(s, 1)) exists as an R.S. integral
<> [1a, b1x 10, 51 K (5, 1) d12(g(5)g(2) ) exists as an R.S. integral.

3. Linear law convergence. By the distribution of a complex random variable Z
we shall mean the distribution of the random vector (f Z}). The notation D(Z,) —
D(Z) will mean that the sequence {(Fe f%:{)} converges in distribution to the random
vector (8 &)); D(X, Y) will denote the distance between the random vectors (f; (x))
and (}¢{}}) under Prokhorov’s metric, [12] page 166, specialized to measures in

Euclidean two dimensional space. It is proved in [13] page 16 that:
) DX, Y)S(E|X-Y)"

Let {X,(f),teT} n=0,1,- be a sequence of complex valued second order
processes with product moment kernels {K,n =0, 1, - - - }. Let i, be the congruence
map from Hg, to L*(X,), n=0,1,---. Assume Hy < Hg, for all n, and let T, be
the kernel operator from Hyg, to Hg , and T,* the starred kernel operator from
Hg, to Hg,. Let S, be the unique extension (see Corollary 1.1) of the operator S,
defined on L*(Xo) by S,(37 a: Xo(t:)) = X7 a; X,.(8)-

LeEMMA 3.1. The following four conditions are equivalent.
@A) sup, ||S,| < .

>ii) sup, [|T,|| < oo.

(iii) sup, [|T,*| < 0.

(iv) sup, | T,*f|| Hx, < 00 for allfe Hy,.
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Proor. It follows from Lemma 1.4 that (ii) <> (iii) and from Corollary 1.1 that
(i) <> (ii). An application of the uniform boundedness principle, [16] page 204,
shows that (iii) <> (iv).

Define X, — X, in f.d.d. (finite dimensional distributions) iff for all Ze L2(X,),
D(S,Z)—-D(2).

Define X, — X, in Ll. (linear law) iff X, » X, in f.d.d. and any of the four
equivalent conditions in Lemma 3.1 hold.

TueOREM 3.1 (J. Sethuraman). If {X,(t) te T} — X,(¢t) te T} inLl. then:

() || f,=f|Hxo~ 0= D, T.f) > D(Wof)-

(ii) Z, — Z in LA(Xo)= D(S,Z,) - D(Z).

Proor. We shall prove (ii), (i) and (ii) obviously being equivalent. Let
M = sup, ||S,||? andlet Z, - Zin L2(X,). Givene > 03-We L,(X,) € E|Z— W|* <
e&. By (1) D(Z, W)<e Also, 3N,3n>N,= E|Z,—~W|* <2 Thus
E|S,Z,~S,W|* < 2M¢*, thus D(S,Z,, S, W) <(@2M)*e. It follows from f.d.d.
convergence that for n> N,, D(W,S,W)<e. Thus for n> max(Ny, N,),
D(Z, S,Z,) < D(Z, W)+ D(W, S,W)+D(S, W, S,Z,) < e(2+(2M)>*).

THEOREM 3.2. If X, — X, in L1. and K,(s, t) > K(s, t) for all s, t, then Z,— Z in
L*(X,)= E|S,Z,|* > E|Z]~. ‘

ProOF. Let | Z|| = (E|Z|*)*. Note that the hypothesis implies that for WeL?(X,),

E|S,W|* - E|W|*. The result follows easily by approximation of Z by We L,(X,)
and use of the inequality:

1z =18, Zall| < [|z= Wi+ |1 W]l l|$, W1 +]1S, W =S, 2,

For a partition =, a random function X, and a non-random function g let
R(n, X, g) be an R.S. approximating sum to J(X,, g). Define |r| to be the length
of the maximum subdivision of z.

COROLLARY 3.1. If {X,(¢), t€la, b]} > {X,(?), tela, bl} in L1 and J(X,, g, [a, b])
exists as an R.S.q.m. integral, then |n,| - 0= D(R(n,, X,, 9)) = D(J(Xo, g, [a, b))).

