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SOME REMARKS ON THE FELLER PROPERTY'

By JoHN B. WALSH

Université de Strasbourg

1. Introduction. Let X, be a temporally homogeneous Markov process on a
locally compact metric space E. Denote its transition probabilities by P,(x, B),
t =0, xeE, Be A, where 4 is the topological Borel field on E. Let C, and %, be
the set of continuous functions with limit zero at infinity, and the bounded Borel
measurable functions respectively. The transition probabilities can be thought of
as operators on %, via the formula P, f(x) = [eP(x, dy)f(y). The process X is
said to be a Feller process if .

(l) Pt: CO - Co,
(i) for each xe E and fe Cy, P,f(x) - f(x) as t | 0.

If X is a Feller process, we can always find a standard modification X of X which
is a Hunt process; that is, X is a right-continuous strong Markov process having
left limits in E, and furthermore is quasi-left continuous: if {7,} is an increasing
sequence of stopping times with limit 7, then X (7,) — X (T) w.p. 1. Most of the
Markov processes presently admitted to the select circle of ““well-behaved processes”
—Brownian motion, for instance, or more generally most diffusion and birth-and-
death processes—are Feller processes. On the other hand the Feller property is
far from being a necessary condition that X be a Hunt process, and its conse-
quences are often consequences of the continuity properties of s — P,fo X; rather
than of x — P,f(x). For instance, it is an easy exercise to show that if X is a right-
continuous Markov process and s — P,fo X, is right continuous for each fe C,,
then X must be strongly Markov. In fact, this condition turns out to be both
necessary and sufficient for X to be strongly Markov (Theorem 2.1).

In this paper, we will show that every strong Markov process satisfies Feller
properties of the second type—here we use the term ““Feller property” very loosely
to mean any relation of the type ““P, takes a class of ‘well-behaved’ functions into
another class of ‘well-behaved’ functions.” Such properties can often be described
topologically, though this is not always the most convenient way. If X, is a right-
continuous strong Markov process, there is a topology on E, called the fine
topology, which is particularly well adapted to the process. A set B E is open in
the fine topology if and only if for each x € B, P*{X, € B for some interval (0, &} =1
Girsanov [5] and Sur [10] proved that if X, is a Hunt process, P, takes the class of
bounded fine continuous functions into itself. This is equivalent to the statement
that s > P,fo X, is right continuous a.e. (P¥) for each x whenever f'is bounded and
fine continuous.
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We will generalize this in several ways, first to arbitrary right-continuous strong
Markov processes, then to general Markov processes, and finally, in both cases,
to continuity properties uniform in ¢. We find, not too surprisingly in view of the
compactification results of Ray [8], that the results for Markov processes are quite
similar to those for strong Markov processes except that “limit” is replaced by
“essential limit,” that is, a limit over all but a subset of the parameter set having
Lebesgue measure zero.

2. The main theorems. Let (E, %) be a locally compact space with its Borel field
and let {X,,t> 0} be a Markov process on E with stationary transition prob-
abilities P,(x, B). By this we mean that X, is adapted to an increasing family
{#F,,t>0} of o-fields (always assumed to be complete) and for each xe E and
t =20, P(x, -) is a probability measure on E such that for each s, t > 0 and Be 4%

2.1 P{X,+SEBI.9"-,} = P(X,, B) w.p. 1.
We also assume:
2.2) t>0, feB, = P,fe %,

A positive random variable T is a stopping time in the wide sense if for each
t>0, {T<t}eF,; and is a strict stopping time if one can replace “<” by “<”
above. We shall usually just say “‘stopping time” instead of “‘stopping time in the
wide sense.” The o-field #, is defined as usual to be {AeF:An{T <t}eF,,
Vi > 0}. Then X is a strong Markov process if, in addition to the above, for each
stopping time T, ¢t > 0, BE4#:

2.3) P{Xr1.,€B|Fr.} =P(Xr, B) w.p. L.
An additional condition, not implied by the above, which is frequently useful is

(2.4) foreach xeE there exists a strong Markov process {X,%, >0} with
transition functions P/(-,*) and absolute distributions P(x, ), ¢ > 0.

