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A PROPERTY OF POISSON PROCESSES AND ITS APPLICATION
TO MACROSCOPIC EQUILIBRIUM OF PARTICLE SYSTEMS

BY MARK BROWN

Cornell University
0. Introduction. It was shown by Derman [2] page 545, that if one takes a
denumerably infinite state transient Markov chain with stationary measure
pand:
(i) at time O inserts A,(0) particles into state i, i = 1,2, -+, where the 4,(0) are
independent Poisson variables with parameters EA; = u;;

(ii) lets each particle change states according to the transition matrix of the
Markov chain, the particles behaving independently of one another: then for any
n, the set of variables {4,™ i =1,2,---}, where 4, is the number of particles in
state i at time n, are independent and Poisson dlstrlbuted with EA™ = yu,.

Port [8] studied the above system.-and derived the independent Poisson property
with common parameter, for several collections of random variables describing
various aspects of the behavior of the particle system.

One way of viewing this system is to regard the initial spatial process as a non-
homogeneous Poisson process over the integers, and each particle (point of the
Poisson process) as being independently mapped by a random sequence valued
function into the sequence of its future states. The particle system thus generates a
counting process on a space whose points are countable sequences of integers. This
counting process can be represented by the collection of sequences {g,(7;)} where
the T, are the initial states of the particles and the {g,} are i.i.d. random mappings.
It then follows from a result apparently due to Karlin [4] page 497, and discussed
by the author [1], that the counting process generated by {g,(7;)} is Poisson, and
strictly stationary. This strict stationarity generalizes the first order stationary of
Derman, and from it the results of Port follow.

In general if we take a Markov process with stationary transition probability,
state space (£, %) and o-finite stationary measure y, and at time O start with a
Poisson (&', %, 1) process and move each particle independently according to the
transition law of the Markov process, then we obtain a Poisson process on the space
of particle paths. The measure of this Poisson process is strictly stationary and
coincides with the measure on path space generated by u and the transition law
of the Markov process. This strong equilibrium property is derived in Section 3.
The main tool is a generalization of Karlin’s result (Section 2).

1. Definitions. Let (Z,%, 1) be a measure space and let n be a random non-
negative integer-valued (including + o0) set function on (Z,%). Define n to be
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Poisson (%, %, p) distributed if for every m and corresponding sets Cy,**,C,€%
and nonnegative (including + co0) integers ry,"**, 7"

Pr ('T(C,) = rj’j =1, m) = 1_['_;'=1 P(#(C,)’ rj)

Ae
where p(4,a) = TR A< © o< o0,
=1, A= o= 00, A=0 a=0
=0 elsewhere.

We will be concerned with the case where yu is o-finite. In this case it is easy to
prove the existence of a Poisson (Z',%, u) process (see comment (i), Section 4).

Define the measurable space (%', %) to be chunkless if {x} €% for each xe Z. We
will be assuming that (%, %) is chunkless in Theorem 1. This assumption is con-
venient but not necessary. It is further discussed in Section 4, comment (ii).

Define the random point set {T}, i = 1,2, -} of a Poisson (%, %, u) process with
u o-finite and (&, %) chunkless as follows. For each realization of » there are a
countable number of points each assigned a positive finite integer as its measure.
Order these points in an arbitrary manner obtaining a set {S;, i=1,2,---}.
Define T; = S; if YiZ1n(Sy) < i< Y.{n(Sy. If the number of S; points are finite
then terminate the T, sequence at i = n(%). Note that if (%) < co then with positive
probability the random point set will be empty.

2. Random transformations of Poisson processes. Theorem 1 which follows is a
fairly straightforward generalization of a result of Karlin [4] page 497, which in
turn is a generalization of a result of Doob [3] page 404. The method of proof we
employ is found in Doob’s theorem and is also employed by Karlin. The author
independently derived Karlin’s result, using a different type of proof, but the
author’s proof does not easily generalize. See Brown [1] for a discussion of the
above mentioned results and some applications.

TuEOREM 1. Let n be a Poisson (¥,%,u) process, with p o-finite and (%,%)
chunkless. Let (Q, B, P) be a probability space, (¥,9) a measurable space and g a
map from (Q, B) x (%, %) to (¥, D) satisfying:

(i) g(-,x) is a measurable function from (Q, #) to (¥, D) for all xe Z.