Proor. S,(R(n,, Xo, 9)) = R(n,, X, 9) and R(m,, Xy, 9) 24.m./(Xo, g)- The
result follows from Theorem 3.1.
Similarly if X, is quadratic mean differentiable at ¢, then

X (to+h,)—Xo(1 ,
o+ )= X o)> L DXy,

COROLLARY 3.2. If (X, (t)tel) - Xo(t)tel) in 1l then J(Xo, gu I) = gm.
J(XOs g, I)=’ D(J(Xm gn’ I)) - D(J(XOs g, I))'

Proor. By Lemma 2.2, S,(J(Xo, g,» 1)) = J(X,s gu» I)-

Lemma 3.2 below provides a few sets of conditions for the q.m. convergence of
J(X, g, I) to J(X, g, I). These, combined with Corollary 3.2 yield conditions for
the convergence in distribution of J(X,, g,, I) to J(X,, g, I), when X, —» X in 1.1,

Ihnl ->0=>D<
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LemMa 3.2. (i) If K is continuous on [a, b] x [a, bland {g,} is a sequence of complex
functions converging weak* on C*[a, b] to g(|’ fdg,—[ifdg for all continuous
complex ), then |5 X(£)dg,(t) = q.m.J2 X(2) dg(2).

PRrOOF. [8] page 65 proves the result in the case where the {g,} sequence is real.
The complex case follows easily.

(i) If X is real, K is of bounded variation on [a, b] X [a, b, {g,} is a sequence of
complex functions converging uniformly to g on [a, b], and [? g,(t)dX(¢) exists as an
R.S.q.m. integral for all n, then [ g(t)dX(t) exists as an R.S.q.m. integral and
§29,(0)AX() = 4. Ja9 (D) X (D).

Proor. The result follows by combining [7] page 131, Theorem 9.9, and Lemma

1.1.

(iii) If G is the set for which J(X, g, I) exists as an R.S.q.m. integral, and J(X, -, I)
is extendable to a continuous linear operator on G, the ‘closure of G in a Banach
space B, then by definition of continuity g, — g in p implies J(X, g, I) =4 m. J(X, g, ).
In Section 2, two examples of such extensions were given.

THEOREM 3.3. Assume X, — X, in LI Let {Zy(x), x€ A} be an indexed set of
elements belonging to L*(X,) and Z,(0) = S(Zo(x)), a€A, n=1,2,--+. Then
{Z () ae A} > {Zy(@) aeAd} inll

Proor. The operator S,’ from L*(Z,) to L*(Z,), defined analogously to S,, is
the restriction of S, to L*(Z,). Therefore ||S,’|| < |S.||- Also by Theorem 3.1,
D(Z'l" a;Z, (o)) = D(Sn(ZT a;Zo(2))) ~ D(Z'l" a; Zo(;)).

EXAMPLES.

() Z(®) = J(X,, o, I) ae A= Gy,.

(i) Zz,(t)=X,’(¢) n=0,1,--- teAclI=T
where X,/(¢) is the q.m. derivative of X, at 7. Note that Hy < Hg_ and the existence
of X,’(¢) implies the existence of X,'(¢).

(i) Z,(¢) = X,(t), te AcT. Thus if {X,(t)1eT} - {X,(t) te T} in LI then for
any T'c T, {X, (1) teT'} » {Xo(t) te T'}in L1

(iv) Z,(1) = g(1) X,(2), teT.

4. Embedding a discrete process into continuous time. Define a kernel K to be two
piece linear on [a, b] if whenever 0 <A =<1 and either a < o <min(B,y) =
max(f,y) £ bora < min(f,y) S max(f,y) S a = b:

K(a, AB+(1—2)y) = AK(a, B) +(1—A)K(a, 7).

THEOREM 4.1. Let {Y(t),teA={a=1, <t, " <t,=b}} be a finite collection
of random variables. Assume that foralli,j=1,2, " n:

E(Y(ti) Y(tj)) = K(ti, tj)
where K is a kernel on [a, b] x [a, b] of the form:

K(s, 1) = g(s)g(t)Ko(F(s), F(1))




CONVERGENCE IN DISTRIBUTION OF STOCHASTIC INTEGRALS 835

where K is two piece linear, F is monotone non-decreasing and g is non-vanishing,
except perhaps at points t; for which Y(¢;) = O a.s.
Ytl F‘t—I’-‘tl Yt' Yt,
Define Z(t)=g(t)[ (1), Fo=~Fa) ( (te1) ())]
9(t) F(tiv )—F)\ 9(tiv1)  9(t)
fora = t £ b. Weinterpret 0/0 = 0 in the above.
Let L be the product moment kernel of Z. Then Hy = Hy and the kernel map from
Hy to H; has norm 1.