This condition turns out to be more of a condition on the transition probabilities
than on the process itself, for, although it will not be proved here, if X is a right-
continuous strong Markov process there is a modification of the transition func-
tions for which both (2.3) and (2.4) hold. We will assume that all strong Markov
processes in this section satisfy (2.4).

Let 2 be the class of functions fe %, with the property that ¢ — P,f(x) is
continuous on (0, o) for each fixed x e E. This class is non-empty; for instance, if
we define R, f(x) = {& e P, f(x)dt for fe B,, then R, fe D for each A > 0. More-
over, if X, is a Hunt process, then C, = 9, where C, is the set of bounded continuous
functions on E. Let 9 be the class of fe 4, for which t — P,f(x) is right continuous
for every xeE, and let 9Dy, be the class of fe %, for which ¢t —» P, f(x) is right
continuous with left limits for all xe E. (When we say that a function {g(t), ¢ > 0}
has right or left limits without further qualification we mean the designated limits
exist for each ¢ > 0.)
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Our first theorems concern strong Markov processes. We will state the theorems
in this section and prove them in Section 4.

THEOREM 2.1. Let {X,, t > 0} be a right-continuous strong Markov process. Then
if feDg and t >0, P,f is fine continuous. Moreover, if in addition f€ Dy, then
s— P,foX, has left limits w.p. 1, and if X, is a Hunt process, then s — P,fo X is
quasi-left continuous as well.

Since a bounded fine continuous function is of class Dy, this includes the
theorem of Girsanov [5] and Sur [10] mentioned in the introduction.

If we start with a function fin @, rather than 95, we can get a stronger result.
Let % be the space of continuous real-valued functions on (0, co) with the topology
of uniform convergence on compacts. If fe 2, then for each x, t > P,f(x) is an
element of €. We will often use the notation P.f(x), or more generally, P._,f(x),
for the functions ¢ —» P,f(x) and ¢t — P,_,f(x) respectively.

THEOREM 2.2. Let {X,,t > 0} be a right-continuous strong Markov process and
suppose fe D. Then with probability one, the process s — P.fo X, is right continuous
and has left limits in the topology of €. If, further, X, is a Hunt process, then
s — P.fo X, is also quasi-left continuous in the topology of €.

If  is merely in 4&,, one can say little about s — P,fo X, for fixed ¢, but it is
possible to make some statements about convergence of the function P.foX..
If v is a finite measure on (0, ), absolutely continuous with respect to Lebesgue
measure, then for each x the function P.f(x) is in L?((0, «), v), where 1 < p =
and fe %,.

THEOREM 2.3. Let {X,, t > 0} be a right-continuous strong Markov process. Let v
be a finite measure on (0, o) which is absolutely continuous with respect to Lebesgue
measure. Then for each 1 < p < 00, s — P.fo X, is right continuous and has left limits
in L2((0, o0), v). If X, is a Hunt process, then s - P.fo X, is also quasi-left continuous.

Notice that this theorem offers another proof of the well-known fact that
s — R, fo X, is right continuous and has left limits w.p. 1, f€ %,.

If we only require that X, be Markov but not strongly so, it is clear that the
theorems above will no longer be true in general. However, the process will still
satisfy a Feller property, albeit a weaker one. If X, is not strongly Markov the fine
topology is no longer relevant, so it is not easy to see how to express these results
topologically except in certain special cases, e.g., Markov chains, to be discussed
later.

We again find that P,f has limits along the sample paths, but limits in a weaker
sense than above. The proper notion of limit here turns out to be that of essential
limit. If F is a metric space with metric d and g: [0, co0) — F then g has the essential
right (left) limit A at ¢, if for each & > 0 there exists 6 > 0 such that the set of
t < to (t = to) for which |t—1,| < 6 and d(g(?), A) > ¢ has Lebesgue measure zero.
If g is real-valued, the essential supremum of g over an interval (a, b) is the smallest
M for which the Lebesgue measure of the set {te(a, b):g(t) > M} is zero.

In the present situation the continuity properties of the sample paths of X, are
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not vital. It is enough to assume the process is measurable, that is the function
(t, w) = X (), (t, w)€(0, c0) x Q, is measurable with respect to J x &, where
T is the class of Borel sets on (0, co]. The following theorem, along with Lemma
4.4, was proved in a slightly different form in [3]. We state it here for completeness.