(ii) P(g(-,x)eD) considered as a function from (¥, %) to the real line is Borel
measurable for each De 9. Let {T;,i=1,--,n(Z)} be the random point set of the
n process, and let {g;,i=1,"+-,n(Z)} be an i.i.d. sequence distributed as g and
independent of {T;,i=1,2,"++,n(%)}. Then the collection {g(T),i=1,""*,n(Z )}
generates a Poisson (¥, 9, u,) process where yu (D) = [« P(g(y) e D) du(y).

PROOF. Since y is o-finite we can decompose % into a countable number of dis-
joint sets X;, X, with U, X; = &, u(Xy) < oo for all i. Let ¥, = UT X

Conditional on 5(Y,,) = n, the T; points are distributed as an i.i.d. sample of size
n, with distribution P(C) = u(CnY,,)/u(Y,,) for Ce¥. This can be seen by writing
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P(C) =k;j=1, lIn(Y)—n) P(C) =k j=1, L, n(Y,~U:C) =
n— Z’ k) Pn(Y,) = n), and using the Poisson property of n. It thus follows from
the assumptions on g that each point falling in Y,, has a probability Pjm of being
mapped by g into C; where

P; .. = 1/u(Y,) fy,. P(g(y) € C;) du(y).

We thus can compute the conditional probability of the event {n,,(C)) = k;
j=1,---,1} given {n(Y,)=n}. Removing the condition by multiplying by
P{n(Y,,) = n)} and summing over n we obtain that {n, ,(C;),j=1,--,} are inde-
pendently Poisson distributed with parameters En, ,(C;) = [y, P(g(») € C;)du().
The result follows by letting m — 0.

3. Application to macroscopic equilibrium of particle systems. Consider a Markov
process with chunkless state space (%', %), real index set T containing a first element
which we denote by 0, and stationary transition probability P(x,-) satisfying
the conditions of [7] page 568. Assume the existence of a o-finite stationary measure,
that is a o-finite measure u satisfying:

H(C) = [ Px, C)du(x)

for all teT, Ce¥.

Let® = X, 7% 92 = X1 %, Thenuand P,(x,-) generate a strictly stationary
measure y on (%, 2). The value of y on finite dimensional rectangles being given
by:

'Y(‘%"icn) = j' t jxe.‘l';y; eCyi=1,--+n—1 #(dx)Pt;(x7 dh)ﬂf'—'?fl) P(y:'_t,: C:

Suppose at time 0, we start with a Poisson (%', €, 1) process and let each particle
independently move around in £ according to the underlying Markov process.
Define:

= {functions w,:T —» & with 0,(0) = x}; '

A, = o-algebra of subsets of Q, generated by sets of the form {w,(0)= x,
w(t)eC;,i=1,--+,n with C;e¥%}.

P,—probability measure on (Q,, #,) obtained by starting the Markov process in
state x at time 0.

Q= xxe.‘tgm B = xxe.‘fﬂm P= xxez’Px'

Define the random function g:(Q, #) x (%, %) - (¥, D) by g(w, x) = w,. It follows
that g satisfies conditions (i) and (ii) of Theorem 1; condition (i) because
lg(-,x)]" (D) = DX[X,ca,#:Q,]€Z; condition (ii) because of the conditions
imposed on the transition probability.

We thus can apply Theorem 1 and obtain the result that the moving particle
system {g(T;)} generates a Poisson (%, 2,y) process where 7 is described by (1).
Since 7 is a stationary measure on (%, 2) the moving particle system is in statistical
equilibrium.
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"EXAMPLE 1. Derman [2] and Port [8] and [9] considered a denumerable state
transient Markov chain possessing a stationary measure u. At time 0 4,(0) particles
are assigned to state i, i = 1,2, - - - where the 4,(0) are independent Poisson variables
with parameters EA4,(0) = u;. Each particle goes through a sequence of state
transitions governed by the transition matrix of the chain. The particles are assumed
to behave independently of one another.