Proor. Letg = 1. Note that:
F(s)—F(t)

(2 L(s, 1) = L(t;, t)+m

(L(tl+ 1 t) - L(tb t))

wheret; S s < t;44

F(tj+1)—F() F(—F(t))
F(tj41)—F(t)) F(tj+1)_'F(tj)

where 1; < ¢ <ty letting A = [F(t;4 ) — F())/[F(t;+ 1) — F(2))], « = F(t;), B = F(t)),
y = F(t;.,), and applying the definition of two piece linearity in (3) it follows that:

“) L(t, t) = K(1;, 1) and
(5) Lty 15 1) = K(ti41, 1)-
Substituting (4) and (5) in (2):

3) L= K(F(t), F(t;))+ K(F(t), F(tj41))

F(s)—F(t)

L(s,-) = K(1,, -)+m)

(K(ti+1, )= K(1;, *))

Thus L(s, - )€ Hg for all 5. Also:
(L(s, *), L(t, ) ) = L(s, 1) forall s, ¢t.

By Lemma 1.3, H, < Hg. Therefore the norm of the kernel operator is the norm of
the projection operator from Hy to Hy, and thus equals 1. The result for general g
follows from the case g = 1 by example (iv) following Theorem 3.3. []

Given a sequence of finite collections of random variables {Y,(?), te 4, =
{fa=t" -t =b}}n=1,2,---, Theorem 4.1 assures that if there exists a kernel
K of the form specified in Theorem 4.1 such that:

E(Y(s)Y,()=K(s, 1)  forall n,(s,?)ed,xA4,,

then the processes can be embedded into a sequence of continuous processes such
that the norms of the kernel operators are uniformly bounded.

More generally we may have E(Y,(s) Y,(¢)) = K,(s, t), where for each n, K, is a
kernel of the form specified in Theorem 4.1. Then if we embed each process in the
manner specified in Theorem 4.1, obtaining a sequence {H; } of r.k.H.s.s,
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Theorem 4.1 assures that any kernel Hy, uniformly dominating (sup, || 7,| < o),
the family {Hy ,n=1,2, -}, will also dominate {H; ,n=1,2,"-"}.

Note that in the above embedding procedure, Z(¢) = Y(¢) for t€ 4, so that the
initial random variables are unchanged. Also, suppose that:

© D, im, P 1) = Y, (12))] > 2) >0

as n— oo for all ¢ > 0. Let Y, *(7) = Y,(¢t;™) for 1, <t < £7,. Then if ¥,* - Y,
in f.d.d. then for any monotone non-decreasing F, Y, ** — Y, in f.d.d., where:

F(f)—F(t{™)
F(t{?,) - F(t;™)
Thus if (6) holds the choice of F does not affect f.d.d. convergence.

The class of kernels of the form specified in Theorem 4.1 includes many familiar
kernels. K(s,?) = min (s,#)—st, s, t€ [0, 1], is two piece linear as is K(s, ) = min (s, ?).
Kernels of the form K(s, 1) = min (F(s), F(¢)) on [a, b] x [a, b], characterize the
class of orthogonal increment processes, X, on [a, b], with X(a) = 0 a.s. Kernels
of the form g(s)g(¢) min (F(s), F(t)) on [a, b] x [a, b], characterize the class of L?
Markov processes, X, on [a, b], with X(a) = O a.s.

Y0 = V) + CACNES AR

5. Relation to weak convergence. We shall say that X, — X, weakly on a Hilbert
space H if each X,, n =0, 1, - -+, induces a measure P, on H and P, — P, weakly
on H.

THEOREM 5.1. If X, - X, in Ll. and K is a kernel with the property that the
starred kernel operator from Hy to Hy, is nuclear, then X,, —» X, weakly on Hy.

Proor. We will use a theorem, [12] page 171, which gives sufficient conditions
for the weak convergence of a sequence of measures on a separable Hilbert space.
The space Hy need not be separable, but we will show that our hypothesis implies
that there exists a separable subspace of Hg on which every distribution is con-
centrated. The weak convergence of the measures on the subspace easily implies
the weak convergence on Hy.

Let U,* be the starred kernel operator from Hg to Hg, n=0,1,--. Now
U* =T,*U,*, and the product of a nuclear operator and a bounded linear
operator is nuclear, [5] page 40. Therefore each U, * is nuclear.