THEOREM 2.4. Let {X,, t > 0} be a measurable Markov process on E and suppose
f€Dy. Then for eacht > 0:

(i) feDr=>5— P, fo X, has essential right limits w.p. 1.
(ii) fe Dyr=>5— P,fo X, has essential right and left limits w.p. 1.

As before, if fis in the class 9, the same continuity properties of s — P,fo X
hold, but they hold uniformly for ¢ in compact sets. We need, however, to assume
the Chapman-Kolmogorov equations. (This assumption can be relaxed, but only
slightly.)

THEOREM 2.5. Let {X,, t > 0} be a measurable Markov process on E. Suppose the
transition probabilities of X, satisfy the Chapman-Kolmogorov equations, and suppose
f€D. Then for each t >0,s— P.foX has essential left and right limits in the
topology of €.

THEOREM 2.6. Let {X,, t >0} be a measurable Markov process, and let fe%,.
If v is a finite measure on (0, c0) which is absolutely continuous with respect to
Lebesgue measure, then s — P. fo X, has essential right and left limits in L?((0, 0), v)
w.p. 1.

3. Random variables in a Banach space. Let 2 be a Banach space with norm
|| || Let X be a strong random variable taking values in # (for definitions and
properties of strong random variables and strong conditional expectations, see [9]).
If & is separable, a necessary and sufficient condition that X be a strong random
variable is that u(X) be a random variable for each bounded linear functional g,
or just for each u in a countable determining set. (Recall that a countable deter-
mining set is a countable set 4 of linear functionals with the property that
||x|| = sup, . 4 [u(x)| for all xeZ.)

If E{||X||} < o0, and #,c & then there exists a strong conditional expectation
E {X | &}, which is itself a strong random variable. The strong conditional
expectation operator commutes with bounded linear functionals. In particular, if
X and Y are strong random variables and if for each y in some countable determin-
ing set 4 we have u(Y) = E{u(X)|#,} w.p. 1, then Y = E,{X|#,}; for then
u(¥) = E{u(X)| #} = p(Ex{X|#,}) for all ped wp. 1.

The following theorem is due to Chatterji [1] and generalizes a result of Scalora
[%1:

THEOREM. Let X be a strong random variable with values in % and E{||X||} < co.
Let {#,} be an increasing (decreasing) sequence of o-fields, and set X,, = E5{X | F.}
Then lim,, , X, exists w.p. 1, and equals Eq{X| \,&,} if #, |, or Egr{X|V,,97 }

if Fal.
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We will find a slight extension of this result useful later, a Banach space version
of an observation of Hunt. According to Hunt’s result ([6] page 47) if {#,} is
either an increasing or decreasing sequence of o-fields with limit &, and {X,}
a sequence of real-valued random variables such that for some integrable random
variable Y, |X,| £ Ya.e.,and X, - X,, w.p. I, then E{X, | #,} > E{X,. | #} w.p. ].

PROPOSITION 3.1. Let & be a Banach space and let {X,} be a sequence of strong
random variables with values in &', such that X,; - X, strongly w.p. 1. Suppose there
exists a random variable Y such that ||X,|| £ Y, all n and E{Y} < co. Then if {#,}
is an increasing or decreasing sequence of o-fields with limit F ., E¢{X,|#,} -
Eq{X,|F .} strongly w.p. 1.

PROOF. Ez{X,| #,} = Ex{X o | F .} + Eg{X,— X, | #,}. The first term converges
to Eg{X | Z .} by the Chatterji-Scalora theorem. The second term is dominated in
norm by E{||X,—X,,||| #,}. But this goes to zero w.p. 1. by Hunt’s lemma quoted

above. []
For our use we need only consider Banach spaces whose elements are (equiva-

lence classes of) functions on [0, c0) or on some subset B of [0, o), with Banach
space addition and scalar multiplication corresponding to pointwise addition and
scalar multiplication of functions. Such a Banach space will be called rype o if

(i) For some M > 0, fe & = ||f|| £ Msup, .|/ (x)|.

(ii) There exists a countable determining set {#;} of bounded linear functionals
such that for each i, there exists a finite measure y; on B for which A(f) =
[f()nydx), fe X

It should be noted that condition (i) is empty unless f is bounded. However, the
applications we have in mind concern bounded functions, and this condition is
simply a convenient method of assuring us that if {X,, e B} is a bounded stochastic
process such that X.e Z, then Ey{||X||} < c. In our applications, Z will either
be an L? space, the real line, or a space of continuous functions on a compact set,

which are clearly of type a.