It follows that the moving particle system generates a Poisson process on the
space of sequences of states, the Poisson measure coinciding with the stationary
measure on this space generated by u and the transition matrix. Theorem 3 page
407 and Lemma 1 page 408 of Port [8], Lemma 7.1 of Port [9], and Theorem 2
page 545 of Derman [2] are special cases of this result.

ExaMpLE 2. Let X be a vector-valued (X(z,w)eE") spatially homogeneous
Markov process with stationary transition probability (P(X,,,€A | X, =x)=
P(X,e{A—x}| X, = x)). Doob [3] page 406 showed that Lebesgue measure is a
stationary measure for such a process.

Thus if at time O particles are distributed in E” according to a homogeneous
Poisson process, and each particle performs a motion according to the transition
law of the Markov process, then as was shown in Section 3, the counting process
generated by the collection of particle paths is a strictly stationary Poisson process
over the space of vector-valued functions on [0, c0).

More generally, if we start with a homogeneous Poisson process on E" and
consider the collection of functions {{T;+ X(#), ¢t = 0},i=1,2, -} where {X,} is
an i.i.d. sequence of random vector-valued functions independent of {7} and
possessing strictly stationary increments (for any m and corresponding pairs
(s;,t) i=1,--+,m,the joint distribution of X, ,,— X,,,i = 1, -+, m, is independent
of ¢), then it follows from Theorem 1 that the counting process generated by the
particle paths will be strictly stationary Poisson.

Doob [3] page 406 proved that if {7’} is the random point set of a homogeneous
Poisson process on E" and if { {X;(t)—T;, t =2 0}j=1,2,---} is an i.i.d. sequence
of random vector-valued functions independent of {7}, then at any time ¢ the
spatial process will be homogeneous Poisson. This stationarity property is a weaker
one than we have considered but it holds for a larger class of motions. Thus Doob’s
result says that the number of particles whose state is contained in A4 at time ¢ is
Poisson-distributed with parameter independent of ¢. Our result says that under a
more restricted motion described above, for any m,t,, ", t,, A1, ", A, the
distribution of the number of particles whose state is contained in A4; at time
t+t,i=1,--+,m, is Poisson with a parameter independent of ¢.

Doob considered motions of the particles in which the displacements
{X;(t)—T;, t 2 0} are assumed independent of each other and of {T;}. The result
derived in Section 3 allows consideration of certain types of displacements
{X;(1)—T;, t 2 0} in which the jth displacement is dependent on the initial state
T;. This is so because the Markov process governing the position of the particles
need not be spatially homogeneous. In the non-spatially homogeneous case the



A PROPERTY OF POISSON PROCESSES 1939

stationary measure will differ from Lebesgue measure. For example, let the
particles move with velocity one on (— o0, 0) and with velocity 2 on (0, c0). Then
the stationary measure p(A4) = (4N (— o0, 0))+3(4 N (0, c0)) where ! is propor-
tional to Lebesgue measure.

Note that Theorem 1 restricts the motions we may consider to those in which
for all j the jth displacement process {X;(t)— T}, t = 0} is conditionally indepen-
dent of {X(t)—T;, t =20, i+ j} and of {T;}, given T;.

ExAMPLE 3. We may have a situation in which the real-valued process {D(¢),
t 2 0} representing the position of a particle is non-Markovian, but the velocity
pattern {V(t),t=0} is Markovian. In this case the process {W(t), =0} =
{(V(t), D(t)), t = 0} is Markovian. If u is a stationary measure of the V process and
the V process is spatially homogeneous, then u x {, where { is Lebesgue measure
is a stationary measure for the W process. To see this, let P* be the transition
probability for W and P the transition probability for V. Now:

1) JJP*((x,0) = (a, b) x (vy,0,)) dx du(v)
= [[P(A]| V(0) = v)- [ [P(B,| A, V(0) = v) dx] du(v)
where A={V(t)e(vy,v,)}, B.={5V(s)dse(a—x,b—x)}.

Now (1) can be reduced to:

@) (b—a) [P(A| V(0) = v)du(v)

as follows from Doob [3] page 406. From the stationarity of u it follows that
(2) = (b—a)u(v,,v;), and thus the result is proved.