Let .4, be the eigenmanifold of U,*, n =0, 1,---. By Lemma 1.3, since .#,
is a subspace of Hy, .#, is an r.k.H.s. with reproducing kernel L, where
L(t,*) = P, (K(t, ")), the projection of K(t, -) on .# " M , is separable and contains
Hyg,, [16] page 336.

Let ./, be the null manifold of U,*, n =0, 1, ---. By [16] page 339, 4", = /i
Since U,* = T,*U,*, N ,> N, and thus #,c M, n=1,2,---. Thus for all
n, fe Hy, U*f = U,*P . f. It follows that for each n, the starred kernel operator,
R,*, from M, to Hy,, is the restriction of U,* to .#,. Thus R,* has the same
eigenvalues as U,* and is therefore a nuclear operator. Therefore all the processes
have versions with paths in the separable r.k.H.s. ./#, and E|| X,||%, < .
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Now
Sul(Xos 20t 1@ L(ti, ) o] = Sn[ZT a; Xo(t))]
=373, X,(t) = (X, Y1 a; L(ti, *)).tor

Moreover (Xo, )4, is a bounded linear operator from .#, to L*X,),
since  E|(Xo, /).uo|* £ E| Xo|| &kl %o Therefore S,(Xo, £).o = Xus ).ty thus
D[(X,, /)o) = DI(X05 )] for all fe M. Therefore the characteristic functional
of X, converges to the characteristic functional of X, as n — 0.

Let {e;i =1, 2, -} bean orthonormal basis for .#,. Let ry™ = Y % (X,,, €;).4, €is
n=0,1,---,N=1,2,--. Then S,(ry'?) = ry™. Thus,

supy Elr® [ < Gup, [, Elr@2 0 a5 N co.

This result combined with the convergence of the characteristic functionals imply
that X, » X, weakly on .#,, [12] page 171. It follows immediately from the
definition of weak convergence that X, — X, weakly on .#, implies X, — X, weakly
on Hy. []

THEOREM 5.2. If:
() {X,(0), tel} - {Xo(t) tel}inll
(i) fr Ko, £)du(r) < co.
(iii) X, has a measurable version,n =0, 1, - -.
(iv) The set G,, for which j,g(t)dX o(t) exists as an R.S.q.m. integral, is dense in
LI, p).
Then X, — X, weakly on L*(I, ).

Proor. It follows from (i) and (ii) that | K,(z, #)du(f) < co for all n. This and
(iii) assure ([15] page 37) that all processes have versions with paths in L3(Z, p)
and with E || X,||72(,,,) < .

For each n, ge L*(I, p), consider the random variable (X,, g) defined pathwise,
X 9) (W) = [1 X,(t, W) g()du(2).  Since  E|(X,, 9)|* = (f; K(t, 1)du(®)) ||g][Z2q»
(X,, ) is a bounded linear operator on L*(I, u). Moreover for geG,, (X,, g) =
[ X,(t) g(1)du(t), the R.S.q.m. integral, [4] page 64. Thus the R.S.q.m. integral
coincides with the pathwise integral on G,, and G, = L*(I, y1) by hypothesis.

Since S,(X,, 9) = (X,, g) (Lemma 2.2) it follows that the characteristic functionals
converge. The remainder of the argument follows exactly as in Theorem 5.1. []

6. Applications.

6.1. Wide sense stationary processes. {X(t), —o0 <t < o0} is called wide sense
stationary if E(X(s)X(¢) = R(t—s). The function R can be expressed as R(v) =
[€V*dF(2), where Fis a bounded, monotone non-decreasing function. The process
X has a spectral representation X(r) = [ ¢"*dZ(4), where Z is a uniquely determined
process with the class of Borel sets as its index set. Z satisfies E(Z(B,)Z(B,)) =
F(B;NB,) for all Borel sets B,, B,. There is a unique process {Z*(t), —oo <t < o0}
which satisfies the requirements of being right continuous in q.m., g.m. convergent
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to 0 at —oco, and Z*(b)—Z*(a) = Z(a, b] for all a, b on the real line. Z is an
orthogonal increment process. See Doob [4] page 527 for details of the above.