PROPOSITION 3.2. If & is a separable type o space and {Y,, te B} is a measurable
stochastic process such that for a.e. w, the function Y.(w) is an element of Z, then
Y. is a strong random variable.

ProOF. Let {f;} be the determining set, and p; the corresponding measures.
Then by Fubini’s theorem, the functions fA(Y.) = [pY(w)u(dr) are random
variables. []

PROPOSITION 3.3. If & is a separable type o space and {Y,, te B} and {X,, te B}
are measurable processes such that w.p. 1 X. and Y. are in &, and F , is a o-field,
then a sufficient condition that Y. = E4{X.| %} is that Y, = E{X,| #} w.p. 1 for
each te B.

ProOF. Again by Fubini’s theorem, for each fi; in the countable determining set:

(3.1) ALY ) = [p Y, pud?)
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and AUE.{X.|#}) = E{pX)| #,} = E{[pXpuidr)| #,}. If we now take a
measurable version of E{X,|#,} this is equal to [RE{X,| % }uidr) = p(Y.)
w.p. 1. ]

4. Proofs of Theorems 2.1-2.6. Let {X,, r> 0} be a temporally homogeneous
Markov process. The theorems in Section 2 can be reduced to questions concerning
strongly Markov sub-processes {X,, reI"} of X of two kinds:

Case A. T is a countable dense set for which {X,, 7€'} is strongly Markov.
Case B.T = (0, o) and {X,, teT'} is right continuous and strongly Markov.

We begin with a substitution lemma which is not new but which is given here in
the form we need. Its only surprising feature is that it needs proof.

LeMMA 4.1. Let T be a stopping time taking values in T and let h = 0 be an
F r+-measurable random variable which is countably-valued in Case A but arbitrary
in Case B. Then for any fe 3,:

4.1) E{f° Xrin I g"T} = Ph(co)foXT(w)(w) w.p. 1,
where the right-hand side is P,fo X1 evaluated at t = h(w).

PRrOOF. If A has its values in a countable set {¢;}, then (4.1) follows immediately
from:

“4.2) E{foXriy| Fr} =31 Ipp=ey E{fo XT+:,| Fr}

and the strong Markov property applied to 7. This proves Case A, and Case B
follows upon taking a sequence {A,} of countably-valued # ;,-measurable random
variables decreasing to A, and noting the right continuity of ¢— foX, and
t — P,fo Xy for each of a countable family of f dense in the space C of continuous
functions of compact support. []

Let & be a separable type o Banach space and fix xe E. For certain fe %,, P.f(x)
may be an element of &. This is true for all fe 4, for instance, if 4 is an L space
of a finite measure. If we apply P, to P.f we may again get an element of Z, which
we denote by P,P.f(x). By the Chapman-Kolmogorov equations (when they are
valid), P,P.f(x) = P,,.f(x), so P, is a restriction of the translation operator. In
general, any continuity properties in s that this operator might have will depend
on f. (In this section, the only Banach space topology to interest us is the norm
topology, so that all statements about limits in % refer to limits in the Banach
space norm.)

Accordingly, we define classes 2(%Z), Dx(Z) and D (%) as follows: DR(%) is
the set of fedd, such that for each xeE and ¢ >0, P.f(x) and P,P.f(x) are
elements of & and for which ¢ — P,P. f(x) is right continuous. 2, (%) and 2(%)
are the sets of fe Dp(Z) for which ¢t — P,P.f(x) has left limits and for which
t — P,P.f(x)is continuous, respectively, for each xe E. Clearly 2(%)c Pz (¥)<
D(%).

The theorems of Section 2 can all be proved from the following theorem by
choosing the Banach space ' conveniently.
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THEOREM 4.2. Let ¢ > 0 and let & be a separable type o. Banach space of functions
on some subset B of [e, 00). Let X be a Markov process and I"<(0, o) a set for which
either Case A or Case B obtains. We have:

@) if feDR(Z), then w.p. 1, limy, s 1 P.fo X; exists for all t > 0; in Case B this
limit is P.fo X,. .