This example was motivated by remarks in Spitzer [10]. Spitzer points out that
if Vis an Ornstein—-Uhlenbeck process then a Poisson u x | spatial-velocity process,
where p is invariant for V, is preserved under independent Ornstein—-Uhlenbeck
motions of the particles. The Ornstein-Uhlenbeck process (normal process with
mean 0 and covariance kernel K(s, t) = aexp (— B |t—s|), « > 0, B > 0) has a finite
stationary measure (a N(0, &) distribution).

Another example is motion under constant velocity. In this case every measure is
stationary for the velocity process. Thus if particles are spatially distributed
according to a homogeneous Poisson process at time 0, and choose i.i.d. velocities
{V;} which they maintain forever, then the collection {(T;+V;t,V)),t=0,
i=1,2,--} generates a strictly stationary Poisson process. Various cases of this
result have appeared in traffic theory literature.

4. Comments and additions.

(i) In Theorem 1 we assume the existence of Poisson (%', %, u) processes where u
is o-finite. One can construct a Poisson (&, %, u) process as follows: Since u is
o-finite, & = |J; X; where u(X;) < oo for all i and the X are disjoint and denumer-
able in number. Construct independent random variables {Y,,i = 1,2, --} where
Y; is Poisson with parameter u(X;). Then for each i, construct Y; i.i.d. random
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variables Z; ,,**,Z; y, with distribution P(Z;eC) = wWCnX)/uX,;), Ce¥. The
sets {Z,,} and {Z,,} are chosen to be independent for i3 j. The collection
{(Ziyk=1,",Y;i= 1,2, -} generates a Poisson (%,%,u) process. This con-
struction was pointed out to the author by K. It6 in a lecture at Cornell.

(ii) In Theorem 1 we assumed that # was chunkless. This assumption can be
dropped with a slightly modified version of the theorem holding.

Define a set Ce @ to be a chunk of (&, %) if the null set is the only proper subset
of C which belongs to %. It is easy to show that each realization of # can be uniquely

expressed as:
H(C) = Zi:Aﬂ:C n(4;)

where the {4;} form a denumerable (perhaps empty) collection of chunks of
(Z,%) and each n(4;) > 0. The collection {4}, of course, depends on the realiza-
tion of . We replace the random point set {7} in the chunkless case by a random
chunk set {4;} in the general case. In the general case we will assume that {g9:}
is independent of {4;}, rather than of {T;} as in Theorem 1.

Recall that by assumption (i) on g (Theorem 1) Pr(g(y)eD) is a measurable
function for all De 2. This implies that for any chunk B of (Z', %) with probability
one, all points lying in B will be mapped by g into a common chunk of (%, 2).
Since {g,} is independent of {4,} by assumption and both are countable collections,
the above implies that with probability 1 the realization of # and {g,} will be such
that for each g, and A4, g, will map all points of 4; into the same chunk of (%, 2).
We can thus unambiguously replace the random point set {g(7)} with a random
chunk set {g,(4,)}. It then will follow by the same argument as in Theorem 1
that g(T';) generates a Poisson (¥, 2, u,) process.

(iii) Theorem 1 can be applied to the branching Poisson model of P. Lewis, [5]
and [6]. Under this model primary events {7} occur according to a (not necessarily
homogeneous) Poisson process. Each primary event T; gives rise to a random set of
secondary events {S; ;j=1,-+,N;} of random size N;, We assume that for each
i, {S;;,j=1,"+-N;} is conditionally independent of {Sypj=1,",Np i'#i}
and of {T;} given T; (Lewis makes the slightly stronger assumption that the col-
lections {S, ;—T;j=1,""+,N;} are iid.).

It follows from Theorem 1 that the collection of sets g(T;) = {T;, S; ;j=1,""",
N;} i=1,2,-- generates a Poisson process on a space (%, 9) whose points are
countable subsets of real numbers. From this it follows that the number of secondary
events in any Borel set has a compound Poisson distribution; the number of events
(both primary and secondary) in any Borel set is compound Poisson distributed:
the number of g(T;)e A is Poisson distributed for any set 4 €2; the number of
g«T)) with T; < a, sup;|S; ;— T3 < b is Poisson distributed, etc.
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