For a finite interval [a, b] define H[a, b] to be the r.k.H.s. of functions f on [a, b]
satisfying: f(a) = 0, f(t) = [.f'(s)ds with [2| f'(s)|*ds < co. The inner product is
defined by, (f, g) = [5/'(s) g'(s)ds. The reproducing kernel for H[a, b] is K(s, t) =
min (s, #) —a. This is the kernel of a Wiener process on [a, b] with X(a) = 0.

If [A2dF(1) < oo then by [4] page 536, X is quadratic mean differentiable at all
te(— o, ), and any separable version of X has almost all its paths absolutely
continuous. Moreover, the process of quadratic mean derivatives X and the process
of derived sample paths X’ (X(¢, w) = [ , X'(s, w)ds) are versions of one another.
X and X’ are q.m. continuous, wide sense stationary processes.

THEOREM 6.1. Let {X,(t), —o0o <t< o} n=0,1,---, be a sequence of q.m.
continuous wide sense stationary processes with corresponding F,, Z,, Z.*, R,, as
described above. Suppose that X,— X, in f.d.d., that F, < F, for all n, and
sup,, , dF,(x)/dF, < . Then:

(i) X,— X,inll
(i) X, - X, weakly in L*(1, p) for any p, I, such that u(I) < .

(iii) If [A* dFo(2) < oo then X, — X, in1.1. and weakly on L¥(I, 1) where u(I) < oo.
Moreover, for any finite a, b, {X,(1)—X,(a), a < t £ b} >{Xo(t)— Xo(a),a St £ b}
weakly on H[a, b].

(iv) Z,> Zyinll; Z,* > Zy* in 1. and weakly on L*(I, ), for any I, j satisfying
[ Fols) di(s) < o.

PrOOF. (i) Hy, = {f:f(t) = [e""* g, () dF,(2), with [|g,"()|*dF,(2) < 0},
with inner product (fy, fo)u , = {9 ()¢ (A) dF,(2). This can be seen by building
up from R,(s—1) = [e™**&"*dF (). Moreover, (T,*/)(f) = [e~"* g, °(4) dF (1) =
[ g OMdF(A)dFo]dFo(4). Thus ||T,*/[lf, < (supy, 1dF (A)/dFo)?||f]|fx,-

(ii) This result follows directly from Theorem 5.2. Condition (iv) of Theorem 5.2
holds because for any continuous g, {X,(#)g(?), — o0 < ¢t < 0} is q.m. continuous,
and thus by [8] page 63, |3 g(r)Xo() dt exists as an R.S.q.m. integral. Condition (iii)
of Theorem 5.2 holds because any q.m. continuous process possesses a measurable
version, [15] page 34.

(iii) It follows from Example (ii) following Theorem 3.3 that X,’ — X, in L1
Since the X, are q.m. continuous wide sense stationary processes, it follows from
part (ii) of this theorem that X,” — X, weakly on L3(I, 1) when u(f) < co. The
weak convergence of {X,(1)—X,(a)} to {Xo()—X,(a)} on H[a, b] follows from
Lemma 1.5, Theorem 5.1, and part (i) of this theorem. Note that E||Xo| s =
(b—a) [ A2 dF,(A).

(iv) By [10]page 294, for each n there exists a congruence J, from L%((— o0, ), F,)
to L*(X,) satisfying:

) J.(Ig) = Z,(B), for all indicator functions of Borel sets.
(8) J(e") = X (), all ¢t
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Now (8) implies that J,f = S,J, f for all fin L*((— o0, ), Fy). Therefore by (7),
S(ZyB)) = Z,(B). By Theorem 3.3, Z,— Z, in Ll. Linear law convergence of
Z,* to Zy* follows similarly. Weak convergence of Z,* to Z,* on L*(1, p) follows
from Theorem 5.2.

Linear operations on wide sense stationary processes are of considerable
importance in time series analysis. Every linear process derived from a wide sense
stationary process X, with spectral distribution function F, and spectral representa-
tion X(r) = [ e"*dZ(A), can be expressed ([4] page 534) by:

() = [ €"*G(2) dZ(%)

where G(1) (the gain of the operation) is a member of L*((— o, ), F). It follows
from Corollary 3.2 and Theorem 3.3, that if X,— X, in LL, then for all
GGLZ((_OO, w)’ FO), )

(X(1) = [ G(A)dZ, (), te(— 0, )} > {Xo(t) = [ G AZo(D)}

in LL It then follows from Theorem 6.1 that X, — X, weakly on L*(, 1) where
w(I) < . Also if [A%|GA)|2dFo(A) < o, then {X,()—X,a),astsb}—
{Xo()—Xo(a), a < t < b} weakly on Hla, b].