(b) If fe D (%), then w.p. 1, limg,, s P.fo X; exists for all t > 0.

©) If fe D(X) and X, is a Hunt process, then s — P. fo X, is quasi-left continuous.

REMARK. The limits in the above theorem are all limits in the norm topology of
Z.

Before proceeding to the proof, let us remark that for any fe 2x(Z) and (e %,
the function x — ||P.f(x)—¢|| is Borel measurable. This is easily seen since
[s1(dt)(P,f(x)—&(2)) is Borel measurable in x and ||P.f(x)—¢|| is just the supre-
mum of these over all y; in the countable determining set of functionals on Z.

Proor. The crucial step in the proof'is to show s — P, fo X has a right limit at an
arbitrary stopping time 7. Once this is established, the existence of limits at all ¢
follows by a modification of a transfinite induction argument of Doob.

Let feDx(Z) and let T be a stopping time. We claim that lim, o P.fe X7,
exists in & with probability one. To show this, it is sufficient to verify the existence
of the limit on the set {#, £ T < t,+3¢} for an arbitrary #,. Thus, set

T =T if =T <ty+ie,
= 0 otherwise.

Fix 6 > 0 and choose a sequence Ty, Ty, ***, Ty, -+ of I'-valued stopping times
decreasing to T’ with T, < t,+3¢ for all k. If X, is right continuous or if I is
countable, {X,, te'} is automatically well-measurable (see [7] page 156) for the
definition and properties of well-measurable processes) so that for each »n the set

A, ={(t,0)eT xQ:||P.foX,—P.foXy, || > 30, te(T Ton-11}

is well-measurable. Let ITA4, be the projection of 4, on Q. By Theorem T21 of
([7] page 162), there is a stopping time S with values in I'n\(T,, T,,-,] for which
P{(S, w)eA,} = P{T14,}—27". Set Ty,_; = S.

Fix teB (which implies ¢ =¢, where B and ¢ are given in the statement of the
theorem) and choose a constant ¥ in I'n(¢, + 3¢, 1o +¢). In particular, 7, is less than
V whenever T, is finite, and, as T, and V take values in I', by Lemma 4.1

(4~3) Ptf°XT,. = E{f°XT,.+: | 97T,,} = E{Pt+T,.—Vf°XV | fr,.}-
This being true for all re B implies—by Proposition 3.3—
(4.4) P-foXT,. = E.%“{P'+Tn—Vf°XV|ﬁT,.+}'

Now fe@R(f{) so as n—o oo, T,\T, Fr+lFprs and P.or _yfoXy—
P., 1 _yoX, boundedly. By Proposition 3.1 the right-hand side converges to
Eg{P.,q1_yfoXy|F ..} If T takes values in I, we can apply Lemma 4.1 to see
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this is P.foX7.. But now, noting the choice of the T, and applying the Borel-
Cantelli lemma:

P{limsup,,7||P.foX,—P.foX || > 6}
< P{limsup,, o0 ||P.fo X7y—P.fo X7, || > 30} =0

since the sequence P.fo X, converges.

It follows upon letting § go through a sequence tending to zero that s —» P.fo X
has a right limit at 7" and hence 7, and is right continuous there if 7" takes values
in T'. From this, existence of right limits in (0, co) may be shown as follows. Define

SO = 0,
S, =inf{t> S :||P.foX,—lim,5, P .fo Xj|| > 6},

and by induction, S,4; = S,+S;00s,, where 0 is the translation operator. If
lim,., . S, < o, define S, =lim,,,, S,, Sp+1 = S, +S;00s,, and so on through
the countable ordinals. As P.fo X has a right limit at each Sj, S5.; > S; a.s. on
{Ss < oo}. Thus, for some countable ordinal y, P{S,= oo} = 1. For @ not in
some exceptional null set, for 1 = 0 there is a f37€[Sy(w), S;+,(w)), hence the
right-hand oscillation of P.fo X, at ¢ is less than §. This being true for a sequence of
d decreasing to zero implies existence of right limits at all # and right continuity at
all reT".

If now fe D (%), let {S,} be the sequence of stopping times defined above.
Let §$=1lim,,, S, Using Meyer’s theorem again we can construct a sequence
{S,’} of I'-valued stopping times increasing to S'so that a.e. on

{S < 00, lim sup, o ||P.fo Xs,s, ,— P.fo X, || > 1.

As before, it is enough to show existence of the limit on the set {to—%s £S< to}
for an arbitrary t, in I, so we may assume without loss of generality that
to—1e £ S <ty everywhere, and that S,’ > ¢, —3e. The proof then proceeds almost
as above. We have, for te B (hence ¢t = &)

4.5) PfoXs =E{Ps-tofo Xio| Fsv+}-
This being true w.p. 1 for each #e B implies

(4.6) P.foXs, = Eer{P-+s,.'—tof° Xs | fs,."f}-

But this converges almost surely by Proposition 3.1 above. By choice of the S,’, S
must be infinite w.p. 1. But now this must hold simultaneously for a sequence of 6
tending to zero, which implies that w.p. 1 s— P.foX, has no oscillatory dis-
continuities from the left.

Finally, if fe 2(Z) and X is a Hunt process, the argument we have just given
shows that if S, 1S < oc is a sequence of stopping times—again assume for the
minute that 7,— 3¢ £ S < ¢, everywhere—that

limn—voo P-f°XS,. = E&’{P-+S—tof°sto | Vn‘g;Sn};
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as \/,Fs, = s+ for a Hunt process [7], this conditional expectation is equal to
P foXsgwp.1l. [J

Theorems 2.1, 2.2 and 2.3 are now readily established. Theorem 2.1 follows
directly from Theorem 4.2 upon taking & = (— o, o) and noting

@=@(—OO, OO), @R=9R(_ 0, w), and @RL=9RL(_ 0, OO).

PRroOF OF THEOREM 2.2. If fe 9, then ¢t — P,f(x) is continuous for all xeE, so
for each n = 1, P.f(x)e C[1/n, n], which is the space of continuous functions on
[1/n, n] with sup-norm. As ¢— P,f(x) is uniformly continuous on [g, 1/¢] and
PP f(x) = P...f(x), the mapping s —» P.P.f(x) is continuous for ¢ > 0. Thus
fe2(C[1/n, n)). If we apply Theorem 4.2, we see that w.p. 1 s - P.fo X| is right
continuous and has left limits in C[l/n,n], n=1,2, -+ which implies that
s — P.fo X, is right continuous and has left limits in ¥. If X, is a Hunt process,
then Theorem 4.2 implies quasi-left continuity of s — P.fo X; in all C[1/n, n], and
hence in €. [J

ProOF OF THEOREM 2.3. Let v be a finite measure on (0, o) which is dominated
by Lebesgue measure, and consider L?((0, o0), v). We cannot apply Theorem 4.2
directly to this space, since the theorem applies only to spaces of functions on some
subset of [e, o). However, we can apply it to the spaces &, = LP{[1/(n+1), 1/n), v},
n=0,1,2,--- (where Zo = L?{[1, o0), v}). If g,, g5, * - - is a sequence of uniformly
bounded functions, it is easily verified that {g,} converges in L? iff it converges in
each Z,.

Observe that if fis a bounded Borel measurable function on E, P.fe L?((0, ), v),
p =1, and the map ¢t — P,P.f(x) = P.,,f(x) is just the translation map. As v is
dominated by Lebesgue measure, this map is continuous, so that

By = D(LP((0, ), v)),

and therefore #,c2(%,), n=0,1,2,--. By Theorem 4.2, s > P.fo X is right
continuous and has left limits in each &, and if X, is a Hunt process, is even
quasi-left continuous in each . As |P,f(x)| < sup, . ¢ | /()| for all x€ E, the same
conclusions must hold in LP((0, o), v). [

Theorems 2.4, 2.5 and 2.6 are quite close to Theorems 2.1, 2.2 and 2.3 except
that they involve essential limits rather than limits and ordinary Markov processes
rather than strong Markov processes. Questions of the existence of essential limits
can be reduced to questions of the existence of ordinary limits along countable sets,
making it necessary to look only at processes with denumerable parameter sets. We
begin with a lemma to the effect that increasing o-fields, like increasing functions,
have at most countably many discontinuities. It could be easily avoided but as it is
so simple there seems no compelling reason to do so.