6.2. Linear combinations of order statistics. Let Y,(j/n+1) = n*(U; ,—j/(n+1)),
j=0,1,---,n+1, where U;, is the jth order statistic from a sample of size n,
uniformly distributed on [0, 1], Uy =0, U, ,; = L.

Define X,(t) = Y,(j/(n+ 1))+ (n+1) (t—jl(n+ D)X, ((j+ D/(n+ 1) = Y,(j/(n+1)))
for jl(n+1) £ t< (j+1)/(n+1),0 £ t = 1. Let {X,(?) t€ [0, 1]} be a zero mean real
normal process with covariance kernel Ko(s, ) = s(1—1), 0Ss=<t=1. By [3]
page 56, X, — X, in f.d.d. Moreover K,(i/(n+1),j/(n+1)) = n/(n+2) Ko(i/(n+1),
j/(n+1)). It thus follows from Theorem 4.1 that X, —» X, in L1 '

It follows from Corollary 3.1 that if [(o, 17xo, 11/(8)Ko(s, 1)J(2) ds dt exists as an
R.S. integral then:

©® D(n~* Y1 (5, (U, —i[n+1)) > D(Jo SO X o(t) dt
= N(0, fi0, 11x10, 11I()Ko(s, I () ds dt),
where ji(n+1) = t; , <(+D/(n+1).
The class of functions for which the above integral exists is larger than the class

of Riemann integrable functions on [0, 1], and smaller than the class of improper
Riemann integrable functions. An alternate expression for the variance is given by :

A =J(1))2ds = [8T(s) ds—[ [3 J(s) ds]?
where J(s) = 5 J(u) dy, J(1) = [3J(s) ds.

The above result with ¢; , = j/(n+1) is equivalent to that obtained in [3] in the
case of finite limiting variance. However, by suitably normalizing, they obtain
conditions for asymptotic normality which can hold when the limiting variance is
infinite. Our approach breaks down in this case.
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Another application of Corollary 3.1 is to successive differences. If
Jio, 11x10, 11J()I(8) d 12 Kofs, 1)
exists as an R.S. integral, then:
D(Y1-0J(t;, XL+ DI(n+1) = X,(j/(n+1)))) = D(f5 J(1) dXo(1)) = N(O, 62),

where 62 = [jo, 17x10, 11 () d12 Ko(s, 1) = Ja=o U —J(1))*dp.

An application of Corollary 3.2 and Lemma 3.2 part (i) is the following:
Consider V,=n"%*¥"_,¢; (U, ,—jl(n+1)). Let f,(&) =%, , Then
if f,—f weak* in C* [0,1], then D(V,)— D([§ Xo()df(f)) = N(0, 6*), where
0> = o, 11x10, 11Ko(s, 1) df(s) df (D).

Consider the statistic n=*) 1., J(t; JIH(U;, ) — H(j/(n+1))] = 4,+ B, where:

A, =n"EY 0 I JH G+ D)Uj, =jl(n+1)) -
=" Y It HU ) = HG(n+ D) = H'(i(n+ D)U = l(n+1))]

where jl/(n+1) £ t;,, < (j+1)/(n+1). We assume that H’ exists at all but a finite
number of points. By (9), if [J(s)H'(s)Ko(s, )H'(t)J(t)dsdt exists as an R.S.
integral, then D(4,) — D([§J(s)H'(s)X o(s) ds). It follows that if B, = op(1), then
D(A,+B,) — D([§ J(s)H'(5)X o(s) ds). Conditions for B, =op(l) can be obtained
from the large sample analysis in [3] page 57, for similar remainder terms.

Since G, contains the continuous functions on [0, 1], Condition (iv) of Theorem
5.2 holds. Condition (i) has been proved, (ii) is trivial, and (iii) follows from [15]
page 34. Therefore X, — X, weakly on L[0, 1]. Moreover, let

Z0) = X3/(n+1), jln+D)=t<(+D/(n+1), 0=t=1 then
10) E||X,—Z,||320,11— 0 as n— .