LemMMA 4.2. Let (M, %, p) be a measure space, where u is finite and 4 is the
completion of a separable o-field. Let {4,, — 0 <t < oo} be a set of complete
sub-c-fields of 935 < t=%5<%9,. Then for t not in some countable set, \s> %=
gt = Vs<tgs'



SOME REMARKS ON THE FELLER PROPERTY 1681

PrOOF. L'(%, u) is separable, so let {f;} be a countable dense subset. For each i,
let Y,' = E{f;|9,}—we take a separable version—and note that for each ¢, {¥,'} is
dense in L'(9,, p). This follows since for ge L'(%,, p), E{|g— Y|} £ E{|g—1},
and the fact that f; is dense. But now, {Y,}, — o0 < ¢ < o0} is a separable martingale
and so has no oscillatory discontinuities w.p. 1. This implies that it must be
continuous at all but countably many ¢. Thus, for ¢ not in some countable set 4,
P{Y/ continuous at 1, all i} = 1. If t¢ 4, lim,, Y,/ = Y/} is measurable \/,<,%, and
lim,, Y/ = Y, is measurable /\,, &, for all i. By density of Y, this proves the
lemma. []

Except for the continuity condition on the fields, which is trivial in view of
Lemma 4.2, the following lemma was proved in [3].

LemMMA 4.3. Let X, be a measurable Markov process, and let g be a Borel measur-
able function on E. Then there is a countable parameter set I" with the property that
for a.e. w and each interval [a, B] in [0, c0):

€8S SUP,<r<pg° X, = SUPu<r<p,rer g ° Xs
eSSinfa§,§ﬂg°X, = infa§t§ﬂ’tergoxt

and such that teI'=> %, = N> F,.

As is well known, if I'=(0, o) is a countable set such that >, #,= &, for
each tel, {X,, tel'} is strongly Markov. With Lemma 4.3, Theorems 2.4-2.6
follow from Theorem 4.2 as in the previous case. Theorem 2.4 follows directly
upon taking & in Theorem 4.2 to be (— o0, 00).

ProOF OF THEOREM 2.5. Let fe 2. For each xeF, P.f(x) and—since the
Chapman-Kolmogorov equations are assumed—P,P.f(x) are continuous on
(0, o0) and ¢ — P,P.f(x) is continuous in C[1/n, n] for each n = 1. Now for each
rational r, by Lemma 4.4 we can choose a parameter set I', such that for each
a<p

€ss SuPag:gpPrf° X, = SuPa§z§ﬁ,:er,Prf°Xt
and
CSSinfaétgﬁP,.fOX, = infagtéﬁ',errP,,fOX,,

such that the fields &, are continuous at each teT’,. Take I' =, rationa I+ FOT
each n>1 and ¢eC[l/n, n), ||¢|| = sup {&(r), r rational in (1/n, n)}. Thus with
probability one, for each n and ¢, = 0

lim,cp ;o P.fo X, exists =>esslim,,,, P.foX, exists.

Because of the translation property, the same holds for the essential limit of
P.,foX, Thus Theorem 2.5 will be proved if we verify the corresponding limits
exist along I'. But {X,, teI'} is strongly Markov and fe 2(C[1/n, n]) so that by
Theorem 4.2, s —» P.fo X has right and left limits along " in C[1/n, 1/n]. This is
true simultaneously for n = 2, 3, - -, which implies existence of essential right and
left limits in € w.p. 1. []
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PRrOOF OF THEOREM 2.6. Let fe 8,. Then P. f(x)e L?((0, «), v). For each s, ¢, the
set 4, , of x for which P, ,f(x) = P,P,f(x) has the property that P{X,ed,} =1
for all ¥ > 0, and hence by Fubini’s theorem, the set B, for which

P,P,f(x) = P, f(x) for a.e. (v) t>0

has the property that P{X,eB,} =1, all u>0. By modifying the transition
probabilities off B; if necessary, we can and will assume B, = E, Vs > 0, so that,
considered as elements of LP((0, o), v), P,P.f(x) = P.,,f(x). But as v is dominated
by Lebesgue measure and P. f(x) is bounded, the translation operators — P.. /' x)
is continuous in LP((0, ®©),v), 1<p<ow (but not for p=oco!). Thus
f€D(LP[(0, o), v]).