Weak convergence of X, to X, and (10) imply by [2] page 25, that Z, — X, weakly
on L?[0, 1]. Therefore, for example:

D((n+1)"" Li=1 | X,(il(n+ D)7 = D(f5 | Xo(0)] 1)

for 0 < p < 2. For p = 2 the associated statistic differs by op(1) from the Cramér—
von Mises statistic.

6.3. Convergence of counting processes to a Poisson process. Consider the sequence
of centered counting processes: X,(t) =n(F&—F(1)), te[0,0), n=1,2,";
where F,, is the empirical cdf of a sample of size n with cdf F,. Assume that
lim,_, , F,(t) = 0 for all ¢ and that lim,_,nF,(t) = F(t) for all ¢. Also assume
that F, < F with sup, ,(n(dF,(X)/dF))=C < oo. Let {Xo(#) t€[0, 0)} be a
centered nonhomogeneous Poisson process with E(Xo(f)— X, o(8))? = F(t)— F(s).
The f.d.d. convergence of X, to X, is easy to show. The uniform boundedness of
the kernel operators follows from an argument similar to that found in Section 6.1.
Thus X, —» X, in LL Let Y,(¢) = X,(t) +nF,(t). Consider:

(1D YD IX,,),
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for J such that [0, 11x 0, 77J(5)J(£) d12(Ko(s, 1)) exists as an R.S. integral. Now
(12) Y1 MI(X,, ) =[5 J(S) dF,(5) = [§ I(s)dX,(s5)  as.

By Corollary 3.2, D([§ J(s)dX ,(s)) = D(f§ J(s)dX o(s)). The limiting random vari-
able has a centered compound Poisson distribution with characteristic function,
Q) = exp [ 3 [0~ 1~ ipJ(1)] dF(1)].

The statistic (11) has the following interpretation. Suppose at time O there are
n items with i.i.d. failure distribution F,. When an item fails at time ¢, a cost of J()
is incurred. Then (11) represents the total cost due to failures in [0, T].

Frequently in nuclear chemistry counting situations there are a large number of
particles with long half-lives, so that during the counting period only a moderate
number are expected to decay. In this case the distribution of the life of a particle is
exponential with parameter A. The approximating Poisson would have F(¢) =
n(1—e™*) ~ nit.

Let {X,(t), —o0 < t < o0} be a sequence of counting processes, with the property
that with probability one, there are a finite number of events in every finite interval.
For t > 0, X,(¢) represents the number of events in [0, ¢], and for ¢ < 0, the number
of events in [¢, 0). Suppose that X, » Xy inll. Let T, ;i= +1,:--,n=0,1,---, be
the ith arrival time of the nth process. Let w be a real function with the property
that [ _ . ) X (= 0, ) W(E— )W(t—v) dKo(u, v) exists as an R.S. integral for all .
Define, Y,(t) = Y 2 _, w(t—T,, ). Then, Y,(t) = [, w(t—s)dX ,(s). By Example (i)
following Theorem 3.3, Y, — Y, in L1

The Y, processes are called shot noise processes and are discussed in [11]
pages 149-151. These processes arise in the theory of noise in physical devices.

6.4. Generalized random functions. A generalized random function, defined and
discussed in [5] pages 231-254, is a stochastic process, {Y(4), ¢ €K}, where K is
the linear topological space of infinitely differentiable functions with bounded
support ([5] page 18), and Yis linear and continuous in law on K.

Convergence in f.d.d. of a sequence {Y,} of generalized random functions reduces
to D(Y,(¢)) - D(Yo(¢)) for all e K. If Y, — Y, in L1, then E| Yo(d,)— Y0(¢)|2 =
Ko(¢—,, ¢ —¢,) — 0 implies D(Y,(¢,)) = D(Yo(4)).

An important class of generalized random processes, Y, have the property that
Y(¢)e L*(X) for some process X. For example, the Wiener process which is neither
pathwise nor q.m. differentiable, has a derivative as a generalized random process
given by X'(¢) = — [ ¢'(t)X(¢)dt. Given an Ll convergent sequence of processes
{X,(1),teT} n=1,2,--, to {X,(t), te T}, then any corresponding sequence of
generalized random functions {Y,(¢), €K}, with Y, (¢) = S.(Yo(¢)), is LL
convergent to {¥,(¢), ¢ € K} (Theorem 3.3).
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