As in the proof of Theorem 2.3, we consider the spaces &, = L?([1/(n+1), 1/n), v),
n=0,1,2,--.

Fix n for the moment. Certainly fe 2(x,). Let {£;} be a countable determining
set of functionals on %,. For each i, apply Lemma 4.4 to find a countable set
I';=(0, oo) with the property that

€ss SuPa§t§pﬁi(P-f°Xt) = SuPagzgﬂ,tsrﬁi(P~f°Xt)
€ss infagtglxﬁi(P-f"Xr) = iﬁfa§t§p,:erﬂi(P~f°Xt)

for all « < f8 and such that &, is continuous at each teI';. Let I' = U,I';, and note
that existence of &,-limits along I" implies existence of essential % ,-limits. But by
Theorem 4.2, s —» P.fo X, has right and left Z,-limits along I" w.p. 1. This is true
simultaneously for all n; hence, as P,f(x) is bounded by superl f (x)| < o0, We
have right and left L?-limits w.p. 1 along I, which implies the theorem. []

5, Markov chains. For a strong Markov process some of the results we have been
discussing can be stated in topological terms; for example, if fe Dx(E) then P, fis
fine continuous. This elegant statement of the Feller property is generally not valid
without the strong Markov property so if X is merely Markov, the translation of
path-continuity of P,fe X, into continuity of x — P, f(x) may be difficult. Markov
chains, however, give an example where such translation is readily accomplished.

Let {X,, t = 0} be a homogeneous Markov chain with state space E = {0,1,2,"+}
and transition matrix (p;(f)). Weassume the matrix is standard, that is) ;pij(t) =1
and p;(t) — 1 as t - 0 for all i. Such a process is not necessarily strongly Markov,
and indeed its paths may be totally discontinuous. To bring notation into line with
that of the preceding sections, let us define the operator P, by

P,f(i) = 3 pi(Df ().
Then p;;(t) = P (i), I; being the indicator function of j.

Chung [2] has defined a “fine” topology on E: a base of neighborhoods at a
point i is given by sets of the form {k:p,(6) > 1—0"} as §, &’ go to zero. (It should
be noted that this is nof necessarily analogous to the fine topologies we have defined
for strong Markov processes.) If we write

P, I1,k)= pki((s)Pt-&Ij(i)+Zl¢ipkl(5)Pt—6Ij(l)
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and let k —i and § —» 0, remembering that ¢ — p;(¢) is continuous on 7 = 0, we
see that P J; is continuous in this topology; in fact this topology is the coarsest
topology making all such functions continuous. It follows from the obvious
uniform convergence argument that if fis bounded on E, P,f is continuous in this
topology. This conclusion is rather trivial—the topology was expressly constructed
to make it true. More interesting is the fact, not immediately obvious from the
above remarks, that Chung’s fine topology is an intrinsic topology for the process
in a certain sense.

There is a version of X, taking values in Eu{co} such that X, = lim inf; , X,
for each s. Things are slightly complicated by the fact that X, can take on the value
0. However, it does so at each fixed ¢t with zero probability, and the Lebesgue
measure of S (w) = {¢: X,(w) = o0} is almost surely zero:

ForieElet Sw) = {t: X(w) = i} and Sg(®) = U pSi(w). Then the restriction
X, ] tesg 1S almost surely right continuous.

This result is due to Chung (see [2] page 190) but it can be readily shown from
Theorem 2.4. It is necessary to show that s - P.J;e X | sesg 18 right continuous, and
this is quite easy given the fact [2], that for each i the set S;(w) has the property
that reS)(@)=m([t, t+3]nS(w)) >0, m being Lebesgue measure. Thus, if
seSg, we have:

if esslim, (P l;e X, =P ;0 X, then lim, g e, Piljo X, = P10 X,

But ¢t — P,I (i) is continuous, so for ¢ >0 Theorem 2.4 implies s — P J;0 X, has
essential right limits at all s > 0. In particular, if s Sg(®), then se S w) for some
i; as the Lebesgue measure of S,(w)N(s,s+3) is strictly positive for each
0> 0, PJIi)= PJjo X, must be an essential limit point of P,J;0 X, as u s, and
hence the essential limit. This implies essential right continuity at each point of
Sk, and, by our above remarks, right continuity of PJ;o X ] S
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